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Abstract—The paper presents a design of the robust model
predictive control (RMPC) for a laboratory continuous stirred-
tank reactor (CSTR). A neutralization reaction ran in the CSTR,
and the reactants were acetic acid and sodium hydroxide. The
controlled variable was pH of the reaction mixture. The control
input was the volumetric flow-rate of the base. The system
was modeled using experimental data of several step-responses.
Measurement noise was reduced using the Hebky filter. The
robust model-based control strategy was implemented to assure
good control performance. The offset-free reference tracking was
ensured by the implementation of RMPC with integral action.

I. INTRODUCTION

Industry highly appreciates the implementation of the
model predictive control (MPC). MPC represents the state-of-
art optimal strategy for complex multiple-inputs and multiple-
outputs (MIMO) systems. The main benefit of MPC lies in
the possibility to design optimal control action in the presence
of various real-world constraints, see e.g. [1]. The closed-loop
control performance depends on the accuracy and the precision
of the plant model, i.e., minimization of the well-known
process-model mismatch. From the robust control viewpoint,
the main disadvantage of MPC is that there are not explicitly
incorporated system uncertainties into the predictions of the
future system behavior. The robust model predictive control
(RMPC) overcomes this drawback, as it evaluates an optimal
control action subject to the bounded uncertain parameters,
see e.g. [2]. RMPC attracted the high interest of researchers
in past two decades when the possibility to design RMPC via
the convex optimization was proposed in [3]. The non-convex
constraints were formulated in the form of the semidefinite
programming (SDP, [4]) using the linear matrix inequalities
(LMI, [5]).

Continuous stirred-tank reactors (CSTRs) represent key
devices in chemical, petrochemical, and pharmaceutical indus-
tries. CSTRs are complex processes due to their non-linear
behavior, multiple steady-states, heat effect of the chemical
reactions, time delay effect, and effect of various time-varying
uncertainties [6, chap. 1]. In [7] LMI-based RMPC was
designed for the uncertain system with time-varying linear
fractional perturbations. The designed RMPC was validated
using the simulation of the closed-loop control of CSTR with
first-order, irreversible, exothermic kinetics. The MIN-MAX-
based RMPC design strategy presented in [7] was improved
in [8]. Based on the work [9], conservativeness of RMPC
design was reduced by introducing parameter-dependent Lya-
punov functions. On the other hand, the overall computational
burden increased. The approach was validated by simulation

case study of CSTR stabilization for exothermic, irreversible
chemical reaction. LMI-based explicit constrained RMPC was
developed in [10]. The RMPC was designed using a concept
of an asymptotically stable invariant ellipsoid. The closed-
loop control performance was investigated also considering
a non-isothermal CSTR. The same benchmark of CSTR was
considered in [11]. The conservativeness of ellipsoidal robust
positively invariant sets was reduced using more tight polytopic
approximations. These approximations led to a larger region
of feasible conditions.

In [12] was designed RMPC for non-linear CSTR, in
which ran an exothermic, irreversible reaction. The operat-
ing point was locally linearised for each steady-state, and
the local control strategy was designed. Simulation of LMI-
based RMPC for the same CSTR benchmark was investigated
in [13]. Constrained RMPC was designed based on quasi-
linear parameter varying systems with bounded disturbance.
The iterative algorithm was implemented for the control law,
that was parametrized via parameter-dependent dynamic output
feedback. Partial enumeration approach for fast computation
of a suboptimal solution to RMPC design problems was in-
troduced in [14]. The properties for the proposed RMPC were
investigated using simulation case study of CSTR, in which
irreversible exothermic reaction took place. In [15] the general
balance-based adaptive control methodology to the control of
the nonlinear neutralization process was designed to improve
the robustness of the control performance. An adaptive non-
linear control strategy for a bench-scale pH neutralization
system was experimentally investigated in [16], and the control
performance was significantly improved compared to com-
pared to a non-adaptive nonlinear controller and conventional
PI controller. The real-time implementation of a set of multi-
linear model-based control design methodologies was analyzed
using a bench-scale pH neutralization system in [17].

There is a lack of real-world implementations of LMI-
based RMPC for CSTRs reported in the literature. This paper
presents LMI-based RMPC design for the laboratory CSTR of
Armfield PCT40 [18]. It was not straightforward to implement
the offset-free LMI-based RMPC strategy, see e.g. [19], where
RMPC design for a laboratory heat exchanger was investigated.
In this paper, we designed RMPC with integral action to
overcome this obstacle. Moreover, the influence of noise was
reduced by the Hebky filter. RMPC was implemented using
our freely available MUP toolbox [20]. The plant model was
identified using experimental data, and the real-time closed-
loop control performance of the designed RMPC was judged
using a quadratic criterion.
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II. NOTATION

The following notation has been used in the paper:

1) R
n denotes the n-dimensional space of real-valued

vectors, R
n×m represents the (n × m)-dimensional

space of real-valued matrices.
2) For a real-valued matrix A, A⊤ denotes its transpo-

sition and A−1 denotes its inverse, if exists.
3) I denotes the identity matrix, and 0 denotes zero

matrix of appropriate dimensions.
4) Symbol ⋆ used as an element of a matrix, denotes

symmetric structure of the matrix.
5) For a real-valued vector x and positively defined

matrix A, ‖ x ‖2A= x⊤Ax.
6) Function convhull : Rn 7→ R

n denotes convex hull
that maps original set to the smallest-volume convex
set that includes original set, i.e., for the set T holds
convhull(T ) ⊇ T .

7) Function diag : R
n → R

n×n maps n-dimensional
vector to the square symmetric matrix with the vector
elements placed on the principal diagonal and zeros
elsewhere.

8) Function V : R
n → R

1 denotes the Lyapunov
function in the discrete time domain, i.e., following
statements simultaneously hold:
• ∀x 6= 0⇒ V (x) > 0, x = 0⇒ V (x) = 0,
• V (x(k + ts))− V (x(k)) ≤ 0, ∀k ≥ 0.

III. CONTROLLED PLANT

The controlled system was the laboratory continuous
stirred-tank reactor (CSTR) of Armfield PCT40.

A. Specifications of CSTR

The process control teaching station Armfield PCT40 has
of several parts, see Fig. 1. The controlled system was the
laboratory CSTR. The reaction vessel (Fig. 1, (I)) had the
volume V = 1.5 dm3. In the reaction vessel ran a chemical re-
action, and reactants were acetic acid (CH3COOH) and sodium
hydroxide (NaOH). The neutralization reaction is described
in (1)

NaOH(aq) + CH3COOH(aq)→

CH3COONa (aq) + H2O(l), (1)

where the products of neutralization are sodium acetate
(CH3COONa) and water (H2O). The controlled output was
pH in the reaction vessel defined as

pH = − log[H+], (2)

where [H+] is the concentration of hydrogen cations. pH in
the reactor was measured using a pH sensor (Fig. 1, (II)).

Two tanks with volumes VA, VB = 100 dm3 were used
to store acid and base. Peristaltic pump A (Fig. 1, (III))
and peristaltic pump B (Fig. 1, (IV)) dosed acid and base
into the reactor, respectively. The input concentrations were
cA = 0.01mol/m3 (acid) and cB = 0.01mol/m3 (base).
Input voltage of peristaltic pumps UA, UB was [0, 5]V, and
the corresponding volumetric flow rates were qA, qB within
[0, 10]mL/s.

Fig. 1. Controlled reactor of Armfield PCT 40: (I) CSTR, (II) pH sensor,
(III) pump A, (IV) pump B.

The input voltage of pump A was set to the constant value
UA = 2.5V, i.e., qA ≈ 5mL/s. The control input was the
volumetric flow rate qB. The aim of control was to implement
the RMPC to ensure set-point tracking in the presence of the
interval uncertainties and the measurement noise.

B. Experimental model of CSTR

The laboratory CSTR of Armfield PCT40 represents a
complex system, as its behavior is non-linear and asymmetric.
For RMPC design, we considered the controlled uncertain
system in the discrete-time domain. The family of uncertain
systems A was expressed as the convex hull of the set of linear
state-space systems with polytopic uncertainty given by

x(k + 1) = A x(k) + B u(k), x (0) = x0, (3a)
y(k) = C x(k), (3b)

[

A(v),B(v)
]

∈ A, (3c)

A = convhull
({[

A(v),B(v)
]

, ∀v
})

, (3d)

where k ≥ 0 denotes element of the discrete-time domain,
x(k) ∈ R

nx is the real-valued vector of system states, u(k) ∈
R

nu are control inputs, y(k) ∈ R
ny are system outputs, x0 is

the measured or estimated vector of system initial conditions,
A ∈ R

nx×nx denotes a system-state matrix, B ∈ R
nx×nu is a

matrix of system inputs, C ∈ R
ny×nx is a matrix of system

outputs. Parameter nv represents the total number of uncertain
system vertices. The matrix superscript (v) denotes the v-th
vertex system of A.

For RMPC design, it was necessary to consider the nor-
malized state-space system, i.e., the steady-state values were
shifted into the origin. Then, the manipulated variable was
defined as u(k) = [qsB − qB(k)], system state x(k) = [pHs −
pH(k)], and system output y(k) = x(k). The superscript s
denotes the steady-state value. The steady-state values corre-
sponded to the operation point: qsB = 5mL/s and pHs = 7.

Model of the laboratory CSTR in the form of the state-
space system in (3) was identified using experimental data of
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TABLE I. OUTPUT STEADY STATE VALUES ASSOCIATED TO THE INPUT

STEP CHANGES.

qB [mL/s] pH
4.0 → 4.5 6.1 → 6.6
4.5 → 5.0 6.6 → 7.0
5.0 → 5.5 7.0 → 7.6
5.5 → 6.0 7.6 → 8.6
6.0 → 4.5 8.6 → 7.8
5.5 → 5.0 7.8 → 7.0
5.0 → 4.5 7.0 → 6.6
4.5 → 4.0 6.6 → 6.1

several step-responses. As the process behavior is significantly
non-linear and asymmetric, we performed the set of upwards
and downwards step changes to investigate the system per-
formance in the neighborhood of operating conditions. The
range of the control input qB was within [4.00, 6.00]mL/s. The
realized step changes are summarized in Tab. I. The normalized
process step responses are depicted in Fig. 2, where ∆pH
denotes the normalized value of pH, i.e., measured data of
pH shifted into the origin, and divided by the size of the input
step change ∆qB = 0.5mL/s.

The normalized step responses were individually identified
in the form of the first-order transfer function

Gs(s) =
∆pH

∆qB
=

Z

T s+ 1
e−Ds, (4)

where Gs is the transfer function, Z is the gain, T is the
time constant, and D is the time delay. We have identified
the system parameters in the form of interval uncertainties.
The computed limit and mean values are summarized in
Tab. II, where the mean values represent the nominal system,
i.e., an idealized system without uncertainties. The values of
time delay D were neglected, as they were sufficiently small
compared to the time constant T .

Each system in (4) was transformed into the state-space
system in the discrete-time domain (3) considering the sam-
pling time ts = 10 s. The parameters obtained for the system
in (3) are summarized in Tab. III.
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Fig. 2. Normalized step responses.

IV. RMPC DESIGN WITH INTEGRAL ACTION

The model of CSTR was considered in the form (3). The
aim was to design a state-feedback control law:

u(k) = F(k) x(k) , (5)

where F ∈ R
nu×nx is the gain matrix of the feedback con-

troller. Moreover, the control law had to satisfy the constraints
on control inputs and system outputs

umin � u(k) � umax, ymin � y(k) � ymax, ∀k ≥ 0, (6)

where umin, umax ∈ R
nu , ymin, ymax ∈ R

ny represent the
boundary values. In this work we considered just symmetric
constraints

−usat � u(k) � usat, −ysat � y(k) � ysat, ∀k ≥ 0, (7)

where usat ∈ R
nu and ysat ∈ R

ny stand for the symmetric
boundary values.

The quadratic quality criterion was used

J0→nk
=

nk
∑

k=0

J(k) =

nk
∑

k=0

(

‖x(k)‖
2
Q + ‖u(k)‖

2
R

)

, (8)

where Q ∈ R
nx×nx � 0, R ∈ R

nu×nu ≻ 0 are the weight
matrices, and nk is the total number of control steps. RMPC
was designed in receding horizon control fashion, i.e., the
control control law (10) was updated in each control step. The
aim of RMPC design is to minimize the total value of the
quality criterion in (8). LMI-based RMPC strategy introduced
in [3] as well as our strategy considered the infinity prediction
horizon, to predict the future behaviour of controlled system,
i.e., nk →∞.

We designed RMPC with integral action to assure the
offset-free reference tracking by following the analogous pro-
cedure of LQ optimal controller design with integral action,
e.g., see [22]. The extended vector of system states z ∈ R

(2nx)

had the form:

z(k) =

[

x(k)
∑k

i=0 x(i)

]

. (9)

Then, the state-feedback control law in (5) was extended
subject to the integral action into the form:

u(k) = [FP(k) FI(k)] z(k) = F̃(k) z(k) , (10)

where FP, FI are the proportional and integral parts of the
feedback control law. The proportional and integral parts were
considered in a compact form of F̃.

TABLE II. IDENTIFIED PARAMETERS OF THE SYSTEM TRANSFER

FUNCTION.

value Z [s/mL] T [s] D [s]
minimal 0.7 94.6 3.2
nominal 1.1 134.3 4.6
maximal 1.5 174.0 5.4

TABLE III. IDENTIFIED PARAMETERS OF THE STATE-SPACE SYSTEM.

value A B C

minimal 0.8997 0.1574 1
nominal 0.9282 0.2168 1
maximal 0.9441 0.2763 1
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The system in (3) extended subject to integral action in (9)
was given by:

z(k + 1) = Ã z(k) + B̃ u(k), z(0) = z0, (11a)

y(k) = C̃ z(k), (11b)
[

Ã
(v)

, B̃
(v)

]

∈ Ã, (11c)

Ã = convhull
({[

Ã
(v)

, B̃
(v)

]

, ∀v
})

, (11d)

where:

Ã
(v)

=

[

A(v) 0
−ts C I

]

, B̃
(v)

=

[

B(v)

0

]

, C̃ = [C 0] . (12)

For the purposes of RMPC design with integral action, the
quadratic criterion (8) was modified subject to the extended
system in (11):

J̃0→nk
=

nk
∑

k=0

J̃(k) =
(

‖z(k)‖
2
Q̃ + ‖u(k)‖

2
R

)

, (13)

where Q̃ ∈ R
2nx×2nx � 0 is the weighting matrix subject to

the extended vector of states z, i.e., Q̃ =

[

Q 0
0 QI

]

.

Based on [3], RMPC with integral action was designed
subject to the extended system in (11) using the solution of
the following SDP:

minγ,X,Y,U γ (14a)

s.t. :

[

1 ⋆
z(k) X

]

� 0, (14b)










X ⋆ ⋆ ⋆

Ã
(v)

X + B̃
(v)

Y X ⋆ ⋆

Q̃
1/2

X 0 γI ⋆

R
1/2Y 0 0 γI











� 0, (14c)

[

X ⋆
Y U

]

� 0, Ui,i ≤ usat,i, ∀i ∈ N
nu

1 , (14d)
[

X ⋆

C̃
(

Ã
(v)

X + B̃
(v)

Y
)

y2satI

]

� 0, (14e)

where v = 1, . . . , nv, and the decision variables are: X =
X⊤ ∈ R

nx×nx the weighted inverse-matrix of the quadratic
Lyapunov function, Y ∈ R

nu×nx , U ∈ R
nu×nu , and γ ∈ R

the weighting parameter of X. To match the theory of [3],
we considered the quadratic Lyapunov function V (x(k)) =
γx(k)

⊤
X−1x(k). We used simplified notation in SDP (14),

but all the decision variables are discrete-time-dependent, i.e.,
they are X(k), Y(k), U(k), and γ(k).

In SDP (14), LMI (14b) represents the robust positively
invariant ellipsoid that ensures the recursive feasibility of the
optimization problem, and the objective function in (14a)
maximizes its volume, see [23]. LMIs (14b), (14c) assure
the asymptotic stability in the sense of Lyapunov, with the
convergence rate subject to the weight matrices in the quality
criterion in (13). The constraints on control inputs and system
outputs in (7) are formulated using LMIs in (14d), (14e).

Using the feasible solution of SDP in (14), the state-
feedback controller of the control law (10) was given by

F̃ = Y X−1. (15)

Finally, RMPC with integral action was implemented using
Algorithm 1.

Algorithm 1 Design of RMPC with integral action.

Require: measured/estimated x(k), cost function weight ma-
trices Q, R and constraints U, Y.

Ensure: Control action u(k)
1: solve SDP (14)
2: F̃(k)← Y(k)X(k)

−1

3: u(k)← F̃(k) z(k)

V. DESIGN OF HEBKY FILTER

The controlled variable during experiments was affected
by the measurement noise. To overcome this obstacle, we
implemented the Hebky filter, see [24]. The Hebky filter
is based on the linear regression for multiple measurements
during each sampling period. From the control viewpoint, the
main benefit was that the filtered signal approximated the
measured noisy data without delays, compared to the recursive
filters, e.g., Butterworth filter, etc. Consider the measurement
of the noise signal w ∈ R

1 is given by

w(k) = y(k) + q(k) , (16)

where y, q ∈ R
1 are real values of the controlled variable

and noise, respectively. The task was to estimate the original
value of y(k) with zero mean value of measurement noise.
The measured variable w was measured n-times within each
sampling period, i.e., we had measurements w1 in time t1, w2

in time t2, etc., up to wn in time tn.

The filtered signal was evaluated by

ỹ(k) = α h⊤ [1, k] , (17)

where ỹ ∈ R
1 is the estimated value of the controlled variable

in time k based on the n measurements of the noisy controlled
variable wi. Parameter α in (17) is

α =
1

n
∑n

i=0 t
2
i (

∑n
i=0 ti)

2 , (18)

and h ∈ R
2 is given by

h =

[
∑n

i=0 t
2
i

∑n
i=0 wi −

∑n
i=0 ti

∑n
i=0 tiwi

n
∑n

i=0 ti
∑n

i=0 wi −
∑n

i=0 ti
∑n

i=0 wi

]

. (19)

In (18)–(19), ti denotes i-th time instant, when the noisy
controlled variable wi was measured. For each estimation of
ỹ(k) it is necessary to evaluate n samples of wi measured in
time ti. Finally, based on (17) ỹ(k) ≈ y(k) should hold for
sufficiently frequent measurements of wi. For ỹ ∈ R

ny , each
element of the vector y can be approximated using Hebky filter
individually.

VI. RESULTS AND DISCUSSION

RMPC for a laboratory CSTR of Armfiled PC40 was
provided by CPU i7 3.4 GHz and 8 GB RAM. RMPC was
designed in MATLAB R2012b environment. The communica-
tion with the plant was ensured using the Real-Time Windows
Target v4.1 toolbox. The Algorithm 1 of RMPC design was
evaluated using MUP toolbox [20], the SDP in (14) was
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formulated using toolbox YALMIP [25], and solved using a
solver SeDuMi [26]. The Hebky filter was designed using
the RMPC sampling time ts = 10.0 s and the plant-computer
communication time tc = 0.2 s, i.e., the linear regression was
evaluated based on the 50 measurements of pH in each con-
trol step. The closed-loop control performance was evaluated
considering tRMPC = 800 s, i.e., the nk = 80 control steps.

The considered RMPC setup was as follows: the weighting
matrices of quadratic criterion in (13) were set to respect :

Q̃ =

[

1 0
0 0.5

]

, R = [10]. (20)

The constraints on the control input and the system output
in (7) were set to respect the natural constraints of the plant,
i.e., flow rate qB within interval [0, 10]mL/s, and pH value
within interval (0, 14]:

usat = 5.0, ysat = 7.0 . (21)

We performed various experiments on the CSTR to validate
the control performance of the designed RMPC with the
integral action and results of four of them are presented. The
set-point tracking was investigated and the considered step-
changes of the set-point are summarized in Tab. IV as control
cases RMPC I – RMPC IV. We implemented the same RMPC
design setup in (20), (21) for all control cases RMPC I –
RMPC IV to obtain fully comparable results.

The closed-loop control performance of the laboratory
CSTR reached in RMPC I – RMPC IV control cases are
depicted in Figs. 3–6, respectively. The same RMPC design
setup was used for all presented results. The main goal, i.e.,
the offset-free control performance, was successfully achieved
using RMPC with integral action in all control cases. Different
dynamics of the control performance was caused by the non-
linear and asymmetric behavior of the laboratory CSTR as
well as the properties of the neutralization reaction of the
strong base with the weak acid. The control cases RMPC I
and RMPC II compare set-point tracking for the upward step
changes of the set-point. The control response in RMPC I
shows the overshoot and fast dynamics. The controlled output
settled approximately in 200 s. The control response does not
have overshoot and is slow in the case RMPC II. The con-
trolled output settled approximately in 450 s. The control cases
RMPC III and RMPC IV compare set-point tracking for the
downward step changes of the set-point. The control response
in RMPC III shows the undershoot and fast dynamics. The
controlled output settled approximately in 250 s. The control
response is smooth, i.e. without undershoot, and slow in the
case RMPC IV. The controlled output settled approximately in
400 s. As can be observed in Figs. 3–6, under the same RMPC
design setup, controlled output settled faster at the reference
value that corresponded to the operating point of pH = 7, see
Fig. 3 (RMPC I) and Fig. 5 (RMPC III). On the other hand,
the controlled variable settled at the reference slowly, when
we considered pH = 6 or pH = 8, cf. Fig. 4 (RMPC II) and
Fig. 6 (RMPC IV). These effects relate to the fact, that the
operating point pH=7 was chosen in the steepest part of the
titration curve for the strong base and weak acid, where the
dynamics of the neutralization is the fastest.
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Fig. 3. Control performance assured by RMPC I: pH (blue), reference (red).

t [s]

0 100 200 300 400 500 600 700 800

p
H

6.8

7

7.2

7.4

7.6

7.8

8

8.2

Fig. 4. Control performance assured by RMPC II: pH (blue), reference (red).

VII. CONCLUSION

The paper presents the successful implementation of LMI-
based RMPC approach with integral action for the laboratory
CSTR of Armfield PCT40. The Hebky filter was designed to
eliminate the influence of measurement noise. Four control
cases of set-point tracking were considered to investigate
the control performance assured by the designed RMPC.
The designed integral action ensured the offset-free control
performance in all control cases. The next research will be

TABLE IV. RMPC CLOSED-LOOP CONTROL SCENARIOS.

case reference
RMPC I 6.0 → 7.0
RMPC II 7.0 → 8.0
RMPC III 8.0 → 7.0
RMPC IV 7.0 → 6.0
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Fig. 5. Control performance assured by RMPC III: pH (blue), reference
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Fig. 6. Control performance assured by RMPC IV: pH (blue), reference (red).

focused on the implementation of the advanced LMI-based
RMPC strategies for the neutralization.
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