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Abstract— The primary goal of this contribution is to present 

an original idea of a suboptimal controller parameters setting 

that intends to achieve a compromise between various 

requirements on the control response performance. Performance 

(quality) measures include integral and absolute criteria. The 

idea is demonstrated and applied to a robust control of a thermal 

process that shows internal delays. As the subsidiary objective, 

the reader is acquainted with a concise summary of the robust 

control design for the delayed model based on the algebraic 

principle over a special ring. The obtained results are 

demonstrated not only by means of computer simulations but via 

laboratory measurements as well.  

Keywords—controller tuning; robust control; time-delay 

system; thermal process 

I.  INTRODUCTION 

Thermal systems and processes with heat exchangers are 
employed in a wide range of human activities, for instance in 
energetic, metallurgical or chemical industry [1], [2]. Plenty of 
control strategies for this family of systems have been 
developed and implemented to improve the overall control 
response during recent decades, see e.g. [3]-[5] and references 
therein, to introduce just a few. They cover optimal, adaptive, 
robust, artificial intelligence, nonlinear and many other control 
principles. 

Processes, plants and networks with heating and cooling 
elements and heat exchangers with an in-loop circulating 
medium constitute a significant subset of this systems family. 
Their modeling, analysis and control is a nontrivial task 
because of their complex dynamics due to nonlinearity, 
distributed or delay caused by the aftereffect phenomenon of 
the closed circulation. A possible modeling of such systems 
can be made according to the anisochronic principle [6], [7] 
which is utilized in this contribution. A generalized model-
predictive control (MPC) method with disturbance 
measurement was proposed in [8]. Robust MPC ideas were 
used by Bakošová and Oravec [9] and improved and extended 
when controlling a heating-cooling networked system in [10]. 
Predictive control methods with artificial neural networks 
(ANNs) for a system with a heat exchanger and input delays 
were compared in [4]. In [11], the combination of the ANN and 
MPC was designed for a class of nonlinear systems with 
constant input and internal delays. The polynomial linear-
quadratic control design approach incorporating the digital 

Smith predictor was implemented by Bobál et al. [12]. 
Recently, we have applied robustness principles to a laboratory 
heating-cooling process with long internal delays [13]. 

 Most of these principles concern controller structure 
determination, or (if it is apriori known) the eventual 
acceptable controller parameter values are within ranges 
satisfying particular control performance conditions or they are 
not explicitly known, or the parameter determination is 
restricted to the searching of optimal cost function or ANN’s 
parameterization. This contribution is primarily aimed at the 
introduction of a controller parameters setting based on the 
evaluation of a multi-criterial decision-making task, when 
controlling a laboratory thermal process with significant input 
and internal delays. Before this decision, parameter values sets 
are found by the application of elementary robust stability and 
robust performance ideas and principles. Note that the studied 
appliance has been utilized to verify and validate several 
control methodologies, see e.g. [8], [12]. Modelling and 
identification of the process were completely introduced in [7], 
and the overall robust controller structure design can be found 
in [13]. This paper, in fact, intends the reader to be acquainted 
with the broad summary of these results as the secondary aim. 
The latter reference also includes a very concise description of 
the controller tuning principle herein presented; hence, this 
contribution extends and summarizes these ideas. 

The rest of paper is organized as follows: Algebraic tools 
and robustness rules giving rise to the controller structure are 
given to the reader in the preliminary Section 2. The main result 
– the compromising controller parameters setting - is presented 
in Section 3. A description of the laboratory appliance and its 
mathematical model follow by the complete concise control 
design are the objectives of Section 4, in which the presented 
ideas are verified by numerical (simulation) results as well as by 
real measurements. Then the paper is concluded. 

II. PRELIMINARIES 

This section includes basic algebraic tools and rules and 
robustness essentials that are used to determine the structure of 
the eventual controller, to be tuned below, for the delayed 
heating-cooling process.  

A. Control Design in the RQM Ring 

Let the controlled plant transfer function be in the form 
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      sAsBsG /   

where  sA ,  sB  are from the RQM ring which has been 

defined in [14]. The ring is applicable to systems with input 
and/or internal (state) delays of retarded or even neutral type. 
Moreover, both terms in (1) are coprime, i.e. they do not have 
any common non-invertible element from RQM. 

Consider a control feedback system with a feasible 
controller governed by a coprime transfer function over RQM 

and external inputs    tdtr ,  expressing the reference signal 

and the load disturbance, respectively. Then the control system 
is stable (in the sense of the ring definition) if and only if 

   1sM  

where   QMRsM   is the characteristic term of the feedback 

system. For linear systems, condition (2) has the form of a 
linear Diophantine equation (Bézout identity), the solution of 
which can be further parameterized. By considering (2) and its 
parameterization, the reference is asymptotically tracked and 
the load disturbance attenuated if 


   
    QMDDY

QMRRE

RsFsG

RsFsG





/

/
 

respectively, where  sGRE  expresses the transfer function of 

the reference to the control error (  te ) and  sGDY  means that 

of the load disturbance to the output (  ty ). Functions  sFR  

and  sFD  lying in RQM stand for the denominator term of the 

factorized Laplace forms of  tr  and  td , respectively. 

B. Robustness Requirements and Conditions  

In this paper, basic and well-known requirements on robust 
stability and performance are utilized for control design, the 
reader is referred e.g. to [15]. These principles can be, in 
general, formulated as follows. Let us denote nominal 
(unperturbed) functions with the subscript 0, the perturbed ones 
remain unsubscripted. The feedback system is robustly stable if 

      01jjsup 0
0







LL  

where  sL  is the open-loop transfer function. Robust 

performance means that (4) holds and the modulus of the 

(perturbed) sensitivity function     sGsS RE  does not 

exceeded the prescribed weight function  sWP , i.e. 

     1jj 


 SWP  

  

III. COMPROMISING CONTROLLER PARAMETERS SETTING 

Once the controller structure by means of (1)-(3) is derived, 
conditions (4), (5) together with the knowledge of dynamics of 
controlled process and external signals yield the determination 
of admissible parameter ranges. Hence, a further objective is to 
select particular values of controller parameters. This can be 
done e.g. by the introduction of an additional cost function or 
via simulation. Let us introduce a methodology incorporating 
and evaluating multiple criteria, so that a compromise between 
them is found. 

Denote ki Nik ,...2,1,   the set of tunable controller 

parameters, the values of which may lie within the 

corresponding interval sets  max,min, , ii kk . The mean value of 

the interval and its length are  max,.min,5.0 iii kkk   and 

.min,max, iii kkk  , respectively. 

When solving a particular control task, there are various 
practical requirements on the performance. It is possible to 
include e.g. the maximum output overshoot, absolute and 
squared integrals of control error and the manipulated input, 
the influence of disturbances etc. into consideration. All these 
quantified measures express particular cost functions 

fj Njf ,...2,1,   that are to be minimized. However, a 

consensual or compromising solution has to be found among 
all these cost functions. 

Our simple idea is motivated by the endeavor to reduce the 
number of necessary computations to determine a sub-optimal 
solution. Moreover, it introduces dimensionless functions, so 
that all particular cost functions have initially the same impact 
to the overall cost. These functions also depends on 
dimensionless forms of controller parameters. 

  Hence, define dimensionless sensitivities  ij k  of 

measures  ij kf  to the controller coefficients ik  as 

    
 

0,

1

0,

ii kk
i

i

ij

ij

ij
k

k

kf

kf
k












 
  

where 0,ik  stands for a particular value of ik . Apparently, if 

   1sgn  ij k , the higher value of ik  yields the higher value 

of jf , which means that the particular performance measure 

becomes worse. In other words, it is optimal to take a lower 

value of ik , and vice versa. The value set  ij k  for 

fk NjNi ,...,1,,...,1   can be then applied to the 

determination of the eventual controller parameter values as 


 
 


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


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fin, 5.0  
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where 0il  mean weights that correspond to particular j . 

Notice that (7) gives natural results for both marginal cases. 

That is, if     1sgn  ij k  for all j , then min,fin, ii kk  ; 

contrariwise, if     1sgn  ij k  for all j , then max,fin, ii kk  . 

IV. DELAYED THERMAL PROCESS CONTROL - EXAMPLE 

This section is aimed at the application of the above 
introduced ideas, especially the controller tuning principle, to 
control an internally-delayed laboratory thermal process with 
the heat exchanger. Let us begin by a very concise appliance 
description and its mathematical model. 

A. Controlled Plant and its Model 

The physical model has four main parts that are connected by 
the piping, so that a heating medium (or a fluid) – water -
circulates in a closed heating-cooling system: a through-flow 
heater, a long insulated pipeline, a cooler (air water heat 
exchanger) and a pump. Temperature of the outlet water flow 

from the heater, inside which the input power  tPH  (W) acts, is 

measured by using a platinum resistance thermometer giving rise 

to the value of  tHO  (°C). The most significant transport delay 

is caused by that the hot water then goes through the long 
insulated coiled copper pipeline to the cooler. Here, two fans can 
blow air across the piping; the first one of is continuously 

controllable by  tuC  (V), whereas the second one is of the 

on/off type and can be used only in emergency. Temperatures on 
the input and output of the heat exchanger are measured as 

 tCI  and  tCO  (°C), respectively. The fluid is transported 

by a magnetic drive centrifugal pump (placed behind the cooler), 
the power of which is continuously controlled by the input signal 

 tuP  (°C). Finally, the pump output is closely connected to the 

heater input where the value of  tHI  is measured. The 

appliance communicates with a computer equipped with a data 
acquisition card and the Real-Time™ toolbox running in the 
Matlab® environment via a serial link. A scheme of the process 
is omitted here due to the limited space. A detailed description of 
the laboratory model can be found e.g. in [16]. 

The mathematic model utilized in this experiment has been 
obtained by means of the anisochronic modelling approach [6]. 
Basically, lumped dynamics of separate parts of the process are 
modeled by using heat balance and via algebraic relations 
experimentally acquired earlier, and then, these submodels are 
assembled and joined such that latencies between them are 
comprised. Due to the closed circuited nature of the process, 
these delays do not constitute purely input-output relations, but 
they partially appear on the left-hand sides of eventual 
differential equations, i.e. in the characteristic equation of the 
controlled system. 

Once the parameterized model is obtained, unknown 
constants are to be determined. Here, the nominal model 
parameter values have been obtained in two basic steps. First, 
measured steady state input-output relations are used to find 
values of static parameters, except for delays, by the solution of 
the nonlinear least mean squares. As the second step, a dynamic 
response serves for the determination of masses in the model by 

the matching the measured transitional part of the step response 
to the modeled one by means of the least means squares 
criterion. Delays are graphically determined from the step 
responses as well. The reader is referred to [7] for the modelling 
and identification of the thermal process in more detail. 

The first order Taylor series expansion at the steady 
operating point results in a 3x3 transfer function matrix for 

corresponding inputs      tPtutu HCP ,,   and outputs 

     ttt COCIHO ,,    where   means the deviation from 

the operating point. Our intention is to control    tyt  CO  

through    tutP  H , the relation of which can be given by 

the transfer function 

    
   s

saasasas

sbb
sG b

aD

D 








 exp
exp

exp

001

2

2

3

000  (8) 

with nominal values 7

0 1005.2 b , 6

0 1033.2 Db , 

4

0 1041.1 a , 5

0 1063.7 Da , 2

1 1099.8 a , 18.02 a , 

5.10  , 141b , 151a . 

B. Controller Structure Design 

Let us select the feedback control system with two 
feedback controllers; the first one with the transfer function 

     sPsQsGQ /  (where     QMRsPsQ ,  are coprime) is 

placed in the inner negative feedback loop, whereas the second 

one,      sPsCsGC / ,   QMRsC  , is included in the outer 

negative feedback loop so that its input agrees with  te . The 

reader is referred e.g. to [13] for further details about the 
control system. The latter fraction is coprime again. The 

calculated control action  tu0  is then given by the difference 

of the outputs from  sGC  and  sGQ . The eventual plant 

input is supposed to be affected by the disturbance as 

     tdtutu  0 . The reader is referred e.g. to [17] for details 

and the figure scheme. 

We assume a linearwise reference signal, i.e.   2ssFR  , 

and the load disturbance as a stepwise function,   ssFD  ; see 

(3). In practice, a required gradual temperature growth or 
decline is much comfortable than an abrupt change in the 
reference. Nevertheless, it is usually sufficient to consider 
precipitous disturbance changes affecting the manipulated 
input. The laboratory measurement can be vitiated e.g. by an 
unexpectedly opened window or by a fast human movement. 
Under these assumptions, the following eventual controller 
transfer functions can be derived 
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where 
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
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Adjustable controllers’ parameters, thus, read 0, 10 mm  

and  1,0 . The reader is referred to [17] for further details 

about the derivation of (9) and to [14] for general algebraic 
operations in RQM.  

C. Robustness Analysis 

Basic results from robust stability and robust performance 
analysis are summarized in this subsection. There are multiple 
reasons for the application of robustness tools. To name just a 
few, significant measurement and model uncertainties appear 
when model parameters identification, voltage fluctuations and 
the limited sensor resolution influence measured output 
temperatures, there are unmodelled dynamics of heat-source, 
heat-consumption and mechanical parts, ambient temperature 
in the laboratory room varies during the year in the range from 
18 to 28 °C, or hence, internal delays due to the fluid flow are 
not constant [13]. 

For the selected control system, conditions (4), (5) are 
expressed as 

      
  1
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M
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G
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G
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 (11) 

see e.g. [17] for details again. The application of (10) results in 

the eventual range  055.0,00 m . To determine ,1m , let us 

initially select  8.0,2.0  and  009.0,001.01 m  in the 

accordance to process dynamics. Instead of a protracted 
numerical determination of the region in R2 that satisfies (11), 
try to follow the idea described in Section 3 and consequently 
verify (11). 

D. Parameters Determination 

It can be deduced from the sets above that 

5.0,005.0,0275.0 10  mm  and 0275.00 m , 

3.0,004.01  m . There are naturally many ways how to 

handle the quality and the performance of control responses. 
Optimization criteria have to include both, minimum/maximum 
values of the corresponding signal as well as some integral 
values closely related to energy consumption. Hence, assume 

here the following measures: Denote max,lce , max,cce  as 

maximum relative overshoots of  ty  immediately caused by a 

linear-to-constant transition of the reference and a constant-to-
constant one, respectively, i.e. 


 

   
   

 
 tr

te

tr

trty
e

tttttt 2121 ,,
max, maxmax:

 


  

for some suitable time instants 21,tt . Analogously, let the 

maximum relative output overshoot after a step change of  td  

be max,de . For the same three output ranges, define integral 

absolute errors (IAEs) of the output responses caused by 
reference deviations and a load disturbance change (as 

introduced above) as IAEdIAEccIAElc eee ,,, ,, , respectively, with 

       2

1

2

1

d:,

I

Ii s

t

t
IAE iTettee  

where sT  stands for the sampling period and   ITt s . Denote 

IAEu  as the overall manipulated input energy formulated in 

terms of (13) where  tu  is substituted for  te . Let the overall 

error (for  21 ,0 tt ) be IAEe . 

Following sensitivities (6), we clearly have 3kN , 8fN  

and choose 001.010  mm , 1.0 . The eventual results 

received by simulations are summarized in Table I. 

TABLE I.  COMPUTED VALUES OF  ij k  

       ik  

jf  
0m  1m    

max,lce  
21068.1   

41055.4   
21027.1   

max,cce
 

21074.9   0.27 0.72 

max,de  21082.4   
21095.1   

21019.5   

IAElce ,  ̶  0.32 ̶  0.11 ̶  0.43 

IAEcce ,  ̶  0.18 21022.1   
21047.9   

IAEde ,  ̶  0.26 21001.1   
21001.3   

IAEe  ̶  0.22 21087.5   ̶  0.26 

IAEu  21001.1   
41014.4   

31031.3   
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Note that in the numerical experiment,  tr  was set as a 

linearly ascending signal for  3000,0t s, then as a constant 

value for  9000,3000t s and, after a step-down change, as a 

constant again for 9000t s. The step-down load disturbance 

enters at 6000t s. It was set 6000,3000 21  tt  for max,lce  

and IAElce , , 11000,9000 21  tt  for max,cce  and IAEcce , , and 

60001 t , 90002 t  for max,de  and IAEde , . 

When controlling temperature, the user usually requires not 
to be faced with a momentary deviation from the reference 
value, and from the economical point of view, it is desirable to 
have the overall consumed energy as low as possible. Due to 
these reasons, weight coefficients in (7) can be set as 1l  

except for  max,e  and IAEu  with 2l . The eventual parameter 

values then read 0455.00 m , 0016.01 m , 248.0 . One 

can verify that robust performance conditions (11) is satisfied 
for this setting, and hence it can be used for our control task. In 
Figs. 1 and 2, the manipulated input and controlled output 
temperature are, respectively, displayed. Both simulations and 
laboratory measurements are given to the reader in order to be 
mutually compared. The outputs, apparently, almost coincide; 
whereas the deviation in the inputs have been caused by 
different ambient temperatures during the identification phase 
and the control experiment. The complete comments and 
additional information can be found in [13]. 

 

Fig. 1. Control inputs (u0(t)) responses – measuread (solid) and simulated 

(dash) – and the load disturbance signal d(t) (dash-dot).  

 

Fig. 2. Controlled outputs (y(t)) responses – measuread (solid) and simulated 

(dash) – and the reference value r(t) (dash-dot). 

V. CONCLUSIONS 

This contribution has addresses a simple controller 
parameters determination setting idea that attempts to combine 
various control response measures so that a quasi-optimal 
compromise solution is obtained. The methodology has been 
demonstrated by a real-measurement study example when 
controlling a thermal process with state delays. Presented results 
have proved its very good applicability. 
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