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Abstract—This paper proposes the design of linear quadratic
(LQ) digital controller in Ball & Plate model in experimental
environment. The non-linear mathematical model of Ball & Plate
structure is presented and adequately linearized. Polynomial
approach to controller design for two degrees of freedom (2DOF)
controller structure is introduced as the main tool for determi-
nation of unknown parameters. This method requires placing
poles of characteristic polynomial, which are semi-optimally
determined using minimization of linear quadratic criterion. This
criterion is minimized by spectral factorization with the aid of
the Polynomial Toolbox for MATLAB. Experiments have proved
that this type of controller is able to stabilize the ball in desired
position on the plate, reject external disturbances and follow
reference path without much effort. In addition, a simple maze
was created on the plate to extend possibilities of the choice of
reference signal. The algorithm is able to determine correct path
through the maze and navigate the ball along this path.

I. INTRODUCTION

The Ball & Plate model has two inputs and two outputs,
integrating properties and is suitable for testing designed
control algorithms for unstable processes in real environment.
The polynomial approach to controller design is used in this
paper, as it simplifies the design problem to operations on
algebraic polynomial (Diophantine) equations [1]. Controller
parameters are derived by minimizing linear quadratic (LQ)
criterion, which leads to semi-optimal solution (half of poles
of characteristic polynomial have to be user-defined) [2]. This
method can be applied to various controller structures and
this paper discusses the use of 2 degrees of freedom (2DOF)
controller structure, which provides separation of feed-back
part (responsible for stabilization and disturbance rejection)
and feed-forward part (responsible for reference tracking) [3].
The same real model was used in [4], where PID/PSD control
in closed-loop feedback structure was applied. Butterworth,
Graham-Lathrop and Naslin’s methods were used for calculat-
ing controller parameters and results were promising. A double
feedback loop structure based on fuzzy logic is tested in [5].
Fuzzy supervision and sliding control are proposed in [6] and
a non-linear switching is described in [7].

The paper is organized as follows. A brief description of
mathematical model of the Ball & Plate structure is in Section
II. The design of LQ controller is shown in Section III. Section
IV contains results of simulation and experiments on the real
model. Section V concludes the paper.

II. BALL & PLATE MATHEMATICAL MODEL

The mathematical model of the real system has to be
acquired in the first place, thus initial assumptions are needed
to simplify and linearize the model used for controller design.

A. Initial Assumptions

It is assumed that servomotors of the model are not in-
fluenced by the motion of the plate or the ball. Thus the
mathematical model can be divided into ball-plate model and
servo motor model separately. The Ball & Plate part is shown
in Fig. 1.

Fig. 1. Ball & Plate mathematical setup [8]

Other assumptions taken into account are:
• No slip between the ball and the plate,
• perfect contact between the ball and the plate,
• friction is omitted (e.g. from air or ball-plate contact),
• the ball is an ideal spherical shell,
• the plate has no boundaries.

B. Nonlinear System Equations

The derivation of system equations starts with general form
of Euler-Lagrange equation of the second kind [9]:

d

dt

∂T

∂q̇i
− ∂T

∂qi
+
∂V

∂qi
= Qi (1)

where T is kinetic energy of the system, V is potential
energy, Qi is i-th generalized force and qi is i-th generalized
coordinate. This system has 4 generalized coordinates in total
(two ball position coordinates x, y and two plate inclinations
α, β). Forces acting on the system are gravitational force and
forces in the form of torque acting on the plate τx and τy . The
derivation of specific equations from (1) is not the purpose of
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this paper, thus only final result will be presented. This result
consists of a system of 4 ordinary second-order differential
equations, but equations describing inclination angles α and β
can be omitted, because it is assumed that stepper motors do
not lose any step and load does not affect their performance,
thus these angles are direct system inputs and the model is
simplified to two equations of coordinates x and y:

x:

(
m+

Ib
r2

)
ẍ−m

(
α̇β̇y + α̇2x

)
+mg sinα = 0 (2)

y:

(
m+

Ib
r2

)
ÿ −m

(
α̇β̇x+ β̇2y

)
+mg sinβ = 0 (3)

where m, r and Ib are mass, radius and moment of inertia
of the ball respectively, g is gravitational acceleration, α, β
are plate angles (α changes x coordinate and β changes y
coordinate), α̇, β̇ are first time derivatives of plate angles, x,
y are coordinates of the ball from center of the plate and ẍ,
ÿ are second time derivatives of ball coordinates.

C. Linearized Model

For small angles of the plate, one can write sinα ≈ α
and sinβ ≈ β. It is also assumed that the rate of change
in plate inclination is small around the linearization point,
thus α̇β̇ ≈ 0, α̇2 ≈ 0 and β̇2 ≈ 0. The moment of
inertia of a sphere (or a hollow sphere - spherical shell) can
be ideally expressed as Isphere = 2

5mr
2
(
Ishell =

2
3mr

2
)
.

These simplifications applied to (2) and (3) result in

x: ẍ = Kbα (4)

y: ÿ = Kbβ (5)

where Kb is constant dependent only on the gravitational
acceleration g and the type of ball (whether it is spherical
shell or sphere).

Because servo motors dynamics was neglected, it will be
approximated by first-order transfer function

Gm(s) =
Km

τms+ 1
(6)

where Km = 0.1878 and τm = 0.187 are gain and time
constants of the motor respectively. These constants were
obtained from model’s manual pages [10].

It is obvious that the problem is symmetric. It is then
possible to express the mathematical model (Ball & Plate
model together with approximated model of servo motors)
in one continuous transfer function G(s) with generalized
coordinate as output Y (s):

G(s) =
Y (s)

U(s)
=

K

s2 (τms+ 1)
=

K

τms3 + s2
(7)

where K = KbKmCx is velocity gain of the integrating
system (Cx = − 1

0.2 = −5m−1 is conversion coefficient from
meters to normalized coordinates specific for the real model).

Equation (7) can be discretized into:

G(z−1) =
B(z−1)
A(z−1)

=
b1z
−1 + b2z

−2 + b3z
−3

1 + a1z−1 + a2z−2 + a3z−3
(8)

where B(z−1) and A(z−1) are polynomials with unknown
coefficients. Since Ball & Plate model has double integrator,
discrete transfer function (8) can be simplified to:

G(z−1) =
b1z
−1 + b2z

−2 + b3z
−3

(1− z−1)2 (1− c1z−1)
(9)

where c1 is the only unknown pole of the discrete transfer
function.

III. LQ CONTROLLER DESIGN

A. Control Law

The controller is designed for two degree of freedom
(2DOF) closed-loop control system shown in Fig. 2, where G
is controlled plant, Cf and Cb are feed-forward and feed-back
parts of the controller respectively, 1/K(z−1) = 1/(1− z−1)
is the summation part of the controller (it is extracted from
denominators of Cf and Cb for practical reasons), w(k) is
reference signal, y(k) is output of the system, u(k) is output of
the controller, n(k) is load disturbance and v(k) is disturbance
signal. It is assumed that no disturbances act on the system.
This is obviously not true for real system, but it simplifies
the design and structure of the controller. As mentioned, the

Fig. 2. Structure of 2DOF controller

controller is designed using polynomial approach. By taking
signals from Fig. 2 in their discrete forms (and omitting z−1

in polynomials’ notation), one can write

Y (z−1) =
BR

AKP +BQ
W (z−1) (10)

The characteristic polynomial D(z−1) can be extracted from
(10) creating a Diophantine equation:

D = AKP +BQ (11)

All polynomials in transfer functions will be called by their
respective letter from now on, because omitting ”(z−1)” will
simplify the notation. Degree of polynomials Q, R and P can
be determined by choosing the degree of the characteristic
polynomial D, as described in [2], from where it should be 6
for this specific case:

D =
6∑

i=0

diz
−i (12)

thus controllers Cb and Cf are

Cb(z
−1) =

Q

P
=
q0 + q1z

−1 + q2z
−2 + q3z

−3

1 + p1z−1 + p2z−2
(13)
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Cf (z
−1) =

R

P
=

r0
1 + p1z−1 + p2z−2

(14)

where Q and P are polynomials with unknown coefficients,
computed from (11) by method of undetermined coefficients.
Polynomial R has one unknown coefficient r0, which can be
calculated for step-changing signal (see [2]) as:

r0 =
d0 + d1 + d2 + d3 + d4 + d5 + d6

b1 + b2 + b3
=

3∑

i=0

qi (15)

B. Minimization of LQ Criterion

It is possible to obtain a semi-optimal solution by minimiz-
ing linear quadratic (LQ) criterion, which has the following
form, as described in [2]:

J =
∞∑

k=0

{
[e(k)]

2
+ qu [u(k)]

2
}

(16)

where e(k) = w(k) − y(k) is error, u(k) is controller output
and qu is penalization constant, which influences the controller
output during minimization process. Standard minimization
of LQ criterion is conducted in state-space description and
leads to the solution of algebraic Riccati equation. According
to [2], this criterion can be also minimized for input-output
description of the model by applying spectral factorization on
the following equation:

A(z−1)quA(z) +B(z−1)B(z) = D(z−1)δD(z) (17)

where δ is chosen so that coefficient d0 = 0 for the sake
of simplification. Spectral factorization for polynomials with
degree higher than 2 has no analytical solution and has to
be solved numerically by iterative methods. The Polyno-
mial Toolbox for MATLAB [11] can be used for this task,
specifically using function spf.m. The result of this spectral
factorization offers 3 roots of characteristic polynomial (12)
that are optimal. Remaining 3 roots (poles) have to be user-
defined. These user-defined poles could be all equal to zero
to obtain a fully optimal solution, but that would make the
controller less robust, thus these 3 user-defined poles will be
non-zero (actually they need to be placed closer to a unit
circle on the Z-plane to bound the output of the controller).
By choosing appropriate poles, coefficients of the polynomial
(12) can be obtained and unknown coefficients of polynomial
Q, P and R can be computed from (11) and (15).

IV. IDENTIFICATION AND EXPERIMENTAL RESULTS

The real model, which will be used for experiments is
Ball & Plate model CE151 from Humusoft s.r.o. [10] with
camera for tracking the position of the ball. Because the
algorithm will be applied to real model, it was properly
identified. The ball was placed to the center of the plate
and after step-changing plate inclination ball’s position was
recorded. Multiple measurements were taken and averaged to
compensate errors of measurement. Parameters K and τm in
model (7) were identified by minimizing the sum of squared

errors between measurement and unknown model. Resulting
model in continuous form is:

G(s) =
5.7402

s2 (0.1877s+ 1)
(18)

Its discrete form follows the general discrete transfer function
(8). The sampling period Ts was based on the limitation of
camera’s sampling frequency of 10 fps, thus the continuous
transfer function was discretized for Ts = 0.1s:

G(z−1) =
0.00449z−1 + 0.01579z−2 + 0.00344z−3

1− 2.5870z−1 + 2.1741z−2 − 0.5870z−3
(19)

Three optimal poles were computed from (17) for qu = 1:
0.8391 ± 0.1491i and 0.5811. Remaining poles were defined:
0.8, 0.8 and 0.88. These 6 poles are roots of polynomial (12).
Zeros and poles of discrete transfer function (19) are shown
in Fig. 3.

Fig. 3. Pole-zero map of the system

Coefficients of controller were computed from (11) and (15)
and substituted into (13) and (14):

Cb =
2.2372− 5.5540z−1 + 4.5040z−2 − 1.1831z−3

1− 1.1796z−1 + 0.4187z−2
(20)

Cf =
0.0041

1− 1.1796z−1 + 0.4187z−2
(21)

Designed controller is used for both inclination angles of
the plate (α and β), because it is still assumed that the system
is symmetric. This assumption was supported by experimental
results, which showed that measured data were similar with
relatively minor differences. Fig. 4 shows results of tracking
of reference signal, which was set to (x, y) = (0, 0), which
corresponds to the center of the plate.

As can be seen from plots of α and β, the angle generated by
the controller is not equal to zero (which obviously should be,
because the ball is steady only when the plate is in horizontal
position). This is caused by unmeasurable errors of the real
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model. Its constructional design has flaws which cause stepper
motors to lose steps. This ultimately leads to errors in the
output that controller compensates by generating non-zero
angle of the plate. Each initialization of the model removes
this problem, so that the effect will not stack. However, the
error of angle moved from 0 to almost half of the maximum
value in only few seconds, which is not very convenient. Fig. 5
shows the same measurement, but on the x-y plane as seen by
user.

Fig. 4. Reference tracking

Fig. 5. Reference tracking on x-y plane

In the next step, the disturbance was introduced after
the ball stabilized in the same reference value (0, 0) as in
previous case. This disturbance was created by continuous
blowing to the ball from different directions, which caused
random movements of the ball. The controller successfully
compensated this disturbance, which can be easily seen in
Fig. 6 and Fig. 7 (the error is within 4 cm radius or 0.2 in
normalized units).

Fig. 6. Disturbance rejection

Fig. 7. Disturbance rejection on x-y plane

A simple maze was also constructed on the plate using
colored tape (Fig. 8), therefore making the choice of reference
value more interesting and challenging.

Fig. 8. Maze and computed path
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Correct path through maze is determined and transformed
into set of reference values. Controller navigates the ball from
start at the top to exit in the bottom of Fig. 8. The resulting
position of the ball and outputs of controllers are shown in
Fig. 9 and position of the ball in x-y plane is in Fig. 10.

It is obvious that the ball diverts from its path mostly near
edges of the plate, because the model is most reliable and rigid
in the center. It is worth noting that maze walls have basically
no height, hence are only 2D. Their purpose is purely visual
and they provide no support for the ball whatsoever.

Fig. 9. Maze navigation

Fig. 10. Maze navigation on x-y plane

The method used for path determination is so-called wa-
tershed transform, which considers a grayscale image as a
topographical relief. In image processing, it was introduced
as a tool for segmenting grayscale images by S. Beucher and
C. Lantujoul in the late 70s [12]. The watershed function
in MATLAB [13] detects these segmented regions and outputs
them in a matrix.

Fig. 11 shows control with harmonic reference signal, re-
sulting in circular path of the ball (Fig. 12). Time range of the
measurement is greater, because the controller was designed
for step-changing reference value and harmonic signal in this
scale can be essentially considered a sequence of steps (this
property drops with rising frequency of harmonic signal). The
design of the controller for harmonic change would increase
its order and complexity. The structure of the real model
also plays a significant role in the design, as the system is
quite prone to elastic deformations, which causes undesirable
vibrations during continuous changes in plate angle.

Fig. 11. Circular reference tracking

Fig. 12. Circular reference tracking on x-y plane

A simple graphical user interface (GUI) was de-
signed to encapsulate control algorithms and schemes in
MATLAB/Simulink environment. It provides several options
and plots to quickly analyze desired trajectories and model
behavior, as shown in Fig. 13.
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Fig. 13. Graphical user interface for Ball & Plate model

V. CONCLUSION

A digital LQ 2DOF controller for Ball & Plate model has
been described in this paper. The controller was designed
based on linearized mathematical model and polynomial ap-
proach for input/output form of the model. Experiments were
carried out on CE151 educational model designed and built
by Humusoft. This model is unfortunately very sensitive to
vibrations caused by rapid movements of servomotors con-
nected to plate using steel wire. This wire is prone to elastic
deformations, which is the root cause of these vibrations. The
controller is able to partially compensate these flaws, although
it had to be designed to generate rapid changes as rarely as
possible. This was achieved by choosing user-defined poles
in polynomial method algorithm near the unit circle, which
slowed the whole process, but resulted in subtle changes in
plate inclination. The minimization of LQ criterion provided
rest of poles in an optimal solution, which successfully com-
pensated system dynamics. Experiments showed that this type
of controller can easily stabilize the ball on the plate in desired
position, reject introduced disturbances and navigate the ball
through maze constructed on the plate.
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