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Abstract—In this paper, a choice of models for optimal control
strategy is discussed for batch membrane processes. The system
of lactose and salt in water is studied with the separation aim be-
ing concentration of lactose and simultaneous removal of salt. The
most crucial part of the model is dependence of permeation rate
on concentrations of components. Two models from literature and
one data-based model are fitted to experimental data. An optimal
control problem (OCP) is formulated to minimize processing
time using diluant-to-permeate flow ratio as the control input.
The optimal control strategy is found analytically and verified
using numerical methods of dynamic optimization. The resulting
processing times and the optimal input profiles are compared
between all the models. Simulation case study confirms the
attractiveness of the proposed approach.

I. INTRODUCTION

Membranes act as a filter/sieve to separate, concentrate,

remove, and clarify components from a liquid or gaseous

mixture. They are established processing units in almost every

industrial sector, especially in food, chemical, and bio tech-

nologies. Based on the component size, molecular weight and

pressure, the membrane separation processes are divided into

microfiltration (MF), ultrafiltration (UF), nanofiltration (NF),

and reverse osmosis (RO). Nanofiltration processes retain

molecules with molecular masses between 200-1000 g/mol.

The operating pressure range for NF is 3-50 bar [1].

NF is used in a wide range of applications, including

water softening, effluent water treatment, oil processing, bev-

erage, dairy, and sugar industries [2]. In the production of

lactose from dairy waste, for example, NF concentrates lac-

tose molecules by retaining them on the solution side of

the membrane while allowing salts to pass to the permeate

side. The product, the concentrated lactose, is a commonly

used material in the pharmaceutical industry as a carrier of

drugs, e.g., in inhalations for asthma patients [3]. Besides

pharmaceutical industry, lactose is emerging widely, in food

and beverage industry, as a source for epilactose, galacto-

oligosaccharides [4], lactitol, lactobionic acid, lactosucrose,

lactulose, sialyllactose, and tagatose [5].

Diafiltration (DF) is a technique that uses MF, UF, and NF

to eventually lower the concentration of impurities with the

help of a diluant. In combination with NF, DF is applied to

lower the concentration of salts [6].

This work studies modeling and optimal operation of NF

with DF to increase the concentration of lactose and to

reduce concentration of the salt. The modeling part focuses

on characterization of the membrane permeation rate.

Generally, there are many factors influencing the permeation

rate. The most important ones are concentration of solutes,

temperature, and pressure. In our case, separation is conducted

at constant temperature and pressure. So, the permeation rate

basically depends on the concentration of solutes. [7] fitted

permeate flow as an inverse polynomial function of albumin

and ethanol, in order to concentrate albumin. [8] investigated

resistance, gel-polarization, and osmotic pressure models. All

these, and other modeling works done in past are mostly in the

context of ultrafiltration, and not much of research has been

done when it comes to modeling the permeation of NF with

DF.

Modeling of NF to concentrate lactose was studied in [9].

In addition, no previous work describes an empirical relation

and experimental models between the flow and concentration

of lactose and NaCl [10]. Most of the works are based on

existing theoretical models of e.g. film theory [11], or pore

model, or diffusion model [12]. In a recent study of our

group [13], permeation models with fouling from [14] were

fitted to experimentally obtained data for the same solution,

but the model neglected the effect of salt on the permeation

rate.

This paper describes experimental procedure to obtain the

permeation rate of NF with DF as a function of both lactose

and salt. A model is developed to fit the experimental data.

Additional empirical models studied from literature are also

fitted for comparison. Then it is observed in a case study

that the choice of the permeation model has only a very

small influence on the time-optimal separation strategy. The

results of optimization for each model are also compared to

the traditional industrial strategy.

II. PROCESS DESCRIPTION

A. Materials

Lactose monohydrate (M = 360.31 g/mol) and sodium chlo-

ride (M = 58.44 g/mol) manufactured by Centralchem (Slo-

vakia) were used as solutes and reverse osmosis water was

used as a solvent to prepare the experimental solution. The
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Fig. 1: Nanofiltration process scheme.

plant has a NFW-1812F nanofilter membrane manufactured

by Synder Filtration, USA, with a cut-off range 300–500 Da,

and a membrane area of A = 0.465m2.

B. Plant Description & Methods

The scheme of the nanofiltration plant is shown in Fig. 1.

The batch starts with the addition of feed (of initial volume

V0) to the feed tank with initial concentrations of lactose

and NaCl c1,0, c2,0, respectively. The pump then forces the

feed towards the membrane in cross-flow mode, where the

solution separates into two streams. The concentrated/rejected

one is called retentate and comprises lactose and NaCl. The

stream passing through the membrane is called permeate, and

it basically comprises NaCl.

The transmembrane pressure (TMP) defined as,

TMP =
Pfeed + Pretentate

2
− Ppermeate = 20 bar, (1)

is controlled at a constant value during the experiment. This

control is achieved using a pressure controller (PC). The

pressure could be changed by two actuators, i.e., the pump

and the retentate side valve. The pumping rate is kept at a

constant frequency to lower down wear and tear of the pump.

Therefore, the retentate valve is used as the manipulated input.

The temperature of the solution is maintained at a constant

value of 26 ◦C using a heat exchanger and a temperature

controller (TC).

The diluant/water addition to perform DF is applied using

another pump. This dilution rate is the input variable for this

process and it is defined as

α =
q0
qp

, (2)

where q0 and qp denote the inflow of the diluant into the feed

tank and permeate flow from the membrane, respectively.

The classical control of batch DF mostly uses piece-wise

constant α using three simple modes [7], [15]. These three

modes can be written as

• No diluant input (α = 0), i.e. concentration mode (C):

the volume decreases, concentration of lactose increases,

and concentration of NaCl stays constant.

• The diluant input rate equals the flow rate of permeate

leaving the system (α = 1), i.e. constant volume diafiltra-

tion mode (CVD): lactose concentration remains constant

while NaCl concentration decreases.

• Diluant flow rate is less than the flow rate of permeate

leaving the system (0 < α < 1), i.e. variable volume

diafiltration mode (VVD): volume decreases, lactose con-

centration increases, and NaCl concentration decreases.

In addition, [16], [17] have proposed two new basic modes:

• Dynamic volume diafiltration (DVD): α is not a constant

but is varying with time (0 < α(t) < 1).

• Pure dilution mode (D): a certain amount of diluant

is instantaneously added to the solution. This can be

symbolically represented by α = ∞. Both lactose and

NaCl concentrations decrease.

The concentration of NaCl (c2) in the retentate is inferred

from the conductivity measurements (sensor QT01), as the

contribution of lactose to conductivity of the solution is negli-

gible. The calibration curve obtained experimentally represents

a linear model given as

c2 [g/L] = 0.0007× QT [µS/cm]− 0.6949. (3)

The concentration of lactose (c1) is inferred from the mass

balance in the feed tank using the level measurement from the

plant (sensor LT). This method is described below.

C. Process Model

The standard model for a batch membrane process with two

solutes can be described by three differential equations [17]

dc1
dt

=
c1qp

V
(R1 − α), c1(0) = c1,0, (4a)

dc2
dt

=
c2qp

V
(R2 − α), c2(0) = c2,0, (4b)

dV

dt
= (α− 1)qp, V (0) = V0, (4c)

where V is the actual volume in the feed tank and the constants

R1, R2 are rejection coefficients of the respective solutes.

These are dimensionless numbers in the interval [0, 1]. While

R = 0 means that a solute passes through the membrane freely,

R = 1 implies that the membrane blocks the solute and its

concentration in the permeate is zero. Nanofilter membrane

blocks lactose completely, hence R1 = 1, which corresponds

with the data from the membrane producer [18].

The value of R1 = 1 therefore implies that the amount of

lactose in the system remains constant and its concentration

can be inferred from the actual volume, i.e.

c1V = c1,0V0 ⇒ c1 =
c1,0V0

V
. (5)
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TABLE I: The initial and final conditions of the experiments.

experiment 1 2 3 4

c1,0 [g/L] 42 40 41 51

c2,0 [g/L] 4 3.5 6.5 4.5

c1,f [g/L] 235 280 410 586

c2,f [g/L] 0.8 1.6 1.3 0.8

V0 [L] 30 30 30 34.5

Vf [L] 5.4 4.3 3 3

D. Experiments

In our recent work we have studied the effect of lactose

concentration [13] on permeate flow rate with NF. In this

paper we investigate influence of both solute (lactose, NaCl)

concentrations on permeate flow rate. The experiments consist

of the sequence of two modes: C-CVD.

The parameters of the experiments are shown in Table I

and cover a range of typical conditions for this mixture. The

results are shown in Figs. 2, 3. The flow was measured using

the flow transmitter FT-02 on the permeate side.

The concentration mode can be characterized by the con-

stant value of NaCl (c2,0). Similarly, the switch to CVD mode

can be recognized by the constant concentration of lactose in

the second part of the experiment. The first fact implies that the

rejection of NaCl by the membrane is zero, i.e. R2 = 0 in (4b).

The inverse relation between the concentration of lactose and

permeation rate during the concentration mode is also clear

from the figures. While the concentration of lactose increases,

the permeate flow rate decreases. Similarly in the CVD step,

the inverse relation between the concentration of NaCl and

permeate flow rate can be inferred.

During CVD, the lactose concentration stays around a

constant value, while the concentration of NaCl falls, and thus

we see an increase in the permeate flow rate. This inverse

relation can be attributed to viscous forces which increase

with concentration and vice versa, and due to concentration

polarization phenomenon [19].

E. Permeate Flow Modeling from Experimental Data

Based on above experiments, and from our previous re-

sults [13] it is clear that NF permeation rate depends on

concentrations of both lactose and NaCl, i.e. qp = qp(c1, c2).
An experiment of nanofiltration (Fig. 4) to concentrate lactose

from 50 [g/L] to 500 [g/L] was used to perform the fitting.

70 data points of concentrations were used to perform model

fitting and parameter estimation. The sample time was 0.05 h,

and in Fig. 4 samples after every 0.1 h are shown.

Various forms of models studied from literature and novel

models were tried to fit the permeate flow rate as a function of

lactose and NaCl concentration. These include the following:

• Exponential model: This model selection was based

purely on the experimental data when compared among

other structures, as it predicted well the permeate flow. It

is given as

qp = γ1e(γ2c1) + γ3c2 + γ4c1c2. (6)
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Fig. 2: Concentration measurements.
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Fig. 3: Permeate flow rate measurements.

• Generalized limiting flux (GLF) model: This model has

been taken from [20]. It can be written as

qp = γ1 + γ2 ln(c1) + γ3 ln(c2). (7)

• Inverse model: This model has been taken from [7].

It approximates the permeate flow rate by an inverse

polynomial function of concentrations, i.e.

qp =
1

γ1 + γ2 c1 + γ3 c2 + γ4 c1 c2 + γ5 c21 + γ6 c22
. (8)

The non-linear least-squares method was employed to get

parameters γ1, . . . , γ6 of all models. The resulting parameters

are given in section VI and the corresponding permeate flows

in Fig. 4. Experiments with larger set of data were also tested

and same parameters were found. It can be observed that

the exponential model fits the data better than the literature

models. The value of sum of squared errors was also the
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Fig. 4: Data of permeate flow rate from experiment, and the

simulation of three estimated models.

minimum for exponential model, followed by GLF model, and

the inverse model stood last among them.

Note that the fitting and estimation approach adopted in

this work did not take into account time and is static,

i.e. experimental flux and concentration data was used to

estimate the expression qp(c1, c2). Another possible procedure

would be dynamic approach when both concentration and flux

would be used from model equations (4).

III. PROCESS OPTIMIZATION

The optimization goal is to find such time-dependent func-

tion α(t) which guarantees the transition from given initial

c1,0, c2,0 to final c1,f, c2,f concentrations in minimum time.

The optimization problem can be formulated as:

J ∗ = min
α(t)

∫ tf

0

1 dt, (9a)

s.t.

ċ1 = c21
qp

c1,0V0
(R1 − α), (9b)

ċ2 = c1c2
qp

c1,0V0
(R2 − α), (9c)

c1(0) = c1,0, c2(0) = c2,0, (9d)

c1(tf) = c1,f, c2(tf) = c2,f, (9e)

qp = (8), or (7), or (6) (9f)

α ∈ [0,∞), (9g)

where relation (5) is used to simplify the model. The problem

was solved using both analytical and numerical tools.

The analytical approach is taken from [17]. According to

theory, the optimal diluant addition strategy is a switching

non-linear feedback control, consisting of three arcs. The first

and the third one are on the input boundaries, while the middle

one is derived from the singular arc, i.e.

S = qp +
∂qp

∂c1
c1 +

∂qp

∂c2
c2 = 0. (10)

The equation S = 0 marks the switching condition from

minimum/maximum input to the input implemented during the

singular arc, and this input is written as [17]

αs =
∂S
∂c1

c1
∂S
∂c1

c1 +
∂S
∂c2

c2
. (11)

The resulting S and αs for each of the three models can be

formulated as,

1) Exponential model:

S = 2γ3c2 + γ1e(γ2c1) + 3γ4c1c2 + γ1γ2c1e(γ2c1),

(12)

αs =
2 γ3

c1
+ 18γ4 + 5

γ1γ
2

2
c1

c2
e(γ2c1) + 10 γ1γ2

c2
e(γ2c1)

5(2 γ3

c1
+ 6γ4 +

γ1γ
2

2
c1

c2
e(γ2c1) + 2 γ1γ2

c2
e(γ2c1))

.

(13)

2) GLF model:

S = qp − γ2 − γ3, (14)

αs =
γ2

γ2 + γ3
. (15)

3) Inverse model:

S = γ1 − γ5c
2
1 − c1c2γ4 − γ6c

2
2, (16)

αs =
0.5γ4c1c2 + γ5c

2
1

γ5c21 + γ4c1c2 + γ6c22
. (17)

It can interestingly be seen that although good estimation

of γ2 and γ3 is required for fitting the data, these two

parameters do not play any role and hence do not need

very exact estimation in the context of optimization.

Numerical optimization (orthogonal collocations) was also

used to solve the case for all models. DYNOPT toolbox [21],

implemented in MATLAB programming environment, was

used to perform this optimization. The control trajectory was

divided into three discontinuous segments. Five collocation

points in case of states, one in case of control input, were

found to be enough to find the optimal solution.

IV. OPTIMIZATION RESULTS

The aim is to drive the concentration of lactose from

c1,0 = 40 g/L to c1,f = 120 g/L, and simultaneously to reduce

the concentration of NaCl from c2,0 = 3.25 g/L to c2,f = 1 g/L.

The initial volume V0 is 30 L.

The traditional approaches that can accomplish the same

objective include C-CVD and VVD modes of operation. Only

the first one was applied, the second one based on simulation

results was clearly ineffective and unsuitable in context of the

desired reduction of processing time.

The time-optimal strategy for given initial and final condi-

tions consists of three modes:

1) Concentration mode with minimum input α = 0, till

S = 0 condition is met.

2) The input in the second step should be the singular con-

trol, hence α = αs. The singular control is maintained

till the condition c1/c2 = c1,f/c2,f is met.
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3) The third step is dilution mode with α = ∞, till we

reach the final concentrations.

The results are shown in Figs. 5 and 6. The concentration

profile for all models and strategies is shown in Fig. 5.

Similarly, the time-optimal input profile for all models, along

with the traditional input strategy of C-CVD for inverse model

can be seen in Fig. 6. The simulations with exponential, GLF,

and inverse models assume that the process and the model are

the same.

The time-optimal operation strategy for exponential and

GLF model was found to be a sequence of C-VVD-D modes,

i.e. the singular control given by expressions (13), (15) was

within the concentration range constant αs = 1.02 and αs =
0.96, respectively. The time-optimal strategy for inverse model

was a sequence of C-CVD-D modes where the singular control

in the second step given by (17) for given concentrations and

parameter values was equal to αs = 1.

Identical strategy was found also by the numerical method

of orthogonal collocations. There, we assumed that the second

step was CVD (αs = 1) for all three models. We have found

that the final time was almost identical for both analytical

and numerical techniques. Hence, the second step for all three

models can be replaced with CVD step, without any significant

loss of optimality.

Note that even if the modeled permeate fluxes are similar,

accumulated differences resulted in seemingly similar state

trajectories for GLF and inverse models (Fig. 5) with different

optimal controls and with different final processing times

(Fig. 6). This shows that the model should be accurate in a

large operating region.

The traditional approach ends at the final desired concentra-

tions in two steps. The concentration (C) mode is applied in

the first step until c1,f is reached. Then, CVD mode is applied

to reduce the concentration of the second component till c2,f
As the time-optimal control over-concentrates the solution

until the condition of c1,f/c2,f is met, the third step is dilution

mode (upward arrows in Fig. 6), i.e. the filtration stops and

the required volume of diluant is added to get the final desired

concentrations.

Table II compares the final processing times of all strategies

assuming also model mismatch. The rows denote the model

used as the controlled process whereas columns specify control

strategy applied: either traditional C-CVD or one of the

optimal ones.

It is evident that for all of the models the proposed time-

optimal strategy performs better than traditional one – the

final time of C-CVD is always the largest in every row. The

table also provides a degree of sub-optimality when time

optimal results of one model are applied to different process.

It can be seen from the values that even though process

mismatch resulted in some loss of optimality, it was still better

than the traditional C-CVD approach. The difference between

the optimal time taken with different models was not very

significant in case of GLF and inverse models; while it was

6.6% for exponential model. The time required by the optimal

strategy was about 10% less than its traditional counterpart
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Fig. 5: State concentration diagram for different models.
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TABLE II: Comparison of processing times

C-CVD optimal [h] optimal [h] optimal [h]
[h] (exp.) (GLF) (inv.)

exponential 3.60 3.25 3.52 3.48

GLF 3.12 3.08 3.00 3.02

inverse 3.64 3.53 3.49 3.48

for exponential model, and for GLF and inverse model this

reduction in time with the time-optimal strategy was about 4%
and 5%, respectively. The major reason for difference between

traditional and time-optimal strategies is the step to reduce the

concentration of NaCl. It was observed in the experiments and

in the simulations that the time required to concentrate lactose

in C mode is much shorter than the time required to decrease

the concentration of NaCl using CVD or VVD mode.

V. CONCLUSIONS

We studied time-optimal operation of nanofiltration pro-

cesses in order to concentrate lactose and reduce NaCl. Based
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on the experiments with the solutes, a permeate flow rate

model was developed and verified using experimental data.

In addition, two other models studied from literature were

fitted to the experimental data using simple static relations.

The optimal control problem was then formulated to minimize

the time of operation. The solution was found by employing

the analytical solution from an earlier work using Pontryagin’s

minimum principle and it was confirmed by numerical method

of orthogonal collocation.

The presented approach was then tested on a simulation case

study. The time-optimal control strategy consisted of three

steps, i.e. bang-bang on the boundaries and singular control

as the middle step. The performance of this time-optimal

control strategy was compared with traditional two step C-

CVD strategy. The results show that the proposed approach is

about 4− 10% faster than the traditional one.

It was also observed that the various experimentally chosen

permeate flow models had minor effects on structure of the

optimal process operation. On the other hand, a high quality

model that covers a large concentration region could improve

quality of the operation.
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VI. APPENDIX

Parameters for the three models presented and fitted in

section II-E are listed here.

A. Exponential model

γ1 34.999999999999979

γ2 -0.019600000000022

γ3 1.593108283198708

γ4 -0.002833952404820

B. GLF model

γ1 34.505554919850738

γ2 -5.410609785568382

γ3 -0.210358558294745

C. Inverse model

γ1 0.095000000000022

γ2 0.000000000000022

γ3 0.000000000000022

γ4 0.000000000000022

γ5 0.000002333865682

γ6 0.000000000000022
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