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Abstract—The paper deals with a design of model predictive 
control (MPC) as an example of the advanced local motion control  
of articulated robot arms in the scope of manipulation operations 
within the intradepartmental transportation among workplaces. 
Initially, the use of articulated robotic arms as a part of mobile 
robotic systems is discussed. Then, the convenient composition  
of mathematical models of kinematics and dynamics of the afore-
mentioned robot arms is introduced. Thereafter, MPC design is 
explained. The proposed theoretical methods of the mathematical 
modeling and control design are demonstrated by the simulation 
of the 5 degrees of freedom robot arm composed of drive, joint  
and arm modules of the Schunk Co. 

Keywords—kinematics and dynamics of articulated robots; mathe-

matical modeling; mobile robotic systems; model-based control design; 

motion control; predictive control 

I. INTRODUCTION 
Articulated robots or especially articulated robot arms  

constitute common auxiliary machines used for the wide range 
of operations such as (i) manipulation e.g. transport of raw 
materials and final products, or (ii) production e.g. painting, 
welding or assembling. They represent kinematics with good 
movability and dexterity and adequate workspace range [1]. 

The mentioned robots are constructed by the revolute joints  
and solid arms. It determines a spherical shape of their work-
space. According to the number of degrees of freedom (DOF),  
the particular robot can achieve a specific range of positions. 
The positions, in which the robot begins or finishes required 
motion, are of specific importance. In these positions, the robot 
has to precisely maintain a given, typically orthogonal, orien-
tation of a product or tool towards an appropriate product shelf  
or tool storage. 

To extend action radius of the manipulation, the robot arms 
are fixed to the linear-moving platforms allowing the motion  
in additional axis. It is typical for the robots and manipulators 
employed in production lines, where one robot serves several 
neighboring production machines. Furthermore, the robot arm 
can be connected to some particular underframe that can extend  
the robot action radius substantially [2]. 

If the robot arm is independent of a particular location  
and is equipped by some independent source of energy for both 
the underframe and robot arm, then such combination forms  
a specific autonomous mobile robotic system. In this paper,  
the basic control objectives of such systems are outlined.  
The main attention is focused on the modeling and the design 
of model predictive control (MPC) for a local motion control 
of the robot arm [3], [4]. 

The paper is organized as follows. Section II outlines  
the principal control objectives for the mobile robotic system 
shown in Fig. 1. Section III deals with suitable mathematical 
models for control design with the reference to the considered  
5 DOF robot arm. It covers description of the kinematic model 
including direct and inverse kinematic transformations,  
and dynamic model derived from Lagrange equations. A spe-
cific model rearrangement that leads to linear-like state-space 
model is introduced as well. Section IV summarizes principles 
of MPC design. Finally, Section V shows one simulative  
example of the proposed MPC applied to the derived realistic 
mathematical model of the 5 DOF robot arm. 

 

Fig. 1. Overall view of the mobile robotic system: 3 DOF mobile underframe  
with 5 DOF robot arm [5]. 
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Fig. 2. Basic views: front, top plan, side and 3D view with definitions of global coordinate system (xfix, yfix, zfix) and local coordinate system (x0, y0, z0). 

II. CONTROL OBJECTIVES OF MOBILE ROBOTIC SYSTEM 
In general, there are two main objectives for motion control 

of the mobile robotic system (MRS) [2] that is shown in Fig. 1.  
The first one is a global objective, i.e. the absolute motion  
of MRS within its workplace by means of the mobile underframe,  
which affords the base for the robot arm. The second one  
is a local objective, i.e. the relative motion of the robot arm  
end-effector with respect to the mobile underframe of the MRS. 

Let us consider the cases where the underframe moves 
slower compared with the local motion of the robot arm, or the mo-
tion of the underframe and robot arm is sequentially arranged  
i.e. the arm motion does not begin before the underframe mo-
tion is finished and vice versa. In such cases, the two said 
control objectives can be considered as independent without 
mutual influencing each other. In this paper, the local objective 
is investigated and discussed. 

To analyze the objective for the local motion control  
of the robot arm, let us focus on depicted plan with basic views 
in Fig. 2. It shows main key MRS elements and coordinate 
systems. The robotic arm is marked by a wireframe model, 
whereas the underframe is represented by solid model including 
wheels enabling planar omnidirectional motion. For further 
structural details and technical parameters see [5] and [6]. 

In Fig. 2, there are two independent coordinate systems 
global and local. The global coordinate system is a system  
with global fixed axes (xfix, yfix, zfix) and the local coordinate 
system is a system with local relative axes (x0, y0, z0). Several 
different coordinates are associated with them as follows. 

Let the position of the underframe be given by coordinates 
ǆg, Ǉg and ag that correspond to the directions along global axes 
ǆfiǆ and Ǉfiǆ and the rotation angle around orthogonal axis zfiǆ, 
respectively. Furthermore, let the robot end-effector be given  
in the local system by local coordinates ǆ, Ǉ and z that relate  
to one of specific operation points F, T, U, V and P, selected  
as a reference or operating point according to user requirement 
on the arm motion along a motion trajectory. The coordinates 
ǆ, Ǉ and z are complemented by two angles BǇ and Cǆ deter-
mining the orientation in the given reference point. The angles 
represent the rotation around axes ǇϬ and ǆϬ, respectively. Thus, 
the coordinates (ǆ, Ǉ, z, BǇ, Cǆ) correspond to the 5 DOF of the arm 
as well as individual joint angles ( 54321 ,,,, qqqqq ), i.e. robot 
axes Aϭ‐Aϱ. Additionally, there is a coordinate s corresponding 
to the stroke of the robot gripper constituting the axis Aϲ. 

Let us consider that a local reference motion of the arm  
is given by Cartesian coordinates (ǆ, Ǉ, z, BǇ, Cǆ) and stroke s, 
and they are recomputed to the joint coordinates. Then, control 
actions (five torques in joints) are designed in the joint space. 
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Fig. 3. 5 DOF articulated robot arm in detail [2]. 

III. MATHEMATICAL MODELS FOR CONTROL DESIGN 
A mathematical model used for control design of the articu-

lated arms is given by kinematic and dynamic model as follows. 

A. Kinematic Model 

Kinematic model arises from the Denavit-Hartenberg (DH) 
concept that defines the transformations of the coordinates  
using several homogenous matrices corresponding to individual 
kinematic pairs of the robot arm [1]. Kinematics of the robot 
represents the appropriate transformations of the coordinates  
between joint space (drives) and operation space (end-effector) 
in both directions: direct ( yq  ) and inverse ( qy  ), where 
joint and operation coordinates q  and y  are as follows 

   TT
xy cbzyxyqqqqqq ],,,,[,],,,,[ 54321   (1) 

 Direct Kinematic Transformation 

For a considered 5 DOF articulated robot (Fig. 3, Fig. 4),  
the direct kinematic transformation (DKT) is defined as follows 
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where F is a coordinate vector of the robot flange (end-effector) 
and i

i
T 1  are individual transformation matrices defied as: 
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The matrices or set of algebraic equations represent the solution 
for the positions. The velocities and accelerations are computed  
by the appropriate derivatives of (2). The particular DH 
parameters for the considered 5 DOF robot arm are summarized  
in the TABLE I.  

 

Fig. 4. Scheme of the DH coordinate frames. 

TABLE I.  DH PARAMETERS 

Links 
Parameters 

 i d i a i  i 

link 1 q1 1 0 90° 
link 2 -q2 0 2 0° 
link 3 -q3 0 3 0° 
link 4 q4 0 4 0° 
link 5 0 0 0 q5 

 

 Inverse Kinematic Transformation 

Inverse kinematic transformation (IKT), needed for compu-
tation of joint (drive) coordinates from operation ones, can be 
determined from the said transformation matrices. However,  
for simple use, IKT can be expressed straightforwardly 
considering the scheme in Fig. 4 in the following way 

 

2
01

22
22

32

22
3

2
2

2

2
3

22
2

)(,arccos

2
arccos,

2
arccos

hzyxe
e

yx

e

e

e

EEE
EE 






















 (4) 

where ,  and   are auxiliary angles determined from a sca-
lene triangle BCE with one variable side e. Then, the searched 
joint angles can be determined as follows 

 

xy

EE

E

cqqqbqq

q

yx

x
q








53243

2221

),(,

,arccos





 (5) 

Note that joint angles are determined for known xyz coordinates 
of the point T

EEE zyxE ]1,,,[  from the system ǆϬ, ǇϬ, zϬ. 
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Fig. 5. Detail of the link 5 representing the robot griper with stroke s.  

If the coordinates of the robot motion is related to another point, 
it is necessary to take such a point into account. Then, com-
putations of the point E from the other points (see Fig. 5) are  
as follows. At first, let us consider the points F, T and P, all 
lying in one plane , which is a vertical plane containing axis z0 
and central points of all robot joints (A, B, C, E and F): 
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For the remaining points U and V, the angle q1 cannot be deter-
mined according to (5), since these points do not belong  
to the plane  (see Fig. 5). However, the angle q1 can be deter-
mined by means of the following trigonometric laws: 
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It leads to the quadratic equation with the following roots 
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Then, coordinates of the point E can be determined as follows 
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where T1x, T2y, T4a, T5b, T6c in (6) and (9) are the homogenous 
transformation matrices for translation along the axes ǆ and Ǉ  
and for rotation around the axes ǆ, Ǉ and z [1]. 

B. Dynamic Model 

The model of the robot dynamics employs both kinematic  
and dynamic quantities. It can be derived by means of Lagrange 
equations of the second type [1], [7]: 
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These equations lead to the equations of motion that can be 
written in the following form 

  )(),(),( qgqqqNqqqM   (11) 

They are composed using transformation matrices defined  
in DKT and dynamic parameters as weights, moments of inertia 
relative to the coordinate frames shown in Fig. 4. The equations 
of motion (11) can be rewritten with a separate highest (second) 
derivative as follows 

 111   MgMqNMq   (12) 

where ),( qqMM   and ),( qqNN   are matrices relating 
to the effects of inertia, )(qgg   is a vector corresponding  
to the effects of gravitation, parameters of which are lengths, 
weights and moments of inertia of arms, see [5].   is a vector 
of torques expected in the particular joints of the robot arm. 

The model (12) is suitable for further modification that enables 
us to obtain the standard linear-like state-space model for con-
trol design. It can be written as follows 
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It is supplemented with an algebraic equation for the calculation  
of joint torques   from an auxiliary vector of control actions u  

 guM   (15) 

A utilization of the newly introduced vector of the control 
actions u and appropriate model rearrangement (13) enable us 
to compose the mentioned linear-like state-space model (14). 
This model contains the variable matrix )(xA  that depends  
on the state vector ],[ qqx  T. The vector x consists  
of the five joint angles and their derivatives considering  
the 5 DOF robot arm in Fig. 3 (scheme Fig. 4) as follows 

 Tqqqqqqqqqqx ],,,,,,,,,[ 5432154321  . 
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IV. DESIGN OF MODEL PREDICTIVE CONTROL 
Let us consider that the predictive control should generate  

the control actions with respect to the required motion  
of the robot arm. In general, the desired motion is given either 
by the motion trajectories represented by an ordered set of time 
and coordinates or only by the selected points such as starting, 
terminal and key transit points and possible limits for obstacles.  
In this paper, the usual way of the motion representation  
via time-parametrized coordinates is considered [8]. The se-
cond way with selected points is a specific generalization of this 
tasks only, see [9], [10]. The MPC design follows from the as-
sumption that the trajectories are parametrized with the equiva-
lent sampling Ts as used discrete state-space model: 
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This model is obtained from the model (14) that is updated 
according to regular state measurement xk: A(x)| x = xk and dis-
cretized in every new computation of the control actions ku . 

A. Criterion and Cost Function 

The basis of MPC design consists in a minimization of the cri-
terion with the appropriate cost function: 
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and N  is a prediction horizon. The cost function is defined as 
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where kU , 1
ˆ
kY  and 1kW  stand for the sequences of control 

actions, output predictions and references, respectively 
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and YWQ  and UQ  are matrices of penalizations defined as 
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B. Equations of Predictions 

The equations of predictions express functional estimates  
of the output elements in 1

ˆ
kY  relative to the searched vector 

of the control actions Uk within the prediction horizon N.  
The equations arise from the state-space model (16) considering 
constant matrices A and B within one horizon N as follows 

  

1

1

1

2
2

1

ˆ

ˆ
ˆ


























Nk

k

k
N

k

k

k

k

k

N
Nk

k

k

uCB

uCB

uBCA

uCAB

uCB

x

x

x

CA

CA

CA

y

y

y




 (23) 

The equations (23) can be rewritten in the matrix form 
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ˆ   (24) 
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C. Minimisation of the Criterion 

Minimization of the criterion (17) can be provided effi-
ciently by means of the square-root form as follows 
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Evaluation of (26) can be transformed into the solution of alge-
braic equations with respect to the unknown vector kU  
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The indicated solution arises from the orthogonal triangular de-
composition of the matrix  , which is used in the least-squares 
problems [11]. Vector  zc   represents square-root of the global 
minimum of the cost function z

T
zkJ cc  within the horizon N. 

Note that the final control actions ku  are included in the first 
sub-vector of the overall vector kU , as indicated in (19).  
Then, the control actions ku  are recomputed into the vector  
of expected joint torques k  according to (15). 
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Fig. 6. Time histories of kinematic quatitites and control actions presenting in local motion control of 5 DOF articulated robot arm including used MPC parameters. 

V. DEMONSTRATION OF MOTION CONTROL 
In this section, the proposed MPC concept for motion 

control of the robot arm is demonstrated. The used reference 
motion trajectory was composed of arc and line segments, 
which were time-parametrized according to [8]. Appropriate 
time histories of the kinematic quantities and control actions 
associated with the desired arm motion for the selected 
reference point T are shown in Fig. 6. The first four rows are  
for Cartesian coordinates and their derivatives, i.e. velocities, 
accelerations and jerks. The last but one row shows the time 
histories of joint coordinates. Finally, in the last row, there are 
time histories of control actions designed by proposed MPC  
and used MPC parameters. It is obvious that the actual joint 
coordinates (dashed blue lines) have a good coincidence with 
the reference coordinates (solid green lines). In case of mobile 
robotic systems with the robot arm intended especially for ma-
nipulation operations, such behavior is sufficient enough even  
for varying load. It is given by the ratio of the overall robot mass 
(permanent load about 12 kg) and useful load (up to 0.25 kg). 

VI. CONCLUSION 
This paper presents the analysis of the control objectives  

of one mobile robotic system that is equipped with the 5 DOF 
articulated robot arm. The predictive control design concept  
was introduced for the local motion control of the robot arm. 
The proposed solution represents a suitable energy-optimal 
centralized control that takes into account the robot arm motion 
as a one complex task. It is in contrast with the standard 
decentralized concept based on local PID controllers that take 
the mutual relations into account as external disturbances only.

Future work will be aimed at an experimental verification  
of the proposed solution as well as at a modeling of the mobile 
underframe with inclusion of the obtained model into the global 
control objective. Thus, we will focus on the problem of posi-
tioning of the whole mobile robotic system, i.e. underframe  
and articulated robot arm, in the global coordinate system. 

REFERENCES 
[1] B. Siciliano, L. Sciavicco et al., Robotics: Modelling, planning and con-

trol. Springer, 2009. 
[2] J. Vachálek, F. Tóth, P. Krasňanský and Ľ. Čapucha, “Design and con-

struction of a robotic vehicle with omnidirectional mecanum wheels,” 
Proc. of the scietific papers of TU Ostrava, vol. 60, no. 1, 2014. 

[3] A. Ordis and D. Clarke, “A state-space description for GPC controllers,” 
J. Systems SCI., 24(9), 1993, pp. 1727-1744. 

[4] K. Belda, J. Böhm and P. Píša, “Concepts of model-based control  
and trajectory planning for parallel robots,” Proc. of IASTED Int. Conf. 
on Robotics and Applications, Wurzburg, Germany, 2007, pp. 15-20. 

[5] P. Krasňanský, Robot arm for autonomous mobile robotic system, 
Dissertation, STU in Bratislava, 2014 (in Slovak). 

[6] J. Vachálek, Ľ. Čapucha, P. Krasňanský and F. Tóth, “Collision-free 
manipulation of a robotic arm using the MS Windows Kinect 3D optical 
system,” Int. Conf. on Process Control, Strbské Pleso, 2015, pp. 96-106. 

[7] A. Othman, K. Belda and P. Burget, “Physical modelling of energy 
consumption of industrial articulated robots,” Proc. of 15th Int. Conf.  
on Control Autom. and Systems, Busan, South Korea, 2015, pp. 784-789. 

[8] K. Belda and P. Novotný, “Path simulator for machine tools and robots,” 
Int. Conf. Methods & Models in Autom. & Robotics, 2012, pp. 373-378. 

[9] K. Belda and J. Böhm, “Range-space predictive control for optimal robot 
motion”, Int. J. Circuits, Systems & Signal Processing, 1(1) 2008, pp. 1-7. 

[10] K. Belda, “Predictive control with approximately given reference signal,” 
Proc. of Int. Sci.-Tech. Conf. Process Control 2008, pp. 1-8. 

[11] C. Lawson and R. Hanson, Solving least squares problems, Siam, 1995. 

0 1 2 3 4 5
200

300

400

500

600

x (t) [mm]xd (t)
0 1 2 3 4 5

-400

-200

0

200

400

y (t) [mm]yd (t)
0 1 2 3 4 5

400

500

600

700

z (t) [mm]zd (t)
0 1 2 3 4 5

-40

-20

0

20

40

Az (t) [°]Azd (t)
0 1 2 3 4 5

-0.2

-0.1

0

0.1

By (t) [°]Byd (t)
0 1 2 3 4 5

10-3

-1

0

1

2

Cx (t) [°]Cxd (t)

0 1 2 3 4 5
-1

-0.5

0

0.5

1

vx (t) [ms-1]vxd (t)
0 1 2 3 4 5

-2

-1

0

1

vy (t) [ms-1]vyd (t)
0 1 2 3 4 5

-1

-0.5

0

0.5

1

vz (t) [ms-1]vzd (t)

0 1 2 3 4 5
-10

-5

0

5

ax (t) [ms-2]axd (t)
0 1 2 3 4 5

-10

-5

0

5

10

ay (t) [ms-2]ayd (t)
0 1 2 3 4 5

-10

-5

0

5

az (t) [ms-2]azd (t)

0 1 2 3 4 5
-40

-20

0

20

40

jxd (t) [ms-3]
0 1 2 3 4 5

-200

-100

0

100

200

jyd (t) [ms-3]
0 1 2 3 4 5

-40

-20

0

20

40

jzd (t) [ms-3]

0 1 2 3 4 5
-40

-20

0

20

40

a1 (t) [°]a1d (t)
0 1 2 3 4 5

-140

-120

-100

-80

a2 (t) [°]a2d (t)
0 1 2 3 4 5

110

120

130

140

150

a3 (t) [°]a3d (t)
0 1 2 3 4 5

-20

0

20

40

a4 (t) [°]a4d (t)
0 1 2 3 4 5

10-4

-5

0

5

10

15

a5 (t) [°]a5d (t)
0 1 2 3 4 5

33

33.5

34

34.5

35

a6d (t) [mm]

0 1 2 3 4 5
-40

-20

0

20

40

u1 (t) [Nm]
0 1 2 3 4 5

-10

0

10

20

30

u2 (t) [Nm]
0 1 2 3 4 5

0

20

40

60

u3 (t) [Nm]
0 1 2 3 4 5

-5

0

5

10

15

u4 (t) [Nm]
0 1 2 3 4 5

-5

0

5

10

u5 (t) [Nm]

yfix

zfix

y0

z0

x0

xfix

0.5
0.6

0.7
0.8

0.9
10.7

0.6

0.5

0.4

0.3

0.2

0.3

0.5

0.6

0.7

0.8

0.4

MPC tuning parameters: 
N = 10,  Ts = 10-2 s, 
Qyw = diag ([1, 1, 1, 10, 10]),
Qu = 210-4 I (5×5) 
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