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Abstract—The work deals with design and application of 
fuzzy controllers for a biochemical process. Fuzzy logic control 
based on the Takagi–Sugeno inference method has been applied 
for control of the baker's yeast fermentation. The advantage of 
the fuzzy control design is that it can be used very successfully 
for control of strongly non-linear processes and processes that 
are difficult to model because of complicated reaction kinetics. 
Obtained simulation results confirm this fact. The disadvantage 
of the fuzzy control design lies in the time-consuming tuning of 

controllers.  

Keywords—fermentation process; fuzzy control; Takagi–Sugeno 
inference method.  

I. INTRODUCTION 

Biochemical processes are very difficult to control from 
various aspects and the strong nonlinear dynamics, 
complicated reaction kinetics and time varying parameters 
belong to them. Fermentation process, wherein the cultivation 
medium consists of living microorganisms, is important in 
many biotechnological applications, and it is necessary to 
eliminate various negative effects as e.g. substrate inhibition, 
catabolite repression, product inhibition, glucose effect. 
Furthermore, many variables are difficult to measure and 
usually demand laboratory analyses. 

Applications of artificial intelligence techniques have been 
used intensively to convert human experience into a form 
understandable by computers in last decades. A few 
applications of intelligent controllers have been discussed in 
[1] to show the effective and versatile use of these controllers 
in various bioprocesses. An effective biochemical network 
modelling framework for building dynamic cell-free 
metabolic models is presented in [2]. The key innovation of 
this approach is the seamless integration of simple effective 
rules encoding complex regulation with traditional kinetic 
pathway modelling. A new strategy to augment the pH 
process control is offered in [3]. The intelligent controller 
proposed herein is based on an inverse neural plant model. An 
integration term is introduced to improve the pure inverse 
neural controller performance. This element, adjusted by a 
fuzzy system with respect to the control error, operates in 
parallel with the neural controller to ensure offset-free 
performance in case of system uncertainties or modelling 
mismatch. The paper [4] deals with the control of uncertain 
highly nonlinear biological processes. An adaptive fuzzy 

control scheme represented by a Takagi-Sugeno fuzzy model 
is developed for the pre-treatment of wastewater. The 
proposed approach uses a fuzzy system to approximate the 
unknown substrate consumption rate in designing an adaptive 
controller, and then an observer is developed to estimate the 
substrate concentration at the bioreactor outlet. Numerous 
methods have been developed and presented to analyse and 
design a variety of fuzzy control systems [5]. Analytical 
structure for a fuzzy PID controller is introduced in [6]. In [7], 
a new method is proposed for automatic extracting all fuzzy 
parameters of a Fuzzy Logic Controller in order to control 
nonlinear industrial processes. A major contribution of fuzzy 
logic is its capability to represent vague data [8]. The paper 
[9] presents a general framework for dealing with 
uncertainties in each stage of consequence modelling. The aim 
of the paper [10] is to present the application of type-2 fuzzy 
logic controllers to the control of a fed-batch fermentation 
reactor in which penicillin production is carried out. In [11], a 
fuzzy logic control system has been developed for online 
feeding control in fed-batch enzymatic hydrolysis of dilute 
acid-pretreated corn stover. The work [12] addresses the fuzzy 
optimization of biochemical systems expressed with the S-
system form under uncertainty. The paper [13] proposes a 
fuzzy logic inference system to model the yogurt fermentation 
process.  

This paper is devoted to design and application of fuzzy 
controllers for a biochemical process. Fuzzy logic control 
based on the Takagi–Sugeno inference method has been 
applied for control of the baker's yeast fermentation. The 
generation of fuzzy rule base by subtractive clustering 
technique is used. This approach can reduce number of rules 
maintaining almost the same level of performance. The 
advantage of the fuzzy control design is that it can be used 
very successfully for control of strongly non-linear processes 
and processes that are difficult to model because of 
complicated reaction kinetics.  

The paper is organized as follows. Section II introduces 
the model describing the response of Saccharomyces 
cerevisiae represented by dissolved oxygen concentration. 
Fuzzy logic control based on the Takagi–Sugeno inference 
method is described in Section III and obtained simulation 
results are presented in Section IV. Section V summarizes 
conclusions. 
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II.   BAKER’S YEAST FERMENTATION PROCESS 

Fermentation of Saccharomyces cerevisiae (baker’s yeast) 
and using fuzzy control for this process have been studied. 
The non-linear model of the fermentation process has been 
used for fuzzy control design and simulation [14], [15]. The 
mathematical model is based on limited oxidation capacity of 
yeast leading to a switch-over from oxidative to oxide-
reductive metabolism. Regarding the law of the mass 
conservation, the model for continuous fermentation process 
of baker’s yeast can be expressed by the following set of 
ordinary differential equations [16], [17]: 

cell mass concentration: 
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dt

dc
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substrate concentration: 
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ethanol (product) concentration: 
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carbon dioxide concentration: 
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dissolved oxygen concentration: 
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where cx is the biomass concentration, μ is the specific 
biomass growth rate, q is the flow rate of liquid phase, Vl is 
the liquid phase volume, cs is the substrate concentration, csin 
is the input substrate concentration, Qs is the substrate 
specific consumption, ce is the ethanol concentration, cein is 
the input ethanol concentration, Qe is the ethanol specific 
consumption, cc is the carbon dioxide concentration, ccin is 
the input carbon dioxide concentration, Dg is the gas phase 
dilution rate, Qc is the carbon dioxide specific consumption, 
co is the dissolved oxygen concentration, coin is the input 
dissolved oxygen concentration, Na is the oxygen transfer, 
and Qo is the oxygen specific consumption, cg is the gas 
phase oxygen concentration, cgin is the input gas phase 
oxygen concentration, Vg is the gas phase volume. 

The mathematical description of the kinetic model 
mechanisms is shown in Table 1, the process parameters are 
given in Table 2. 

Here, k is the saturation constant, Yij is the yield of the 

component j on i, kLa is the volumetric mass transfer 

coefficient based on the liquid volume,  is the time constant 

for the induction of the production of consumption capacity, 

m is the gas liquid distribution coefficient, f is the induction 

or the repression factor, and the subscript and the superscript 

c is carbon dioxide, e is ethanol, g is the gas phase, i is the 

component, in is the input, I  is inhibition, l is the liquid 

phase, lim is limited capacity, max is maximum, o is oxygen, 

ox is oxidative, and red is reductive. 

 

TABLE I.  KINETIC MODEL MECHANISMS OF THE BIOPROCESS. 
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The main goal is to maintain a desired profile of dissolved 

oxygen concentration cO in the fermenter by manipulating the 
gas phase dilution rate Dg that is the ratio between the gas 
phase volumetric flow rate and the gas phase volume.  

 

III. FUZZY CONTROL  

Fuzzy system has been known to provide a framework for 
handling uncertainties and imprecision by taking linguistic 
information from human experts. L. A. Zadeh described his 
view on the evolution of fuzzy logic and its current status in 
[18].  
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TABLE II.  PROCESS PARAMETERS AND INPUTS 

Variable Unit Value 

ke mol l-1 2.2×10−3 

kI mol l-1 5.6×10−4 

km mol l-1 1.7×10−4 

kn mol l-1 3.6×10−4 

ko mol l-1 3.0×10−6 

ks mol l-1 5.6×10−4 

kLa h-1 592 

m mol mol-1 35 

Vl l 0.7 

Vg l 0.3 

ox
sxY  C-mol mol-1 3.65 

ox
scY  mol mol-1 2.35 

red
sxY  C-mol mol-1 0.36 

red
scY  mol mol-1 1.89 

ecY  mol mol-1 0.68 

eoY  mol mol-1 1.28 

exY  C-mol mol-1 1.32 

seY  mol mol-1 1.88 

soY  mol mol-1 2.17 

p
eQ max  mol (C-mol h)-1 0.13 

p
sQ max  mol (C-mol h)-1 0.5 

p
oQ max  mol (C-mol h)-1 0.2 

eτ  h 2.8 

oτ  h 1.6 

sτ  h 2.5 

csin= cgin mol l-1 1×10−3 

cxin C-mol l-1 0 

cein= ccin = coin mol l-1 0 

cx(0) C-mol l-1 3.2138×10−3 

cs(0) mol l-1 1.1951×10−4 

ce(0) mol l-1 1.2594×10−9 

cc(0) mol l-1 1.7914×10−3 

co(0) mol l-1 2.6112×10−6 

cg(0) mol l-1 9.3515×10−5 

 

Fuzzy controllers have found popularity in many practical 
situations. Design of a simple fuzzy controller [19] can be 
based on a three-step design procedure that is built on PID 
control. The algorithm is as follows: start with a PID 
controller, insert an equivalent, linear fuzzy controller and 
make it gradually nonlinear. A fuzzy controller (Figure 1) can 
include empirical rules that are called a rule base.  The 
computer is able to execute the rules and compute a control 
signal depending on the measured input error and the change 
in error. The inputs are most often hard or crisp 
measurements from some measuring equipment. 

A dynamic controller would have additional inputs, for 
example derivatives, integrals, or previous values of 
measurements backwards in time. The block fuzzification 
converts each piece of input data to degrees of membership 

by a lookup in one or several membership functions. The 
rules may use several variables, both in the condition and the 
conclusion of the rules. Basically, a linguistic controller 
contains rules in the if-then format, but they can be presented 
in different formats. The resulting fuzzy set must be 
converted to a number that can be sent to the process as 
a control signal. This operation is called defuzzification.  

 

 

 

 

 

 

Fig. 1. Control system with a fuzzy controller [19]. 

The fuzzy controller based on the structure of the 
standard PID controller has following (absolute) form: 

    







 τe,te
dt

d
,e(tF=u )   (7) 

The output sets can often be linear combinations of the 
inputs, or even a function of the inputs.  

The developed Fuzzy Logic Toolbox for the software 
package MATLAB implements one of the hybrid schemes 
known as the adaptive network based fuzzy inference system 
(ANFIS) [20]. In the ANFIS architecture, FIS is described in 
a layered, feedforward network structure (Figure 3). The 
parameters in layer 1 are called premise parameters and they 
are adjustable. The second layer represents the T-norm 
operators that combine the possible input membership grades 
in order to compute the firing strength of the rule. In the basic 
ANFIS method these parameters are not adjustable. The third 
layer implements a normalisation function to the firing 
strengths producing normalised firing strengths. The fourth 
layer represents the consequent parameters that are 
adjustable. The fifth layer represents the aggregation of the 
outputs performed by weighted summation. This is not 
adjustable [20]. The subclust function finds the clusters by 
using the subtractive clustering method. The genfis2 function 
builds upon the subclust function to provide a fast method to 
generate a Sugeno-type fuzzy inference system. 

A.  Subtractive clustering 
The fuzzy model suggested by Takagi and Sugeno in [21] 

and Sugeno and Kang in [22] also known as the Takagi-
Sugeno-Kang (TSK) model, has gained increasing interest in 
theoretical analysis and applications of fuzzy modelling and 
control. The TSK model is associated with fuzzy rules that 
have a special format with a functional-type consequent 
instead of the fuzzy consequent that normally appears in the 
Mamdani model [23]. The idea of fuzzy clustering is to 
divide the data space into fuzzy clusters, each representing 
one specific part of the system behaviour [24]. After 
projecting the clusters onto the input space, the antecedent 
parts of the fuzzy rules can be found. The consequent parts of 
the rules can then be simple functions. In this way, one 
cluster corresponds to one rule of the TSK model [25]. An 
advantage of using a clustering method to find rules is that 
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the resultant rules are more tailored to the input data than 
they are in an FIS generated without clustering.  

Consider a collection of n data points {x1, x2, ..., xn} in a 
M dimensional space. Each data point is a candidate for 
cluster centres. Based on the density of surrounding data 
points, the potential value for each data point is calculated as 
follows 

 




 

2

1
jk

N

=j
k xxαxpe=P  (8) 

where 
2)a(r

Ȗ
=α , . denotes the Euclidean distance, kP is 

the new potential-value of each examined point,  is the 

weight between k-data to j-data, x is the data point,  is a 
variable (commonly set to 4), ra is a cluster radius, it is a 
positive constant that represents the radius of data 
neighbourhood. 

A data point will have a high density value if it has many 
neighbouring data points. The first cluster centre xc1 is chosen 
as the point having the largest density value Pc1. Next, the 
density measure of each data point xk is revised as follows: 

  2

11exp ckck
s

k xxȕPP=P   (9)  

where  2brȖ=ȕ , ηr=r ab , rb  is a positive constant which 

defines a neighbourhood that has measurable reductions in 
density measure. Therefore, the data points near the first 
cluster centre xc1 will have significantly reduced density 

measure. Pc1 is the potential-value data as cluster centre,  is 

the weight of k-data to cluster centre,  is the quash factor, 
usually set to 1.5.  

When the potential of all data points have been revised 
according to (9), the data point with highest remaining 
potential is selected as the second cluster centre. This process 
continues until a sufficient number of clusters are attainted or 
all remained density values less than the threshold. 

IV. SIMULATION RESULTS 

A.  PI control of the fermentation process 

PI controllers described by the transfer function  

 







st

+k=C
i

p

1
1  (10)  

with kp  the proportional gain, ti  the integral time, were tuned 
using Cohen-Coon and Chien-Hrones-Reswick methods [26]. 
The model was identified from the step response of the 
fermenter in the form of the first order plus time delay 
transfer function  

  
Ds

+τs
K

=S e
1

  (11)  

The transfer function parameters are: the time constant 

 = 0.4 h, the gain K = 6.90
-6 

mol h l
-1

, and the time delay 
D = 0.01 h. The PI controller parameters obtained using the 

Cohen-Coon formulas are kp = 5.20
6 

mol
-1

 h
-1

 l, ti = 0.032 h 
and those obtained using the Chien-Hrones-Reswick 

formulas are kp = 2.020
6
 mol

-1
 h

-1
 l, ti = 0.47 h. 

 

B.  Control of the fermentation process using Takagi-Sugeno 

fuzzy PI controller 

 

Sugeno-type fuzzy inference system was generated using 

subtractive clustering in the form (12) for the fuzzy PI 

controller design.  

 If e is Ai  and ∫e is Bi  

                        Then fi = pi e + qi ∫e + ri, i = 1, 2, 3    (12) 

where e is the control error, pi, qi, ri are the consequent 

parameters. The symmetric Gaussian function was used for 

the fuzzification of inputs and it depends on two parameters 

 and c as it is seen in (13):  

 

 
2

2

2e)( 
cx

x




  (13) 

The parameters  and c for the Gaussian membership 

functions are listed in the Table 3. The consequent 

parameters in the control input rule (12) are listed in Table 4. 

TABLE III.  PARAMETERS OF THE GAUSSIAN MEMBERSHIP FUNCTIONS. 

e ∫e 
i ci i ci 

1.03×10-6 -6.14×10-9 3.27×10-6 3.75×10-7 

1.03×10-6 1.40×10-7 3.27×10-6 -5.50×10-6 

1.03×10-6 6.05×10-10 3.27×10-6 -1.01×10-7 

TABLE IV.  CONSEQUENT PARAMETERS.  

pi qi ri 

-35853 2642452 -0.58 

52151 87325 0.63 

335853 -1677420 0.39 

 
Rule viewer that simulates the entire fuzzy inference 

process is shown in Figure 2. Figure 3 shows the structure of 
ANFIS and Figure 4 shows the corresponding input-output 
surface of this fuzzy system. 

 

 
Fig. 2. Fuzzy inference system. 
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Fig. 3. Structure of ANFIS. 

 

 
Fig. 4. Input-output surface. 
 

To demonstrate the robustness of the designed fuzzy 
controller, parameter perturbations were applied. They 
represented changes of ±20% in the liquid phase dilution rate 
Dl and changes of ±20% in the substrate saturation constant 
ks. 

Simulation results obtained using designed PI and fuzzy 
PI controllers in the set-point tracking are shown in Figure 5 
for the controlled output of the nominal system. The control 
inputs are presented in Figure 6. Figures 7 and 8 show 
controlled outputs and control inputs for the -20% parameter 
changes. Figures 9 and 10 show controlled outputs and 
control inputs for the +20% parameter changes. 

PI and fuzzy PI controllers were compared using IAE 
criteria. The IAE values are given in Table 5. According to 
IAE, the fuzzy PI controller assured the best set-point 
tracking. 

 

 

Fig. 5. Control of the dissolved oxygen concentration in the fermenter: 

nominal system. 

 

 
Fig. 6. Control inputs:  nominal system. 

 

 
Fig. 7. Control of the dissolved oxygen concentration in the fermenter: 

-20% parameter changes. 

 

 
Fig. 8. Control inputs:  -20% parameter changes. 

 

 
Fig. 9. Control of the dissolved oxygen concentration in the fermenter: 

+20% parameter changes. 

 
Fig. 10. Control inputs: +20% parameter changes. 

TABLE V.  COMPARISON OF THE SIMULATION RESULTS IN THE SET-
POINT TRACKING BY INTEGRATED ABSOLUTE ERROR IAE . 

controller 

 

IAE 

nominal 

system 

-20 % 

changes 

+20 % 

changes 

PI Cohen-Coon 2.44×10-5 2.71×10-5 2.25×10-5 

PI Chien-Hrones-Reswick 1.78×10-5 2.04×10-5 1.60×10-5 

Fuzzy PI 0.95×10-5 1.26×10-5 1.02×10-5 

 

The designed controllers were tested also in the 
disturbance rejection in the nominal system. The disturbance 
was represented by ±50% changes of the gas liquid 
distribution coefficient m. Figures 11, 12 present the 
simulation results for the controlled output - the dissolved 
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oxygen concentration cO and the control input - the gas phase 
dilution rate Dg.  

 

Fig. 11. Disturbance rejection in the nominal system: dissolved oxygen 

concentration. 

 
Fig. 12. Disturbance rejection in the nominal system: control inputs. 

 

PI and fuzzy PI controllers in disturbance rejection were 

compared also using IAE criteria as it is seen in Table 6. 

Fuzzy PI controller assured the best results also in the 

disturbance rejection.  

TABLE VI.  COMPARISON OF THE SIMULATION RESULTS FOR 

DISTURBANCE REJECTION BY INTEGRATED ABSOLUTE ERROR IAE . 

controller 

 

IAE 

disturbance rejection – 

nominal system 

PI Cohen-Coon 0.42×10-5 

PI Chien-Hrones-Reswick 0.82×10-5 

Fuzzy PI 0.40×10-5 

 

CONCLUSIONS 
Fuzzy logic control based on the Takagi–Sugeno 

inference method has been applied for control of the baker's 

yeast fermentation. Simulation results confirm that fuzzy PI 

controllers are able to assure better performance in the set-

point tracking as well as in the disturbance rejection than 

conventional PI controllers. Subtractive clustering method 

was used to identify the rule base needed to realize fuzzy PI 

controller. This approach was chosen to minimize the number 

of rules of designed fuzzy logic controller.   
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