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Abstract—A tuning rule for the linear control of nonlinear
reactive sputter processes is developed based on a process model,
which has the form of an Abel differential equation. The process
characteristics relates to a supercritical Pitchfork bifurcation
with stable and unstable equilibrium states. The paper presents
a tuning rule to achieve a desired closed-loop transition behavior
and set-point following for step-shaped reference signals without
the need of an identified process model. The tuning rule is
deduced from the given stability conditions. Experiments are
presented for the validation of the developed control structure
and the proposed tuning rule. They show that reactive sputter
processes can be systematically tuned to achieve a desired
closed-loop behavior.
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reactive sputter process

I. INTRODUCTION
Reactive sputter processes are low-pressure plasma-driven

processes for thin film deposition on substrates. The fabrica-
tion of optical reflective layers, superconductive layers, hard
coatings and integrated circuits are applications of reactive
sputter processes. Low-pressure plasmas are operated at a
pressure of a few pascals and a degree of ionisation of 10−5

[1]. These process conditions make coatings of anorganic and
organic materials possible, but the plasma-surface interaction
may cause the instability of certain operating points.

The unstable operating points result from a nonlinear inter-
action between the solid surfaces and a reactive gas. The main
process principle requires a background gas as argon to be
ionized by an electrical field between two electrodes. Ions are
accelerated towards the surfaces and remove surface atoms by
a collision cascade in the solid. The sputtered atoms are moved
from an electrically driven target (sputtered electrode) towards
a grounded or biased substrate (electrode, to be covered) to
build up a thin nanostructured layer. In addition, a gas reacts
with the thin layer and changes the surface conditions, which
can cause a positive feedback from the reactive gas pressure
towards the thin film surface conditions.

In this paper, a new control method for nonlinear reactive
sputter processes is presented based on a process model, which
has the form of an Abel differential equation.
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II. LITERATURE SURVEY

The control of reactive sputter processes is mainly discussed
in the fields of vacuum science and thin solid films. In these
scientific fields the monitoring of process variables and the
realization of an experimental set-up is investigated. Examples
are the process supervision by electrical [2] or optical control
variables [3], [4]. Although the stabilization of reactive sputter
processes is required to enable, for example, 50 to 100 %
higher thin film deposition rates [5], these studies do not de-
liver control design methods or relationships between specific
feedback control laws and parameters.

Feedback control-oriented approaches in literature are based
on the linearization of a physically motivated model, which is
known as the Berg model [6]. Hence, a proportional-derivate
(PD) controller [7] and a linear-quadratic (LQ) regulator [8]
are developed with reactive gas flow as manipulated variable
and reactive gas pressure as controlled variable. However,
the validation of the developed controllers is done by static
measurements or static simulation studies and no trajectories
have been shown. Furthermore, no tuning rules are proposed.

Reactive sputter processes are typically described by the
Berg model [6] with analysis of its static behavior [9], exten-
sions regarding further physical effects [10], further dynamics
[11] and asymmetric effects [12]. The process instability is
described by the Berg model with an “unstable hysteresis
region” [13]. Fig. 1 shows the simulated static input/output
behavior of the system with the “unstable hysteresis region”
and the metallic and poisoned process modes.

In this paper, the closed-loop tuning of nonlinear reactive
sputter processes shall be investigated based on a reduced
model. For this purpose, a new control method with a linear
control law is developed based on Lyapunov’s direct method.
Intervals for the controller parameters with respect to the

Fig. 1. Simulation of the static input/output behavior of the system with the
Berg model. The blue arrows indicate that the “unstable hysteresis region” is
not visible in open loop, because the relating steady states are unstable.
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process parameters to achieve a stable control loop are pre-
sented and allow the formulation of a tuning rule. Hence,
a tuning rule is proposed. For the validation of the tuning
algorithm experiments are presented. The experiments address
the questions of the applicability of the tuning rule to the plant,
the influence of different initial conditions and the required
controller structure for a stationarily exact control loop.

III. PROCESS MODEL

The three modes (metallic, transition, poisoned) of reactive
sputter processes are represented by the Berg model with a
nonlinear ODE of third order and at least fifteen parameters
like sticking coefficients or sputter yields. The three state
variables, represented in Fig. 2 are the partial pressure pO(t),
the normalized coverage of the target θT(t) and the normalized
coverage of the substrate θS(t).

The main process principle requires that an argon ion
flux JAr sputters new metal or oxidized metal particles from
the target and a gas reacts with the unreacted surface areas
(1−θi(t)). The target sputtering leads to a metal flow FMe(t)
and a metal oxide flow FMeOx(t) from the target to the
substrate. The flows FMe(t) and FMeOx(t) influence the relation
between the unreacted substrate surface (1− θS(t)) and the
reacted substrate surface θS(t). The input of reactive gas QIn(t)
increases pO(t) and the pumped outflow QOut(t) decreases
pO(t). The partial pressure pO(t) converts unreacted metal to
reacted metal and, therefore, can shift the relation between
the unreacted surfaces (blue coloured) and reacted surfaces
(brown coloured). These conversion rates regarding the target
and substrate area are described by QT(t) and QS(t).

If the substrate area is high oxidized, because a thin film
with a corresponding stoichiometry shall be deposited, a
positive feedback in the system occurs. A nearly fully oxidized
substrate leads to a more and more oxidized target, because
the substrate becomes less and less a sink with the target as the
only remaining sink for reactive gas. Due to a lower sputter
yield (quotient of sputtered atoms to incoming argon ions) of

Fig. 2. Sketch of a plasma reactor for reactive sputter deposition.

the oxidized surface compared to the unoxidized surfaces, a
more and more oxidized target has a lower sputter rate than an
unoxidized target. A lower sputter rate leads to less new metal
atoms at the substrate and, therefore, to a higher substrate
coverage with metal oxide. The reactive gas partial pressure
increases because less reactive gas can react with the vanishing
unreacted surface areas, which in turn accelerates the target
oxidation. Hence, this positive feedback has to be stabilized
by feedback control to achieve a constant deposition rate and
thin film stoichiometry.

On a macroscopic level these processes can be summarized
by an Abel differential equation with one state variable and
five parameters. The model reduction and parameter identifi-
cation are described in [14]. The reduced model focuses on the
approximation of the stability properties and the input/output
behavior of the Berg model. The Abel differential equation is

ẏ(t) = Ay3(t)+By2(t)+Cy(t)+D+Eu(t) (1)

with y(t)∈ [0,1], real parameters A, B, C, D, E and (C− B2

3A )>
0. The first restriction considers the system saturation and
the last restriction considers the three ambiguous input/output
characteristic.

The closed-loop system with a PIDT1-controller is shown in
Fig. 3. A DT1-element (derivative lag element) is used instead
of a pure D-element for a realizable controller. The PIDT1-
controller

u(t) = ui(t)+ud(t)+ kpe(t),

ud(t) =−xd(t)+ kde(t),

u̇i(t) = kie(t),

ẋd(t) =−ktxd(t)+ kdkte(t)

(2)

leads to the first state equation of the closed-loop model

ẏc(t) = Ayc
3(t)+Byc

2(t)

+Cpidyc(t)+Dpid(t)+b(ui(t)− xd(t))

with

b = E, Cpid =C−b(kp + kd), Dpid(t) = D+b(kp + kd)w(t)

and the summarized state-space model of the closed loop

ẋ1(t) = p(x1(t))+Dpid(t)+bx2(t)−bx3(t),

ẋ2(t) = kiw(t)− kix1(t),

ẋ3(t) = kdktw(t)− kdktx1(t)− ktx3(t)
(3)

with

x1(t) = yc(t), x2(t) = ui(t), x3(t) = xd(t),

p(x1(t)) = Ax1
3(t)+Bx1

2(t)+Cpidx1(t).

IV. LINEAR CONTROL

In this section a rule for the tuning of a linear controller
to stabilize nonlinear reactive sputter processes is presented.
Based on the given process model (3) it will be shown that
intervals for the control parameters of a stable feedback loop
can be specified. Hence, a tuning procedure can be proposed.
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Fig. 3. Closed loop with PIDT1-controller and reduced model (Abel ordinary
differential equation) as plant

A. Transformation of the state space representation

In order to investigate the stability of the dynamic model
(3) with Lyapunov’s direct method [15], a transformation
concerning the equilibrium states of the system is needed and
a constant reference input w̄ = w(t) is considered.

A linear controller can manipulate the closed-loop model
by Cpid such that only one equilibrium state remains. For this,
the function p̄(x̄1) = Ax̄3

1 +Bx̄2
1 +Cpidx̄1 needs to be strictly

monotonously decreasing or increasing. The function p̄(x̄1)
has no local extreme points if and only if the discriminant
∆p̄′ = 4B2−12ACpid of δ p̄(x̄1)

δ x̄1
= 3Ax̄2

1+2Bx̄1+Cpid is negative
or zero, because in this case there does not exist any real solu-
tion for the quadratic equation and for A < 0 the antiderivative
is strictly monotonously decreasing. Hence, it is assumed that
kp + kd is chosen such that the function p(x1(t)) is strictly
monotonously decreasing with

kp + kd ≤
1
E

(
C− B2

3A

)
for E < 0,

kp + kd ≥
1
E

(
C− B2

3A

)
for E > 0.

The only remaining equilibrium state can be shifted to the
origin with respect to the second state equation by

x1(t) = x̃1(t)+ w̄ ⇒ ẋ2(t) =−kix̃1(t) (4)

with
˙̃x1(t) = p(x̃1(t)+ w̄)+ D̄pid +bx2(t)−bx3(t)

= p̃(x̃1(t))+ k1 +bx2(t)−bx3(t),

ẋ3(t) =−ktx3(t)− kdktx̃1(t)

and

p̃(x̃1(t)) = Ax̃3
1(t)+ B̃x̃2

1(t)+C̃pidx̃1(t),

B̃ = B+3Aw̄, C̃pid = 3Aw̄2 +2Bw̄+Cpid,

k1 = Aw̄3 +Bw̄2 +Cpidw̄+ D̄pid.

It can be moved to origin with respect to the first state
equation by

x2(t) = x̃2(t)−
k1

b
⇒ ˙̃x1(t) = p̃(x̃1(t))+bx̃2(t)−bx3(t).

(5)

The transformed state-space model can be expressed as

˙̃x1(t) = p̃(x̃1(t))+bx̃2(t)−bx3(t),
˙̃x2(t) =−kix̃1(t),

ẋ3(t) =−ktx3(t)− kdktx̃1(t).
(6)

B. Lyapunov based stability analysis

Lyapunov’s direct method is now applied to the model (6)
with the following candidate Lyapunov function:

V (x̃1(t), x̃2(t),x3(t)) =
1
2

V1x̃2
1(t)+

1
2

V2x̃2
2(t)+

1
2

V3x2
3(t).

V1 > 0, V2 > 0, V3 > 0.

The derivate of V is

V̇ (x̃1(t), x̃2(t),x3(t))

= p̃(x̃1(t))x̃1(t)V1 + x̃1(t)x̃2(t)(bV1− kiV2)

−ktV3x2
3(t)+ x̃1(t)x3(t)(−bV1− ktkdV3).

(7)

The first term has to be negative for any x̃1(t), which leads
to a condition regarding kp:

kp ≤
1
E

(
C− B2

3A

)
− kd, for E < 0,

kp ≥
1
E

(
C− B2

3A

)
− kd, for E > 0.

(8)

The second term of V̇ (x̃1(t), x̃2(t),x3(t)) vanishes, if the feed-
back is negative heading to a condition regarding ki:

kiE > 0. (9)

The third term of V̇ (x̃1(t), x̃2(t),x3(t)) is only negative, if the
time-constant kt is positive and therefore the internal feedback
in the DT1-element has to be negative:

kt > 0. (10)

The fourth term of V̇ (x̃1(t), x̃2(t),x3(t)) vanishes analogously
to (9), if the feedback is negative:

kdE > 0. (11)

A PIDT1-controller with control parameters satisfying the
given conditions (8)-(11) leads to a set-point following control
loop because of x̃1(t → ∞) = 0 and x1(t → ∞) = y(t → ∞) =
w̄ with (4). A PI-controller also leads to a stationarily exact
control loop, because (4) is not influenced of the DT1-element
and the state space transformation to the origin (5) still holds
for x3(t) = 0. The additional degrees of freedom of the DT1-
element can be used to achieve further performance demands.

A pure P-controller or a PDT1-controller do not guarantee
a stationarily exact control loop for any combination of w̄
and the control parameters. For example the closed-loop state
space representation of (1) with a P-controller is

ẋ1(t) = Ax3
1(t)+Bx2

1(t)+(C−bkp)x1 +(D+bkpw̄)

with x1(t) = x̃1(t)+ w̄ is

˙̃x1(t) = Ax̃3
1(t)+ B̃x̃2

1(t)+(3Aw̄2 +2Bw̄+C−bkp)x̃1(t)

+Aw̄3 +Bw̄2 +Cw̄+D

which is only zero for x̃1 = 0 with Aw̄3 +Bw̄2 +Cw̄ = −D.
Hence, a transformation x1(t) = x̃1(t)+α(D+ bkpw̄) or the
specific value kp = − D

bw̄ is needed to shift the equilibrium
state to the origin for a specific w̄. Hence, set-point tracking
is only achieved for a specific pair (w̄,kp). An additional
DT1-element does not change the qualitative structure of (3)
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with respect to the required transformation of the first state
variable and set-point following cannot be guaranteed, either.
These results are in line with the Internal Model Principle.

Stability theorem:
Reactive sputter processes of the form of an Abel

differential equation (1) can be stabilized for constant
reference signals by a linear static controller, which
manipulates the closed-loop model such that the function
p(x1(t)) is strictly monotonously decreasing. If the linear
controller includes an integrator or derivative lag element the
resulting feedback has to be negative.

Set-point following theorem:
In line with the Internal Model Principle reactive sputter

processes, which have the form of an Abel differential
equation (1), are set-point tracking for constant reference
signals, if the open loop contains an integrator element and
the closed loop is stabilized.

Interpretation:
The parameter D of the model (1) does not influence the

state stability of the system with respect to the unstable
equilibrium states and can be neglected for the control de-
sign. Condition (10) is independent of the system parameters,
because kt has always to be positive. The conditions (9) and
(11) represent structural properties with respect to the direction
of action of the input. The sign of E of the model (1) can be
determined by a consideration of the process physics or by
experiments. Hence, intervals for the control parameters of a
stable closed-loop system can be summarized:

kp ∈ [kp,crit =
1
E

(
C− B2

3A

)
− kd,sgn(E) ∞),

ki ∈ (0,sgn(E) ∞),

kt ∈ R∗+,
kd ∈ (0,sgn(E) ∞).

The proposed parameter intervals allow the formulation
of a tuning procedure. Simulation studies to investigate the
transition behavior indicate that the conditions (8), (9) and (10)
are necessary and sufficient for the stability of the closed-loop
system. The condition (11) seems only be sufficient. A higher
|kp| with respect to the sign of E seems to damp the oscillation
of the controlled variable. A higher |ki| and |kd| with respect to
the sign of E seem to accelerate the rising time of the closed
loop but can lead to overshooting.

C. Tuning procedure

A tuning procedure can be deduced from the results (7) -
(11) and simulation studies. The knowledge of the sign of the
parameter E is sufficient for the application of the following
tuning algorithm.

The resulting tuning procedure can be related to the tuning
of a PID-controller with respect to a linear plant. In contrast to
the tuning of a linear plant the output signal of the nonlinear
plant will oscillate between the saturated process modes for
unsuitable controller parameters. In addition, it can not be

expected that an once tuned linear controller will ensure
a desired dynamic closed-loop behavior for any set-point
change.

It is therefore essential to validate the proposed tuning
procedure by experiments for the considered reactive sputter
process. The experiments shall also address the influence of
different initial conditions and controller structures to the
closed-loop behavior.

Preconditions:
The process can be temporally operated with oscillations
between the metallic and poisoned mode and the influence
of the input is known by the sign of E.

Initial values for the controller parameters:
As starting point small absolute values for kp and
ki might be chosen with respect to the sign of E:

a) If E < 0 the controller parameters kp and ki
have to be necessarily negative.

b) If E > 0 the controller parameters kp and ki
have to be necessarily positive.

The signs of kp and ki shall not be changed in the
following tuning procedure. The start value for kd
shall be zero. The expected transition time tt of the
closed loop shall determine the parameter kt =

3
tt

.

Make experiments with the closed-loop system with the
current controller parameters for tuning of kp, ki and kd:

1. Tuning of kp:
If the process oscillates for an adjusted kp, the
absolute value of kp has to be increased till the
system oscillation is damped with acceptable input
values or otherwise decreased.

2. Tuning of ki:
If the process is overshooting for an adjusted ki, the
absolute value of ki has to be reduced or otherwise
increased to accelerate the rising time of the closed
loop with acceptable input values.

3. If the system behavior is non-oscillating with ac-
ceptable overshooting, kd shall be tuned or other-
wise the last two steps shall be repeated.

4. Tuning of kd:
If the process behavior has a slow transition time
for an adjusted kd , the absolute value of kd has to
be increased till a acceptable dynamic behavior with
respect to the input is achieved.

5. If the process behavior is not acceptable the first
and second step shall be repeated otherwise the
algorithm shall be terminated.

Result:
Stable control loop with desired dynamic behavior.
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V. EXPERIMENTS

A. Experimental set-up

Fig. 4. Experimental set-up with process control computer and reactor
chamber (left) and plasma discharge (right)

The validation of the presented control design method is
proceeded in a stainless steal magnetically enhanced low-
pressure plasma reactor (Fig. 4). The background gas is argon
with a pressure of 3 pascals and the reactive gas is molecular
oxygen. A generator power of 350 watts is used to sputter
an aluminum target. As actuator for the input of reactive
gas, measured in standard cubic centimeter per minute, a
MKS mass flow controller is used. The output variable, the
normalized bias voltage at the driven electrode, is measured
by a AE CESAR 136 RF power generator. The presented
controller is implemented on a process PC with LabVIEW
as control software and 50 milli seconds as sampling time.
All measurements are proceeded in a thermally stable initial
state.

B. Validation of the tuning procedure

The experiments used in the tuning procedure to achieve a
stable control loop are shown in Figs. 5 and 6. As starting point
the following control parameters with respect to a negative
sign of E are chosen:

kp =−0.5 ki =−0.1 kt = 0.05 kd = 0.

Fig. 5. Measured control variable y(t) and input signal u(t) in closed loop
with a PI-controller (ki =−0.1; kp =−0.5 (blue), kp =−0.75 (red), kp =−1
(orange)). The black dashed line shows the set point w(t).

In the first step of the tuning algorithm kp shall be tuned till
the system oscillation is damped, which is shown in Fig. 5.
The parameter kp has been varied from −0.5 (semi-stable) over
−0.75 (damped oscillating) to −1 (damped with insignificant
oscillating). In the experiments a permanent oscillation of
y(t) can be still observed for kp = −0.7. Hence, the critical
proportional gain kp,crit can be localized in the range of
kp ∈ [−0.75,−0.70).

In the second step of the tuning procedure ki shall be tuned
till the system overshooting is negligible. Fig. 6 demonstrates
that ki has to be decreased from −0.1 to −0.035 to reduce the
overshooting.

As the system behavior is non-oscillating with acceptable
overshooting for kp =−1 and ki =−0.035, kd has to be tuned.

In the fourth step of the tuning procedure kd has been
determined to kd =−0.75 to reduce the transition time of the
closed loop (Fig. 6).

In order to further decrease the transition time of the
closed loop the second step of the tuning procedure has to be
repeated. Hence, ki has been tuned to ki = −0.07 to achieve
a closed loop with a fast transition time with no overshooting
(Fig. 6). The input values are in the range of 0.3 to 1, which
is acceptable.

Fig. 6 also shows that the chosen control parameters

kp =−1 ki =−0.07 kt = 0.05 kd =−0.75

are sufficient to achieve a stationarily exact control loop even
if the initial state is located in the metallic process mode.
However, in this case a noticeable overshooting occurs, which
can be related to the nonlinear process behavior. Hence, a
specific set point change requires a specific controller tuning
if performance demands shall be considered. If only a stable
closed loop without a specific dynamic behavior is acceptable,

Fig. 6. Measured control variable y(t) and input signal u(t) in closed loop with
a PIDT1-controller (kp =−1; ki =−0.035 and kd = 0 (blue), ki =−0.035 and
kd =−0.75 with kt = 0.05 (red), ki =−0.07 and kd =−0.75 with kt = 0.05
(green, orange). The start value of the green and orange colored trajectories
are located in the poisoned and metallic mode. The black dashed line shows
the set point w(t).
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a single tuning procedure with respect to the desired operating
point is sufficient.

The rise of the input u(t) in Fig. 6 can be explained by
a comparison with Fig. 1. If the start value is located in
the metallic mode the input has to exceed a critical value to
enable a trajectory into the transition zone. After entering the
transition zone the input value has to be reduced to last in the
transition zone. If the initial value is located in the poisoned
mode the opposite behavior of the input occurs.

Experiments without an integrator element in the controller
are shown in Fig. 7. Only for specific set point changes a pure
P- or PDT1-controller is sufficient to achieve an almost set-
point tracking control loop. Hence, only a PI- oder PIDT1-
controller guarantees a stationarily exact control loop with
respect to kp,crit for any set point change.

VI. CONCLUSION

A new approach to the control of reactive sputter processes
with the reactive gas flow as manipulated variable and the
normalized bias voltage as measured variable has been pre-
sented. The experiments demonstrate that the application of
the proposed tuning rule leads to a stable closed loop with a
desired dynamic behavior.

These results raise the question as a robust control approach
with a calculation of the controller parameters based on an
estimated process model is useful, which shall be investigated
in a future paper. In this context, also an in-depth analysis
concerning the accessability of the process by its linearized
model shall be done.

Building on this, MIMO-models with plasma or thin film
values as measured variables and appropriate control designs
shall be researched.

Fig. 7. Measured control variable y(t) and input signal u(t) in closed loop
with a PDT1-controller (kp =−1; kd =−0.75 with kt = 0.05 (blue, orange),
kd = 0 (red)). The red and orange colored trajectories are related to the black
dashed set point and the blue colored trajectory is related to the blue dashed
set point. The initial conditions of all trajectories are equal and located in the
metallic process mode.
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