
A Web-based Tool for Design of Simulink Models
L’uboš Čirka, Martin Kalúz

Institute of Information Engineering, Automation and Mathematics
Slovak University of Technology in Bratislava

E-mail: lubos.cirka@stuba.sk, martin.kaluz@stuba.sk

Abstract—This paper deals with the development of an educa-
tional web-based application that allows users to create simple
block schemes in the Internet browser. The structure of created
schemes is based on XML, and it is entirely compatible with the
Simulink environment. The application allows the user to perform
an evaluation of created schemes by executing them in the remote
instance of MATLAB/Simulink via an HTTP MATLAB Web
Server. The result of the simulation is returned either in the form
of a graph or a data file for further processing. The application
can be used in education for a teaching of systems’ modeling and
control, and also as a support tool for development of virtual and
remote laboratories.

I. INTRODUCTION

Many universities, research centers, and companies use the
MATLAB for various computing-related tasks, such as data
processing, statistics, modeling, simulations, control design,
and many others. In the past, the MathWorks company has
developed a toolbox called MATLAB Web Server [1] that
allows performing the computational tasks via the Internet.
However, this toolbox has been discontinued since the version
2006b, and new distributions no longer support it. This toolbox
has been replaced by independent open-source project Web
Server by a community member Dirk-Jan Kroon [2].

The principle of the server is based on execution of native
MATLAB code over the Web. The server side service is
emulated in by Java package classes java.net.* which are
designed for I/O network communication handling. The ser-
vice in set up to process common HTTP requests for GET
and POST methods sent from client side Web pages. The
source code of server consists of M-file executable scripts
and functions containing base methods for handling HTTP
request/response model and methods for local execution of
server-side processing scripts.

Both mentioned toolboxes are also used in the education
process [3], [4]. Based on them, several other educational tools
have been developed in different universities such as virtual
and remote labs for monitoring and control of dynamical
systems (CyberVirtLab [5], Recolab [6], WebPIDDESIGN [7],
[8]).

Both toolboxes exhibit several disadvantages compared to
pure MATLAB/Simulink execution of models/scripts. These
are:

1) the absence of mechanism for online change of pa-
rameters during the execution of simulation - limited
interactivity;

2) inability to continuous gathering of simulation data or
their visualization during the run of task - only batch
mechanism;

3) the absence of feature to create user defined models
(even the change of parameters of existing ones is
available). The schemes must be created in advance and
then uploaded to Web server. This procedure requires a
Simulink to be available for end used.

The solution to first two disadvantages has been already
provided in [9].

Many various software projects deal with the creation and
editing of block schemes. These are e.q. JointJS1, Mxgraph2,
GoJS3, Draw2D4, etc. The main disadvantage of these tools is
that they do not account for all the specifications compatible
with the Simulink (for example, they allow to define multiple
connections between block or does not allow to define their
parameters). The tool that allows the creation and editing
of a Simulink scheme have been developed at FEI STU in
Bratislava [10]–[12].

The main goal of this paper is to describe a new tool that
allows not only a definition of block models in visual form, but
also their remote execution, data acquisition, and visualization
of results.

The paper is organized as follows. Section 2 describes the
main structure of current Simulink model format, defined
in the form of an XML file, along with the main elements
required for definition and visualization of particular blocks.
Section 3 deals with the structure and operation principles of
created Web-based application. This section also describes the
technologies and languages used in the application, procedure
of block library extension. Additionally, the third section
describes the process of scheme creation, including block
insertion, the configuration of parameters, the interconnection
of blocks, and deletion of scheme objects. An illustrative
example of model definition/editing is shown in section 4.

II. SIMULINK MODELS

The current versions of Simulink stores the model informa-
tion in MDL files or compressed SLX format (by default). The
developed application works with the more recent version of
models (SLX) that is XML compatible. The main internal file
structure of SLX is:

1http://www.jointjs.com/
2https://www.jgraph.com/
3http://gojs.net/latest/index.html
4http://www.draw2d.org/

2017 21st International Conference on Process Control (PC)
June 6–9, 2017, Štrbské Pleso, Slovakia

978-1-5386-4011-1/17/$31.00 c©2017 IEEE 92

_rels
.rels

metadata
thumbnail.png
mwcoreProperties.xml
coreProperties.xml

simulink
blockdiagram.xml

[Content_Types].xml

All the information about a particular scheme is stored
in blockdiagram.xml file located in the sub-directory
simulink. The root element of the model is called
ModelInformation. This element contains additional sub-
root element Model that carries all the information about
schema and its operation. Most important parameters to men-
tion are settings of the editor, configuration of simulation
(solver, time base, sampling, etc.), default and user-defined
parameters of simulation and blocks, and visual representation.

Each block contains a set of predefined parameters that are
used as default parameters when a block is firstly created. A
user can later redefine these parameters.

Mechanism of block generation is as follows. The
action of new block insertion triggers the copying
of predefined parameters (<Block> elements) into
<BlockParameterDefaults> in the model. If the
user changes a parameter of a block, this change is reflected
by copying the <Block> element into <System> element,
while actual parameters are stored in <P> elements. Each
<P> contains an attribute with the name of the parameter,
while the value is enclosed in the element’s tag.

III. WEB APPLICATION

The application is developed on the top of several tech-
nologies and languages, and it split into three operational
layers. The first layer is a user interface (served by a Web
browser), written in HTML5 and driven by JavaScript. For
the simplification of development and addition of interactive
features, libraries jQuery and jQuery UI were used. The
mechanism of block manipulation in schemes is provided by
another JavaScript library Fabric.js5.

The second layer of the application is written in PHP, and it
is located on a server side. This processing part contains a set
of scripts that are used as a program interface to the bottom
layer, where MATLAB HTTP Web Server is located. The
PHP layer performs the translation of user-defined schemes
(initially handled as JavaScript objects and send in JSON)
into an XML representation, used by Simulink. Additionally,
the PHP part is used for reading and writing SLX files, and
for constructing and sending the requests to MATLAB to run
simulations and acquire results.

The third layer contains an instance of MATLAB with
listening HTTP Web server. This server allows invoking the
execution of predefined M-files to run the Simulink model via
standard commands.

5http://fabricjs.com/

The operation of the application uses the following princi-
ples. The Web application is provided to a user on demand
via entering its URL into a browser. The application loads the
newest set of predefined blocks from the server as a JSON.
This set is located in the block library, and it is continually
updated over time. The whole work-flow of scheme design is
performed in a browser, and actual visual and logic part of the
scheme is kept in a JavaScript object. Any change of block
scheme in editing window is immediately projected into the
object representation. Finally, the created model can be saved
on a server and downloaded back to a user. By executing this
task, an object representation of a model is sent to PHP layer
that loads the template SLX file, writes the whole model into
it and provide a user with reference to file. A user also has the
option to run the file directly on a server in Simulink. In such
a case, the simulation is executed with the parameters defined
in the scheme and numerical and graphical results of output
blocks are returned to a user.

All the communication, except the acquisition of simulation
results, is performed in an asynchronous mode using AJAX.
The architecture of the application is shown in Fig. 1.

MATLAB Web Server

Scheme m-File

Apache Web Server

Library (JSON) PHP (XML)

PC client

Main WebPage

Graph

Results

AJAX

Library
(Blocks)

scheme (js object)

Fabric.js

?

? ?

6

6

6 6
?

6?
-

Fig. 1: Operational Architecture

A. Modularity of Application

The application is designed in such a way that it allows
simple extensions of block library without changes in program
core.

The definitions of all available blocks are located in the
directory called library. Each definition is located in a
separate sub-directory, and it contains four separate files:

93

• display.json – defines an appearance of block;
• param.json – stores default parameters of block;
• default.xml – data structure for
BlockParameterDefaults element;

• system.xml – data structure for System element.
The addition of new block into the library is quite sim-

ple, and it is explained on the following Digital Clock
example.

In the library directory, a new sub-directory is created
using the name of new block (in this case digitalclock).
The content of files default.xml and system.xml is
taken from a model that was previously created in Simulink.
It is necessary to create a scheme with the desired block
and save it in SLX format. Then, after the internal files
are subtracted, the element <Block> (representing a digital
clock) is copied from the <BlockParameterDefaults>
of blockdiagram.xml into default.xml. The defini-
tion of this block is as follows.

<Block BlockType="DigitalClock">
<P Name="SampleTime">1</P>

</Block>

The implementer repeats the procedure for another
<Block> element (digital clock) located in <System>.

<Block BlockType="DigitalClock"
Name="Digital Clock" SID="1">
<P Name="Position">[110,68,175,92]</P>
<P Name="ZOrder">1</P>
<P Name="SampleTime">1</P>

</Block>

This structure is inserted into a file system.xml. An
information about user-defined block’s parameters are stored
in param.json file. The first part contains general info about
block properties and appearance:

• io – connection type (in - source block, out - sink
block, both - transient block),

• NumberOfInputs – number of input ports,
• NumberOfOutputs – number of output ports,
• BlockType – type of the block,
• title – title used in modal window
The following parameters define the modal input form and

its contents.
• type – type of a form element (text, checkbox,
selectbox),

• data – attributes of form (name, id, size, value.

{
"DigitalClock": [{
"io": "out",
"NumberOfInputs": 0,
"NumberOfOutputs": 1,
"BlockType" : "DigitalClock",
"title": "Source ...: Digital Clock"

},{
"type": "text",

"data": {
"title": "Sample time",
"Name": "SampleTime",
"size": "10",
"id": "SampleTime",
"value": "1"

}
}
]}

Information about the appearance of block is stored in
display.json. These are split into:

• type – shape of block (e.g. rect - rectangle),
• Text – text that appears inside the block,
• Name – title located next to the block,
• additional data such as dimensions, position, line type,

etc.

{
"DigitalClock": [{

"type": "rect",
"data": {
"width": 60,
"height": 30,
"fill": "white",
"left": 0,
"top": 0,
"stroke": "black"

}
},{

"type": "text",
"Text": "12:34",
"data": {
"fontFamily": "Arial",
"left": 14,
"top": 10,
"fontSize": 10,
"fill": "black"

}
},{

"type": "name",
"Text": "Digital Clock",
"data": {
"fontFamily": "Arial",
"left": 1,
"top": 32,
"fontSize": 8,
"fill": "black"

}
}
]}

B. Application Usage

The main application is shown in Fig. 2. The user interface
contains the library of blocks (left-hand side) and canvas area
(right-hand side) where user created and arranges a scheme.

94

Fig. 2: Main page of the application

The library is loaded dynamically from server. For each type
of defined block a display.json is loaded. Based on this
information, the blocks are rendered and slip into categories.

The copying of block from the library into the canvas
is performed via double-click action. Another double-click
on a newly created block triggers its modal window, where
parameters can be set (Fig. 3). This window contains form
that is generated using the param.json information. This
dynamic action is performed asynchronously via AJAX calls.

Fig. 3: Change of block’s parameters

The interconnection of two unconnected blocks (Fig. 4a) is
created by dragging of line from the output port of first block
(silver square - Fig. 4b) on the input port of second block (gray
square - Fig. 4c). The connection is automatically created on
a mouse release action (Fig. 4d). Every connection line is
defined by four points, and they are symmetric relatively to
input and output port. A line contains square marks that allow
a user to interact with it. Silver mark defines a port, where a
new branch of the line can be specified. The black mark can
be used for deleting the line.

Each block can be moved in the canvas using a drag and
drop mechanism. All the lines are automatically adjusted if a
block is relocated to another position. A separate movement of

(a) (b)

(c) (d)

Fig. 4: Definition of interconnection between two points

lines is not available in the current version of the application,
but it is considered for the future extensions.

A block can be deleted by selecting it and pressing either
delete button on a keyboard or by clicking Edit/Delete
Object in the top menu of the application. If the deleted
block has any defined connections, these are deleted as well.

In the current version of the application, each block has only
one input and one output port. If the user needs to connect
multiple input/output signals, their number can be defined in
the modal window of block’s properties (Fig. 5), and only
unoccupied ports are offered to the user.

Fig. 5: Multiple-port connection

Created model can be saved in an SLX file format. In the
menu of application user selects Save Model option. By

95

clicking on the save button, a new modal window appears
with a link to generated model file. If the generated model
contains at least one block from a set of Sinks (Scope
or To Workspace), user is provided with the possibility to
run the model simulation remotely on a server (by clicking
the Run button). By doing so, the application stores a copy
of SLX file in work directory of remote MATLAB and
executes it by another M-file generated by the application.
If model contains Scope block, user is provided with the
resulted graph, generated using a JavaScript library Flot6. The
application returns the data for graph generation in the form
of a JavaScript array.

v a r d a t a = [[t0 , y0] , [t1 , y1] , . . . ,
. . . , [tn , yn]] ;

The results are returned to a user only if the corre-
sponding output block has selected the option Save data
to workspace. The Save name option must have a
unique name in the model. The structure of save data can
be either of available formats (Stucture with time,
Stucture, and Array). If the model contains at least one
To Workspace block, then returned data are provided in
the from of space-separated values.

t 0 y0
t 1 y1

. . .
t n yn

These results are provided in the form element textarea.

IV. ILLUSTRATIVE EXAMPLE

The example of application usage is shown on step re-
sponses of two systems defined in the form of transfer func-
tions

G1(s) =
1

s+ 1

G2(s) =
2

s2 + 2s+ 1
.

A user creates a scheme in Fig. 6, based on the procedure
provided in the previous section. The scheme contains two
Transfer Fcn blocks, two Scope blocks and one Step.

Fig. 6: Example model for step response generation

User defines the following parameters of blocks:
• Block Step:

6http://www.flotcharts.org/

Step time: 2
Initial value: 0
Final value: 1

• Block Transfer Fcn 1:

Numerator coefficcients: [1]
Denominator coefficcients: [1 1]

• Block Transfer Fcn 2:

Numerator coefficcients: [2]
Denominator coefficcients: [1 2 1]

• Block Scope 1:

Save data to workspace: checked
Save name: out1
Format: Stucture with time

• Block Scope 2:

Save data to workspace: checked
Save name: out2
Format: Array

The application generates the scheme that can be down-
loaded and opened in Simulink (Fig. 7). The scheme provided
by the application is principally identical with the scheme in
Fig. 6. The only difference is in the appearance of signal lines,
however, the scheme provides the same functionality.

Fig. 7: Generated scheme opened in Simulink

Since the block Scope is present in the scheme, the user
can run the simulation and get the results. The step responses
of systems’ dynamics is shown in a new window of Web
browser (Fig. 8).

V. CONCLUSIONS AND FUTURE WORK

This paper presents a tool for editing of Simulink schemes
in the form of Web-based application that runs in an Internet
browser. It allows users not only to design and create their
own models but also to execute them remotely on a server and
acquire results. The application can be used in the educational
process, specifically in modeling/evaluation of dynamical sys-
tems, control design, and as additional tools for MATLAB-
based virtual and remote laboratories. The application cur-
rently contains a library of 35 blocks.

The future work will be focused on the extension of
block library, graphical enhancement, and addition of various
interactive features (rotate & flip, zoom, rearrangement of
connection lines, etc.).

The full application (including the server-side execution of
Simulink models) is available only to students of the faculty

96

Fig. 8: Graphical result of simulation

for handling their study tasks (according to MATLAB license
agreement). The part of the application that allows to create
and edit Simulink models is publicly available at http://www.
kirp.chtf.stuba.sk/~cirka/websimulink.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the contribution of the
Scientific Grant Agency of the Slovak Republic under the
grants 1/0004/17.

REFERENCES

[1] The Mathworks, Inc., Natick, Massachusetts, MATLAB Web Server,
2001.

[2] D. J. Kroon, “Web server.” https://www.mathworks.com/matlabcentral/
fileexchange/29027-web-server/, 2011. [Online; accessed 20-February-
2017].

[3] M. Bakošová, M. Fikar, and L’. Čirka, “New approaches to control
engineering education,” AT&P Journal, pp. 17–19, 2003.

[4] M. Kvasnica and L’. Čirka, “Usage of milab in education of automatic
control,” in Proceedings of the 13th International Conference Process
Control ’01, Slovak University of Technology Bratislava, Slovak, 2001.

[5] I. Zolotová, J. Liguš, and A. Jadlovská, “Remote and virtual lab–
cybervirtlab,” in Proceedings of the 17-th EAEEIE Conference on
Innovation in Education Engineering, Craiova, pp. 339–342, 2006.

[6] R. Puerto, L. Jiménez, and O. Reinoso, “Remote control laboratory
via internet using matlab and simulink,” Computer Applications in
Engineering Education, vol. 18, no. 4, pp. 694–702, 2010.

[7] J. Oravec, M. Kalúz, L’. Čirka, M. Bakošová, and M. Fikar, “Webpidde-
sign for robust pid controller design,” in Proceedings of the 20th Interna-
tional Conference on Process Control (M. Fikar and M. Kvasnica, eds.),
(Štrbské Pleso, Slovakia), pp. 393–399, Slovak University of Technology
in Bratislava, June 9-12, 2015 2015.

[8] J. Oravec, M. Kalúz, L’. Čirka, M. Fikar, and M. Bakošová, “Webpid-
design - software for pid controller design management,” in European
Control Conference 2015, (Linz, Austria), pp. 3020–3025, 2015.

[9] L’. Čirka, M. Kalúz, and M. Fikar, “On-line remote control of matlab
simulations based on asynchronous communication model,” in 21th
Annual Conference Proceedings: Technical Computing Prague 2013
(P. Byron, ed.), pp. 1–6, Institute of Chemical Technology, Prague, ICT
Prague Press, 2013.

[10] Z. Janík, “Web-based modification of block schemes in mat-
lab/simulink,” Master’s thesis, FEEIT STU in Bratislava, 2010.

[11] Z. Janík and K. Žáková, “Online design of matlab/simulink block
schemes,” iJET, vol. 6, no. VU 2009, pp. 11–13, 2011.

[12] Z. Janík and K. Žáková, “Online design of matlab/simulink and scilab/x-
cos block schemes,” in Proceedings of the 14th International Conference
on Interactive Collaborative Learning (M. H. Michael E. Auer, ed.),
(Piešt’any, Slovakia), pp. 241–246, International Association of Online
Engineering, Kirchengasse 10/200, A-1070, Wien, Austria, September
21 - 23 2011.

97

