
Trajectory Planning and Following for UAVs with
Nonlinear Dynamics

Filip Janeček, Martin Klaučo, and Michal Kvasnica
Institute of Information Engineering, Automation, and Mathematics

Faculty of Chemical and Food Technology
Slovak University of Technology in Bratislava

Radlinského 9, 812 37 Bratislava, Slovakia
E-mail:{filip.janecek,martin.klauco,michal.kvasnica}@stuba.sk

Abstract—In this paper, we introduce a Matlab-based toolbox
called OPTIPLAN, which is intended to formulate, solve and sim-
ulate problems of obstacle avoidance based on model predictive
control (MPC). The main goal of the toolbox is that it allows the
users to simply set up even complex control problems without
loss in efficiency only in few lines of code. Slow mathematical
and technical details are fully automated allowing researchers to
focus on problem formulation. It can easily perform MPC based
closed-loop simulations followed by fetching visualizations of the
results. From the theoretical point of view, non-convex obstacle
avoidance constraints are tackled in two ways in OPTIPLAN:
either by solving mixed-integer program using binary variables,
or using time-varying constraints, which leads to a suboptimal
solution, but the problem remains convex.

I. INTRODUCTION

Collision avoidance and control of autonomous vehicles
are of a big interest nowadays. The development of suitable
control strategies belongs to one of the most important parts
of the overall design of autonomous vehicles, which are
capable of avoiding obstacles. Numerous control strategies are
developed in this area of research. A widely used approach is
the model predictive control (MPC) strategy. The MPC allows
for easy incorporation of various constraints, prediction of
obstacles positions etc. [1], [2]. The MPC control strategy is
also used in lower level control tasks, like optimal steering
of the autonomous vehicle [3], breaking [4], improvement of
passengers’ comfort [5], control of racing cars [6] or adaptive
cruise control [7].

In the literature, many tools for solving collision avoidance
and trajectory planning and following exists, but only a few of
them are available to general public, which leads to the neces-
sity of self-implementing of theoretical algorithms, which can
cause many problems such as suboptimal formulations etc.

The implementation of the control algorithm often boils
down to a design of the MPC, which can be bothersome
especially for nonlinear models of the vehicles. Moreover,
the formulation of the MPC must be extended by expressions
which represent obstacles. None of the aforementioned nor
any other scientific works specifically address the issue of
reformulating and solving the optimization problem itself. One
of the contributions of this paper is to present a toolbox
called OPTIPLAN designed specifically to construct and
solve optimal control problems related to autonomous vehicles

based on user specifications. Furthermore, one of the features
of this toolbox is the ability to simulate the behavior of the
vehicle under the control authority of the specified controller.

A. Notation

The set of real-valued n-dimensional vectors and n × m
matrices are denoted by Rn and Rn×m, respectively. The set
of consecutive integers from a to b is denoted by Nb

a, i.e.,
Nb

a = {a, a + 1, . . . , b} for a ≤ b. The weighted squared 2-
norm of the vector z is denoted by ‖z‖2Q = zᵀQz with z ∈ Rn

and Q ∈ Rn×n, Q � 0.

II. PROBLEM STATEMENT

We consider an autonomous vehicle (robot, quadcopter,
UAV, etc.) which is supposed to follow a reference trajec-
tory while avoiding collisions with obstacles. The vehicle is
controlled by an MPC strategy.

OPTIPLAN is designed to easily synthesize, solve and
simulate this kind of problems, where general representation
of the dynamics of the vehicle (which will be represented
by agent) is given as discrete-time state-update and output
equations of the form

xk+1 = f(xk, uk), yk = g(xk, uk) (1)

where the vector of the agent’s states is denoted by x ∈ Rnx ,
the vector of the control inputs is represented by u ∈ Rnu ,
and the vector of the agent’s outputs is y ∈ Rny . The outputs
represent the agent’s position in the ny-dimensional Euclidian
space. The task is to obtain control inputs u by the action of
feedback controller in such way that:

1) state, input, and output constraints of the form

x ∈ X , u ∈ U , y ∈ Y (2)

are kept;
2) obstacles Oj ⊂ Rny are avoided by the agent, i.e., y /∈
Oj , ∀j ∈ Nnobs

1 ;
3) user-specified trajectory yref is tracked by the agent as

closely as possible.
As the system is controllable, OPTIPLAN handles different
types of dynamics in (1). Linear time-invariant dynamics with
f(x, u) := Ax+Bu and g(x, u) := Cx+Du are supported,
as well as generic nonlinear functions f : Rnx × Rnu → Rnx

2017 21st International Conference on Process Control (PC)
June 6–9, 2017, Štrbské Pleso, Slovakia

978-1-5386-4011-1/17/$31.00 c©2017 IEEE 333

and g : Rnx ×Rnu → Rny . All the obstacles Oj are polytopes
represented by half-spaces:

Oj = {y | αᵀ
i,ju ≤ βi,j , i = 1, . . . ,mj}, ∀j ∈ Nnobs

1 , (3)

where number of half-spaces defining j-th obstacle is mj .
Moreover, the constraints sets in (2) are assumed as polyhedra
of the corresponding dimension.

The MPC problem solved by OPTIPLAN based on given
data (x(t) as the current value of the agent’s state, the
dynamics in (1), the constraints in (2), and the obstacles in (3))
looks as follows:

min
u0,...,uN−1

N−1∑

k=0

(
‖yk − yref,k‖2Qy

+ ‖uk − uref,k‖2Qu

)
(4a)

s.t. xk+1 = f(xk, uk), (4b)
yk = g(xk, uk), (4c)
xk ∈ X , uk ∈ U , yk ∈ Y, (4d)
yk /∈ Oj , ∀j ∈ Nnobs

1 , (4e)
x0 = xt (4f)

where k = 0, . . . , N−1 for (4b)–(4e). The references (possibly
time-varying) for the agent’s inputs and outputs are denoted
by uref,k and yref,k respectively. If references are constants,
uref,k = uref and yref,k = yref ∀k ∈ NN−1

0 . Weight matrices for
performance tunning are denoted by Qu and Qy. Variables
to optimize are u0, . . . , uN−1. Since MPC is implemented
in the receding horizon fashion, the only optimized input
implemented to the system in (1) is the first one u∗0. The whole
algorithm repeats for a new value of the initial condition in
(4f) for every subsequent time instant.

The optimization problem (4) becomes an ”ordinary” MPC
problem by disregarding the obstacle avoidance constraints
(4e), so the tools as YALMIP, CVX or ACADO could be used
for the formulation as well as many free or commercial solvers
such as quadprog, fmincon, GUROBI, which depends on
the type of the dynamics in (4b) and (4c), cf. (1). But in
the case of constraints (4e) are in place, the problem is far
more difficult because of their non-convexity, even though we
assume the obstacles Oj to be convex. It is possible to handle
such a non-convex constraint, but it is not efficient, could cause
mistakes and it can significantly raise the complexity of the
problem and the runtime of the optimization (if it is done in a
non-optimal manner). Automatic formulation and solution of
non-convex MPC problems with minimal user intervention are
one of the advantages of OPTIPLAN. It consists two different
ways how to formulate the obstacle avoidance constraints (4e).
In this paper, we present one of these two methods, which is
presented in the next section.

III. TACKLING OBSTACLE AVOIDANCE CONSTRAINTS

As we have mentioned in the previous section, OPTIPLAN
is able to formulate obstacle avoidance constraints in (4e)
in two different ways. The first method is based on using
binary variables, thus the problem becomes mixed-integer
optimization problem (non-convex and NP-hard). Since we

focus on a nonlinear model of the agent in this paper, this
approach is not convenient, because of its complexity.

The second way to tackle the constraints in (4e) is to
choose the direction of avoiding the obstacle (from the right
or from the left) by using time-varying output constraints. The
advantage is that the constraints remain convex, but the price
is that trajectory becomes suboptimal.

A. Convex Formulation of Obstacle Avoidance Constraints

This approach consists of usage of time-varying constraints
on outputs (position of the agent) as shown in [8]. The decision
from which side of the obstacle the agent should go around
(from the right or from the left) is made by heuristics. When
this decision is done, the output constraints set Y is modified
in the way that the agent avoids collision with the obstacle, i.e.,
Y ∩Oj = ∅∀j ∈ Nnobs

1 . Moreover, different sets of constraints
Yk are generated for each step of the prediction horizon, what
is shown in the Fig. 1.

Two steps for the technical realization of this approach are
needed. First, the decision from which side agent should avoid
the obstacle is made by heuristic block based on the current
positions of the obstacles and the agent. This generates a
sequence of constraint sets Yk for k = 0, . . . ,N − 1. We
modify the output constraints in (4d) to yk ∈ Yk and wipe
the non-convex collision avoidance constraint (4e) out of the
MPC problem. Then, at each sampling step, the time-varying
constraints Yk are updated.

The advantage of this method is the series of convex
constraints replace the non-convex constraints (4e). The result
is a lower complexity of the problem, which is the requirement
for usage of the nonlinear model. Obviously, the price for this
goal is that it is not guaranteed that the obtained trajectory
would be optimal. The quality of heuristics mentioned above
is responsible for the amount of suboptimality.

ymax

ymin

O

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

Fig. 1. The idea of obstacle avoidance by using time-varying constraints.
Output constraints Yk (red lines) are updated at each step of the prediction
horizon in such a way to not collide with the obstacle O. Optimal avoidance
is denoted by solid circles, possibly suboptimal trajectory obtained via time-
varying constraints is denoted by empty blue circles. The reference to be
tracked is represented by the dashed line.

IV. OPTIPLAN MINI USER’S GUIDE

This section shows OPTIPLAN’s user interface and how
the tasks as MPC design, simulation and visualization are
automated. Thanks to the user-friendly interface, an engineer

334

can focus on controller tuning instead of mathematical and
technical details.

Object-oriented programming in Matlab was used to
write OPTIPLAN. To formulate the MPC optimization
problem (4), it uses YALMIP, and to solve such
problems, many popular solvers like GUROBI, CPLEX
or MOSEK are supported. If one want to install it,
instructions can be found on the project’s website at
https://bitbucket.com/kvasnica/optiplan.
Import of the package into Matlab workspace is required to
access the tool’s interface

import optiplan.*

OPTIPLAN can be classified as a high-level language to
simplify description and solution of the MPC problem, to carry
out close-loop simulation and result visualization. OPTIPLAN
contains four main classes:

• Agent - definition of the dynamics, physical dimensions,
and constraints of the agent

• Obstacle - specification of the obstacle’s properties;
• Planner - represents the MPC optimization problem

(4) and constraints for obstacle avoidance
• Simulator - responsible for closed-loop simulations

and visualizations of the results
Here comes a quick summary of available functionality. Even
though the examples in this paper are in 2D, control of agents
in different dimensions is supported by OPTIPLAN.

A. The Agent Class
Definitions of the agent’s dynamics (1), constraints (2),

physical dimensions, and parameters of the objective function
in (4a) are provided by this class.

1) Dynamics: Three types of prediction models in (4b)–
(4c) are supported in OPTIPLAN. The linear dynamics (may
be also time-varying) of the form xk+1 = Akxk+Bkuk, yk =
Ckxk +Dkuk (here it is important to remind that the output
y correspond to the position of the agent). By instantiating
the LinearAgent subclass we create an agent with linear
dynamics:
agent = LinearAgent(’nx’,nx,’nu’,nu,’ny’,ny,...

’PredictionHorizon’,N);

State, input, and output dimensions are provided by the user,
accompanied by prediction horizon, which is required in time-
varying dynamics and/or constraints. Then specification of
matrices A, B, C, D can be done as follows:

agent.A.Value = A; agent.B.Value = B;
agent.C.Value = C; agent.D.Value = D;

In the case of time-varying dynamics, one should set
agent.A.Value = ’parameter’; % also for B,C,D

The meaning of the parametric setting says the formulation of
the MPC problem in (4) will contain a symbolic value of the
matrices and we need to provide their real values just at the
time of the problem solution.

Generic non-linear state-update and output equations in (1)
represent the second type of dynamics. This is achieved by
instantiating the NonlinearAgent class:

agent = NonlinearAgent(’nx’,nx,’nu’,nu,’ny’,ny,...
’PredictionHorizon’,N);

The functions f(·, ·) and g(·, ·) are provided as function
handles:

agent.StateEq = @(x,u,˜) x+(xˆ2+u);
agent.OutputEq = @(x,u,˜) x*u;

It is important to mention that the MPC problem (4) becomes
non-convex by using nonlinear dynamics, so difficult to solve
to global optimality.

By using the linearizing agent, it is possible to decrease
this limitation, to some range. It means that OPTIPLAN
automatically linearizes the nonlinear dynamics along the
trajectory. This results in a time-varying linear system which is
updated in every sampling instant. The definition of linearized
dynamics looks like:

agent = LinearizedAgent(’nx’,nx,’nu’,nu,...
’ny’,ny,’PredictionHorizon’, N);

where agent.StateEq and agent.OutputEq are set in
the same way as for the nonlinear agent.

2) Constraints: In OPTIPLAN, it is allowed to construct
constraint sets X , U and Y representing min/max bounds on
corresponding signals as hyperboxes. State constraints are set
as follows:

agent.X.Min = x_min;
agent.X.Max = x_max;

Input bounds agent.U.Min, agent.U.Max, and output
bounds agent.Y.Min, agent.Y.Max are specified sim-
ilarly. The constraints can be also time-varying by setting the
corresponding property to ’parameter’.

3) Parameters of the objective function (4a): The penalty
matrices Qy, Qu penalizing the tracking error in (4a), and also
the values of the respective reference can be specified by the
user as follows:

agent.Y.Penalty = Q_y; agent.U.Penalty = Q_u;
agent.Y.Reference = y_ref;
agent.U.Reference = u_ref;

In the case of no reference provided, OPTIPLAN assumes a
zero vector instead. Also, time-varying reference can be pro-
vided by setting the corresponding values to ’parameter’.

B. The Obstacle Class

For now, OPTIPLAN supports rectangular obstacles. The
user needs to instantiate the Obstacle Class to create nobs
obstacles of the form (3).

obstacles = Obstacle(agent, n_obs);

Each obstacle can be provided by its size:

obstacles(i).Size.Value = [width_i; height_i];

along with its position:

obstacles(i).Position.Value = [xpos_i; ypos_i];

OPTIPLAN also allows to create moving obstacles by setting
Position.Value = ’parameter’.

335

C. The Planner Class

OPTIPLAN is able to set up the MPC optimization problem
in (4) automatically, with the agent and obstacle(s)1 defined,
by instantiating the Planner class:

planner = Planner(agent,obstacles,...
’solver’,’gurobi’,’MixedInteger’,flag);

In this case, OPTIPLAN is told to use GUROBI solver2. The
MixedInteger flag can acquire values true/false specifying
the formulation of the obstacle avoidance constraints in (4e).
In this paper, we always use value false, which refers to
time-varying constraints described in Section III-A.

The MPC problem (4) can be solved for specified value x0
representing the initial condition, if the planner is created, by
calling:

[u, feasible, openloop] = planner.optimize(x0);

where output u stands for optimal feedback control action u∗0.
The output feasible is a true/false flag which talks about
the feasibility of the optimization problem. And last output,
openloop, hold for the structure with information about the
optimal open-loop trajectories of the states (openloop.X),
inputs (openloop.U), and outputs (openloop.Y).

Now is the time when all the properties of the agent and/or
of the obstacles previously specified as parameters have to be
provided with their values, just before the optimization can
start. For example, to parametrically defined output reference
we associate its value by

planner.Parameters.Agent.Y.Rerefence = yref;

and then call planner.optimize(). The value yref
can represent a vector (in the case of no preview of the
output reference in (4a), i.e., yref,k = yref∀k ∈ NN−1

0), or
ny × N matrix whose k-th column corresponds to yref,k−1.
This is an advantage in case that user wants to change the
parametric values ”on-the-fly”, so it is not needed to re-build
the optimization problem from the beginning.

D. The Simulator Class

The real power of OPTIPLAN is the ability to simply,
still powerfully perform closed-loop simulations under MPC
control. First, it needs to be instantiated the Simulator class
with the planner as the input:

psim = Simulator(planner);

To perform the closed-loop simulation over Nsim steps, starting
from x0 as the initial condition, user call

psim.run(x0, Nsim);

Key/value pairs are used to specify various options

psim.run(x0, Nsim, ...
’Preview’, true/false, ...
’RadarDetector’, detector);

1In case of no obstacle, set obstacles = [];.
2See https://yalmip.github.io/allsolvers/ for the complete list of supported

QP/MIQP/nonlinear solvers.

Knowledge of the future input/output references and obstacle’s
position by the MPC problem in (4) is controlled by Preview
option. It is obvious that better control comes with more
knowledge.

OPTIPLAN is extended with the following scenario by the
RadarDetector: agent avoids obstacles only if they are
detected by its radar. This function handle should be provided
by three inputs: (i) the current position of the agent y0, (ii) the
current obstacle’s position, and (iii) the size of the obstacle.
The return from the function for each obstacle is an array of
true (if the obstacle is inside of the radar’s range) or false (if
the obstacle is outside of the radar’s range) values. To create
a simple circular radar, one should call

rad = @(ap,op,os) psim.circularRadar(R,ap,op,os);

where R specifies the range of the radar.
Also, various helpers to synthesize time-varying reference

trajectories are provided by the Simulator class. For exam-
ple, the circular trajectory of a known radius can be generated
by calling

trajectory = psim.circularTrajectory(Nsim,...
’Radius’,R,’Loops’,nloops);

Alternatively, we can obtain a polygonic trajectory passing
through given waypoints by

trajectory = psim.pointwiseTrajectory(Nsim,...
waypoints);

where the waypoints are stored column-wise.
The closed-loop profiles are obtained when the simulation is

completely done, and they can be plotted over Nsim simulation
steps calling

psim.plot(’option1’, v1, ’option2’, v2, ...);

where various key/value pair options can be provided. See
help Simulator/plot for details.

V. EXAMPLES

In this section we present the results obtained by OPTI-
PLAN for two different scenarios:

1) multiple static obstacles;
2) multiple moving obstacles with radar.

where in each scenario we compare solutions for non-
linear dynamics and automatically linearized dynamics
along the trajectory. To illustrate the examples, we used
Simulator.plot() method directly. The nomenclature
used for illustrations is defined in Table I. All example source
codes are available at https://bitbucket.com/kvasnica/optiplan/
wiki/pc17. For all calculations was used OPTIPLAN 1.1 in
Matlab R2016b on a 2.9 GHz machine with 8 GB of RAM.

We consider an agent moving in two-dimensional Euclidian
space. Its dynamics are driven independently in each axis by
double-integrator dynamics with exponential friction acting

336

TABLE I
SYMBOLS USED IN SIMULATION PICTURES

symbol meaning

green filled square agent
red empty square undetected obstacle
red filled square detected obstacle

red circle radar detecting obstacles
thin green dotted line reference trajectory

purple line actual trajectory
thin black squares predicted positions of the agent

thick black rectangle time-varying constraints

against the direction of the motion of the agent. This is the
cause of the nonlinear dynamics.

ẋ1 = v1 (5a)
ẋ2 = v2 (5b)

v̇1 = 1/m (u1 − kv21) (5c)

v̇2 = 1/m (u2 − kv22) (5d)

Here, x1, x2 are the positions in 2D Euclidian space, v2, v2
are speeds and u1, u2 are manipulated forces for x- and y-
axis respectively, m = 1500 kg is the mass of the vehicle
and k = 0.0474 kg m−1 is the coefficient of friction. Such a
dynamics are defined by

% continuous state-update equation
f = @(x, u) [x(3);x(4) ...

(u(1) - k*x(1)ˆ2)/m; ...
(u(2) - k*x(2)ˆ2)/m];

% output equation
g = @(x, u) x(1:2);

and discretized via forward Euler by
state_eq = @(x, u, ˜) x+Ts*f(x, u);
output_eq = @(x, u, ˜) g(x, u);

where Ts = 1 is the sampling time. To construct nonlinear3

agent with the dynamics described above, user call
agent = NonlinearAgent(’nx’,4,’nu’,2,’ny’,2,...

’PredictionHorizon’, 15)
agent.StateEq = state_eq;
agent.OutputEq = output_eq;

where agent.StateEq is discrete state update equation
and agent.OutputEq is output equation. Sampling time
Ts = 1. The input (acceleration) constraints were set to
−310 ≤ u ≤ 310, speed constraints to −10 ≤ v ≤ 10,
and since we used only time-varying constraints for outputs
(position) , these were set to ’parameter’. The state vector
is composed of the position and the speed of the agent. Output
weight matrix Qy = 1000×Qu = I2×2, and uref = 0 in (4a).
The value of the output reference will be provided during the
closed-loop simulation, so its value is set as parametric:

agent.Y.Reference = ’parameter’;

The settings described above was the same for both scenarios.

3In the case of Linearized Agent, user calls LinearizedAgent instead
of NonlinearAgent.

A. Multiple Static Obstacles

In this scenario, we define four rectangular static obstacles
by:

n_obs = 4;
obs = Obstacle(agent, n_obs);
obs(1).Position.Value = [-15; 0];
obs(2).Position.Value = [0; -15];
obs(3).Position.Value = [0; 15];
obs(4).Position.Value = [15; 0];
for i=1:4, obs(i).Size.Value = [3; 3]; end

When done, construction of planner follows

planner = Planner(agent, obs, ...
’solver’, ’fmincon’, ...
’MixedInteger’, false)

where fmincon is used as solver for nonlinear4 dynamics.
Then the closed-loop simulation can be run by

psim = Simulator(planner);
psim.Parameters.Agent.Y.Reference = yref;
psim.run(x0,Nsim);

where trajectory to be followed needs to be specified. We
assume trajectory as a square of the edge of 30, centered at
the origin, generated by

yref = psim.pointwiseTrajectory(Nsim,...
[-15 15 15 -15;-15 -15 15 15],...
’Sampling’,true,’Loops’,1);

with number of simulation steps Nsim = 250. Option
’Sampling’ defines whether trajectory should be made only
of specified waypoints (false), or evenly distributed points
between them (true) (in the case of Linearized Agent, also
the first linearization point needs to be provided, so for the
states as for the inputs).

psim.UserData.Xlin = Xlin;
psim.UserData.Ulin = Ulin;

The initial position of the agent for simulation is at the corner
of the trajectory, i.e., x0 = [-15;-15;0;0].

The results of simulation generated directly by
psim.plot() are presented in Fig. 2. Since difference
between trajectory for nonlinear and linearized dynamics are
too small to show, Fig. 2 stands for both cases. It is visible
from the figure, that during simulation, the time-varying
constraints changes in such a way, that vehicle avoids
obstacles and follows the reference trajectory. However, there
is a difference in computational time. While time required to
run the whole simulation (250 steps) for nonlinear dynamics
was 39.8 seconds (0.16 seconds per step), time for linearized
dynamics was only 5.8 seconds (0.02 seconds per step). The
difference between two calculated trajectories was about 1%.

B. Multiple Moving Obstacles With Radar

This scenario differ from the previous one in two points -
definition of position of the obstacles and usage of radar. First
assume that the agent is defined and we are about to define
four moving obstacles. This can be done by

4For linearized dynamics we used GUROBI solver.

337

-20 -10 0 10 20

-20

-10

0

10

20

Simulation step: 30/250

-20 -10 0 10 20

-20

-10

0

10

20

Simulation step: 100/250

-20 -10 0 10 20

-20

-10

0

10

20

Simulation step: 158/250

-20 -10 0 10 20

-20

-10

0

10

20

Simulation step: 250/250

Fig. 2. Collision avoidance with static obstacles. See Table I for the legend.

-20 -10 0 10 20

-20

-10

0

10

20

Simulation step: 30/250

-20 -10 0 10 20

-20

-10

0

10

20

Simulation step: 100/250

-20 -10 0 10 20

-20

-10

0

10

20

Simulation step: 158/250

-20 -10 0 10 20

-20

-10

0

10

20

Simulation step: 250/250

Fig. 3. Collision avoidance with moving obstacles and radar. See Table I for
the legend.

n_obs = 4;
obs = Obstacle(agent, n_obs);
for i=1:4

obs(i).Position.Value = ’parameter’
obs(i).Size.Value = [3; 3];

end

Then we construct the planner the same way as for the
static obstacles and create the simulator. Before running the
simulation, the trajectories for obstacles has to be provided

obs{1} = psim.pointwiseTrajectory(Nsim,...
[-15,-15;-2,2],’Loops’,4,’Sampling’,true);

obs{2} = psim.pointwiseTrajectory(Nsim,...
[0,0;-13,-17],’Loops’,3,’Sampling’,true);

obs{3} = psim.pointwiseTrajectory(Nsim,...
[17,13;0,0],’Loops’,7,’Sampling’,true);

obs{4} = psim.pointwiseTrajectory(Nsim,...
[-2,2;15,15],’Loops’,3,’Sampling’,true);

for i = 1:4
psim.Parameters.Obstacles(i).Position.Value =...

obs{i};
end

and the radar needs to be defined
R = 6;
radar_detector = @(apos, opos, osize)...

psim.circularRadar(R,apos,opos,osize);

and now the simulation can be run
psim.run(x0,Nsim,’RadarDetector’,radar_detector)

The results of simulation for moving obstacles can be seen in
Fig. 3. In this case, the simulation time for nonlinear dynamics
was 44.4 seconds for the whole simulation (0.18 seconds per
step) and for linearized dynamics 6.9 seconds (0.03 seconds
per step). The difference between these two trajectories was
about 0.5%.

ACKNOWLEDGMENTS

Authors gratefully acknowledge the contribution of the
Scientific Grant Agency of the Slovak Republic under grant
1/0403/15 and the contribution of the Slovak Research and
Development Agency under the project APVV-15-0007. Mar-
tin Klaučo is supported by an internal STU grant for Young
Researchers.

REFERENCES

[1] A. Carvalho and S. Lefévre and G. Schildbach and J. Kong and F.
Borrelli, “Automated driving: The role of forecasts and uncertaintya control
perspective,” European Journal of Control, vol. 24, pp. 14 – 32, 2015.

[2] A. Carvalho and Y. Gao and A. Gray and H. E. Tseng and F. Borrelli,
“Predictive control of an autonomous ground vehicle using an iterative lin-
earization approach,” in 16th International IEEE Conference on Intelligent
Transportation Systems (ITSC 2013), pp. 2335–2340, Oct 2013.

[3] T. Keviczky and P. Falcone and F. Borrelli and J. Asgari and D. Hrovat,
“Predictive control approach to autonomous vehicle steering,” in 2006
American Control Conference, pp. 6 pp.–, June 2006.

[4] P. Falcone and H. E. Tseng and J. Asgari and F. Borrelli and D. Hrovat,
“Integrated braking and steering model predictive control approach in
autonomous vehicles,” 5th IFAC Symposium on Advances in Automotive
Control, vol. 40, no. 10, pp. 273 – 278, 2007.

[5] Elbanhawi, M. and Simic, M. and Jazar, R., “The effect of receding
horizon pure pursuit control on passenger comfort in autonomous vehicles,”
in Intelligent Interactive Multimedia Systems and Services, pp. 335–345,
2016.

[6] Liniger, A. and Domahidi, A. and Morari, M., “Optimization-based
autonomous racing of 1: 43 scale RC cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, 2015.

[7] Corona, D. and De Schutter, B., “Adaptive cruise control for a SMART
car: A comparison benchmark for MPC-PWA control methods,” IEEE
Transactions on Control Systems Technology, vol. 16, no. 2, pp. 365–372,
2008.

[8] Frasch, J. and Gray, A. and Zanon, M. and Ferreau, H. and Sager, S. and
Borrelli, F. and Diehl, M., “An auto-generated nonlinear mpc algorithm for
real-time obstacle avoidance of ground vehicles,” in Control Conference
(ECC), 2013 European, pp. 4136–4141, 2013.

338

