
Enhancing disturbance rejection performance for the 
magnitude-optimum-tuned PI controller  

Jan Cvejn 
Faculty of Electrotechnics and Informatics,  

University of Pardubice  
Pardubice, Czech Republic 

jan.cvejn@upce.cz 
 

Abstract—The Magnitude Optimum (MO) tuning method for 
PI and PID controllers, applied on stable and non-oscillating 
plants, usually gives fast tracking responses and offers very good 
process output disturbance-rejection performance, even if the 
process contains significant dead time. On the other hand, in the 
cases of plant-input disturbances slow responses may be 
obtained. The paper deals with this problem for the PI controller 
case. Enhancing the disturbance-rejection performance is 
achieved by means of additional filter designed so that the 
stability margin properties of the MO tuning are preserved.  

Keywords—pid controller; process control; disturbance 
rejection; magnitude optimum 

I. INTRODUCTION 
The problem of tuning the PID controller for stable linear 

systems with dead time is of practical importance in process 
control and still attracts wide interest. The PI version of the 
PID controller is the most frequently used controller type in the 
industry [1]. Classical tuning methods [10-12] and other are 
still popular, but contemporary methods offer enhanced 
performance, e.g. [9], [2-5]. The dead-time term in the process 
transfer function can be replaced by its Taylor or Padè 
approximants. The approximation enables to use methods for 
systems without dead time for the controller design, but is 
usually applicable only if the dead-time dynamics is not 
important. Alternative approaches, based on a compensation of 
the delay term, such as Smith predictor or Internal model 
control [1], [7], [8] do not give a controller of the type PI or 
PID in general.  

One relatively simple approach to setting up the PI 
controller without any approximation of the dead-time 
dynamics is based on the magnitude optimum (MO) criterion 
[1-3]. This design criterion requires that the closed loop 
frequency response magnitude is as flat as possible in the range 
of low frequencies, i.e.  
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for 1, 2,..., mk k , where ( )L i  denotes the open-loop 
frequency response and mk  is as high as possible. The MO-
based design is most natural for the reference tracking control 
tasks, where the closed-loop system should be able to respond 

quickly to changes of the reference input, or equivalently to 
efficiently reject disturbances influencing directly the plant 
output. In this case it usually produces fast non-oscillating 
responses.  

In many situations in process control an exogenous 
disturbance affects the output indirectly, usually via the plant 
input. In these cases the MO design sometimes produces rather 
slow responses. Typically, this situation occurs when the 
dominant time constant is much larger than the other time 
constants and  . In [4,5] a modification of the MO criterion 
was proposed, which significantly enhances performance in 
such cases. However, although the plant-input disturbance 
rejection performance has been improved significantly, the 
closed-loop stability margin is reduced in comparison to the 
MO settings in some cases, which may mean more oscillating 
responses for other kinds of exogenous signals. A similar 
approach has also been used in [13]. 

In this paper this problem is approached in a different way, 
as an alternative to the method mentioned above. Instead of 
modifying the design criterion, the MO-tuned PI controller is 
extended with a suitable first-order filter. This extension 
enables to preserve the stability margin properties of the MO 
tuning. The PID version of this method with some further 
enhancements has been proposed in the recent paper [14]. 
Here, however, the method is presented in a more general 
form, using characteristic areas for representation of the plant 
dynamics for low frequencies. The trade-off between tracking 
performance and disturbance rejection performance in the case 
of PI or PID controller has been studied recently by more 
authors, see e.g. [15].   

II. THE MO TUNING OF THE PI CONTROLLER 
Let us consider stable linear plant with the transfer function   
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where 0  . The controller is considered in the form 
0( ) ( ) ( )d RR s H s R s , where for 1   and 0dT   
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Initially, assume  RH s . The influence of the term  RH s  is 
discussed in the next section. To achieve fast setpoint-tracking 
performance and broad bandwidth, the PI controller 0 ( )R s  can 
be tuned by means of the MO tuning method. If we write the 
expansion   
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the coefficients kA , called characteristic areas, can be 
computed from the coefficients ka  as follows [2,3]:  
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The MO-optimal settings of the controller 0 ( )R s  then can be 
obtained as 
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For non-oscillating processes ( )F s  without zeros in the 
transfer function, the MO settings ,I PK K  usually give fast and 
well damped responses, even for long dead time  . In these 
cases the MO settings results in the open-loop Nyquist plot 
which lies in the half-plane  | Re 0.5z z   . More 
specifically, The MO-optimal open-loop Nyquist plot starts at 
the point  0.5,   for 0   and monotonically tends 
towards the right half-plane for u  , where u  denotes the 
open-loop ultimate frequency. For a special case of non-
oscillating plants this property of the MO settings was analyzed 
in [6]. It has been experimentally verified that this property is 
preserved even for moderately oscillating processes. However, 
for processes with zeros, especially in the left half-plane, 
settings with reduced stability margin or even non-stabilizing 
settings are often obtained. Therefore, for plants with zeros the 
MO method cannot be recommended in general.  

III. ENHANCING DISTURBANCE REJECTION PERFORMANCE BY 
THE CONTROLLER EXTENSION   

We assume that the plant dynamics is such that MO-
optimal open-loop Nyquist plot lies in the half-plane 
 | Re 0.5z z    and for low frequencies monotonically tends 
towards the right half-plane, as discussed in the previous 
section. In order to enhance the capability of rejecting the 
plant-input disturbances, it is possible to increase the low-

frequency gain to partially compensate the disturbance lag. 
This effect can be achieved by means of the term  RH s (3).  

 
 
 
 
 
 
 
 
 

Fig. 1. The control system for disturbance rejection 

Consider that the disturbance influences the process output 
via stable transfer function  dF s , as shown in Fig. 1, where 

  1wH s   in the beginning. It is    dF s F s  in the most 
common case when the disturbance influences the plant input. 
Since   

  
1 1 11

1 1
d

R
d d

T s
H s

T s T s
 


  

  
 

 

in (3),    0dR i R i   for higher frequencies and the closed-
loop response will remain similar to the response for the 
original MO settings in the higher-frequency band. Note that 

1   corresponds to the original configuration without the 
filter  RH s . For low frequencies the parameters   and dT  
can be adjusted to compensate the disturbance dynamics, i.e. to 
achieve similar disturbance rejection performance as with 

  1dF s  . If we restrict here only to the case    dF s F s , 
from (4) it is possible to obtain  
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For the special case      exp / 1d dF s K s T s   , where dT  
is the filter RH  (3) parameter, we obtain the expansion (4) in 
the form 
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Consequently, if we choose  
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(it is assumed that   2

dF i  is decreasing, so dT  is real), then  

 ( ) / 1d dF i K T i    

is a suitable approximation of ( )dF i  for low frequencies. If 
we further consider the model (12), by using (7) it can be 
written  
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where  ydG s  denotes the transfer function between the 
disturbance d  and the process output y  and 

     0 0L i R i F i   . Since  0Im L i   for 0  , 

the term     11 11 1d dT i T i   
    in (13) is nearly 

imaginary and has a negligible influence for 1/ dT   and 
1  . In addition, for very low frequencies 
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Eq. (14) shows that the disturbance time constant is reduced 
from dT  to /dT   and in comparison with the original 
response (with the controller  0R s ), the frequency magnitude 
response is approximately divided by the factor 1   in the 
low frequency band. Therefore, it can be expected that the 
proposed additional filter will substantially increase the 
disturbance-rejection performance for larger values of  .  

By applying the filter  RH s  the open-loop Nyquist plot is 

no longer close to the line  | Re 0.5z z    for low 
frequencies and the stability margin may be reduced for a fixed 
 . However, it is possible to adjust the value   so that the 
stability margin requirements are fulfilled. Note that it is 
desirable to choose   as large as possible to achieve the 
highest disturbance-rejection performance.   

IV. THE COMPUTATION OF   FOR GIVEN PHASE MARGIN  

Let      d dL i R i F i   . To ensure the stability 
margin, it is possible to use the amplitude margin mA  and the 
phase margin (PM) requirements [1]. Since    0dR i R i   
for higher frequencies and for the considered class of systems 
the Nyquist plot of  L i  starts at the point  0.5,   for 

0   and monotonically tends towards the right half-plane 
for u  , it is possible to assume that 2mA  , unless   is 
very large. The stability margin in this case seems to be well 
characterized by the phase margin parameter m , which is 

defined as the angle   d mL i  , where m  is the 

frequency such that   1d mL i  . 

 The shape of the MO-optimal Nyquist plot of  0L i  is 
close to the line  | Re 0.5z z    for u   (Fig. 2). The 

filter term  RH s  moves the Nyquist plot to the left for low 
frequencies, monotonically with respect to  . For 1   it is 

   0dL i L i   and  0Re 0.5mL i   , which corresponds 
to / 3m  . For / 6m   a line going through the origin 
touches the circle with center at  1,0  and radius 0.5  (Fig. 2). 
This shows that the value of m  have to be chosen in the 
interval  30 ,60m     to preserve   1 0.5dL i   . The 

choice  40 , 45m     seems to be recommendable in general.     

From (7) it follows that  
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Let us define 1/c dT  . If we assume that c m   (this 
assumption is discussed later),   
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holds and consequently 
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From Fig. 2 it can be directly seen that (assuming that (17) 
holds precisely)   
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where  mL i     . Eq. (18) enables to compute m  for 
chosen m . For known m    
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is easily obtained from Fig. 2.  
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Fig. 2. The determination of   from the phase margin.   

From (18) the frequency m  can be easily determined 

graphically using the plots of  0L i  and  0cos L i . 
Alternatively, it is possible to use iterative computation, based 
on bisection, see [14] for details. To obtain the settings in 
analytical form, it is possible to determine m  approximately. 
Since     
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for low frequencies, where kA  are given by (5), 
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Further, it is possible to write   
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and from (10)    2 21 / 2dF i K T   . It can be easily seen 

that the closed-loop stability implies I IK K KK , so for low 
 : 
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Substituting (22) and (24) into (18) gives the following 
equation for approximate determination of m :    
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Denote  0.5 /m D V     , where 2 4m ID VKK  , the 
lowest positive real solution to (25). In tested cases for the 
basic choice / 4m   the difference between   and the 
precise solution to (18) was always close to 20%. Therefore, 
using  1.2 m  is  recommended, although the 
multiplication by 1.2  usually has a minor overall effect.    

Finally, it is needed to discuss the effect of the 
approximation (16). The assumption c m  , where 

1/c dT  , is not fulfilled in general. If c m  , but the ratio 
/m c   gets close to one, the Nyquist plot corresponding to 

the approximation of  dL i  is more curved to the left for low 
frequencies, while for higher frequencies it is close to the 
Nyquist plot of  dL i . If m c  , the Nyquist plots are 
closer to each other. Clearly, using the approximation (16) 
gives similar settings if m c   and more conservative 
settings, i.e. a lower value of  , if /m c   gets close to 1 or is 
lower. This behavior is desirable, because if c m  , the 
effect of the disturbance lag compensation should be reduced. 
However, if c m  , it seems to be natural to set 1   and 
thus to use only the original PI controller without the filter 

 RH s . This recommendation is also based on experimental 
comparisons.    

TABLE I.  THE CONTROLLER  0R s  SETTINGS FOR METHODS TESTED IN 

SECTION VI 

 MO DRMO ZN 

Plant PK  IK  PK  IK  PK  IK  

 1F s  1.74 0.172 2.14 0.379 5.92 0.813 

 2F s  5.00 0.50 5.79 2.10 7.36 2.25 

 3F s  0.887 0.087 1.05 0.131 1.58 0.010 
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TABLE II.  THE CONTROLLER EXTENSION FILTER AND THE SETPOINT 
FILTER PARAMETERS FOR 40m    (THE MO TUNING METHOD ONLY) 

Plant   dT  1
dT   

 1F s  1.68 10.2 6.10 

 2F s  2.89 10.0 3.46 

 3F s  1.32 10.0 7.57 

V. THE SET-POINT FILTERING  
If the controller extension is used, the reference tracking 

response changes as well. If   1wH s   is chosen in the 
scheme in Fig. 1, for the magnitude frequency response 
between w  and y  
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is obtained, where  ydG i  is given by (13). Since  ydG i  
has compensated the disturbance lag for low frequencies and 
the filter  RH s  effect in addition approximately corresponds 
to multiplying the disturbance by 1  , it can be considered that 

 ydG i   is similar to   1
1K L i


  for low frequencies. 

This suggests that the factor 1 1dT i    should be removed 

from  ywG i  to obtain a similar closed-loop response as 

without the filter  RH s . This can be accomplished easily by 
choosing      

     11 1w dH s T s
   

in the scheme in Fig. 1.  

VI. SIMULATION RESULTS 
Below, the responses of the closed-loop system in Fig. 1 are 

shown for the following plants:   
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where the disturbance is considered at the plant input, i.e. 
( ) ( )dk kF s F s , 1...3k  . The PI controller 0 ( )R s  settings 

were obtained from (6). The filter ( )RH s (3) time constant dT  
is determined from (11). The parameter   is computed for the 

required phase margin 40m    by using the approximate 
analytical method described in Section IV. The set-point filter 

( )wH s  settings were  computed using (27). Note that for the 
plant       1exp / 1 ... 1ns T s T s   , the expressions (5) 

yield 1 1

n
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
 

 

2 2 2

2 2 1 1 1

2
2

1 1 1

2 2
1 1
2 2

n
i j kk

i j

n n n
k k kk k k

A a Aa TT T

T T T

 

 




  

        

   

 

  
 

so  1/2
2

1

n
d kk
T T


  . The proposed method is compared with 

the following tuning methods of the PI controller: the original 
MO tuning method, the DRMO tuning method [4], based on a 
modified MO criterion, and the well-known Ziegler-Nichols 
(ZN) frequency response method [10]. Since the DRMO 
method was designed to optimize the disturbance rejection 
properties, the set-point weighting approach [4,1] has been 
used to decrease overshoots in the reference tracking mode. 
The controller settings are summarized in Tables 1 and 2. 

Figures 3 to 5 show the responses to the unit-step changes 
of the disturbance signal and the responses to the step-wise 
reference signal. It is apparent that the proposed tuning method, 
when compared to the MO settings, results in much better load 
disturbance rejection performance. The DRMO method gave 
slightly faster responses, but the stability margin was rather 
reduced is some cases, which produced more oscillating 
responses to disturbances influencing the output directly. The 
ZN method responses are rather oscillatory. The obtained set-
point responses are acceptable, but slower than in the case of 
the original MO configuration.     

VII. CONCLUSIONS  
Although the MO tuning method of the PI controller for 

stable and non-oscillating plants usually gives fast closed-loop 
responses to the set-point signal and provides very good 
output-disturbance rejection performance, its load-disturbance 
rejection capabilities are not satisfactory in some cases. The 
way of removing this problem by means of extending the 
controller with a first-order filter, plus additional set-point 
filter, has been proposed. The filter parameters are computed 
directly from the process time constants, except for a single 
tuning parameter 1  . This parameter was set so that the 
stability margin characteristic for the MO settings was 
preserved, based on the required phase margin specification 
m . For computation of   a non-iterative analytical method 

was proposed, which for 40m    gives satisfactory results. 
The filter settings for 40m    are not recommended, since 
the responses could contain fast oscillating modes. For 

45m    the disturbance rejection performance need not be 
satisfactory. A lower value of 1  , instead of the computed 
value, can be used to adjust the balance between tracking and 
disturbance rejection performance. 
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Fig. 3. Plant 1( )F s  time responses - the extended controller based on the 

phase margin specification 40m   (EPM), the original MO settings (MO), 
the ZN frequency response settings (ZN), the DRMO  settings (DRM)       
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Fig. 4. Plant 2 ( )F s  time responses - the extended controller based on the 

phase margin specification 40m   (EPM), the original MO settings (MO), 
the ZN frequency response settings (ZN), the DRMO  settings (DRM)       
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Fig. 5. Plant 3 ( )F s  time responses - the extended controller based on the 

phase margin specification 40m   (EPM), the original MO settings (MO), 
the ZN frequency response settings (ZN), the DRMO  settings (DRM)       
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