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Abstract: In an oil field that has reached its maximum gas handling capacity, and where wells
are producing under gas coning conditions such that the gas-oil ratio (GOR) depends on the
wells production rate, oil production is maximized if the marginal GOR (mGOR) is equal for
all wells. The GOR and the mGOR are not readily available measurements, but they can be
predicted using detailed reservoir models. In this paper we propose predicting the mGOR for
each well from measurements like pressure and valve position by using the static linear optimal
closed-loop estimator. The estimator can be generated for each well individually, and it is not
necessary to consider the production network as a whole. The optimal closed-loop estimator is
intended for use in combination with feedback. Based on a simple two-well case study, we show
that the method is e↵ective and results in close-to-optimal production.
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1. INTRODUCTION

Optimal production from an oil field, for example maxi-
mum oil rates, involves finding an optimal combination of
individual well rates. Usually, wells produce oil, gas and
water. The gas-oil ratio (GOR) becomes an important
factor in the later stages of a field’s production if the
maximum gas handling capacity of the facility has been
reached. In such a case, assuming no other constraints are
in e↵ect, it is beneficial to produce from wells with low
GOR. The optimal production problem can be formulated
as

max ⌃mo,i, (1)

subject to the constraint

⌃mg,i = mmax
g . (2)

That is, we want to maximize the total oil production
at the maximum gas handling capacity. In this paper, we
have chosen to use mass as the basis for the calculations,
and we define the gas-oil ratio (GOR) and marginal GOR
(mGOR) as

GOR = (mg/m
o

) and mGOR = (@mg/@m
o

). (3)

The GOR can depend on the production rate. This is the
case for wells producing under gas coning conditions. For
optimal production, assuming that the wells are indepen-
dent, it is required that

mGORwell i = mGORwell j . (4)

is satisfied for all wells. A simple proof can be found
in (Downs and Skogestad, 2011, p. 107). The optimality
criterion in (4) is well known, and Urbanczyk and Watten-

barger (1994) used the mGOR in an iterative procedure
to obtain optimal well rates for gas coning wells. However,
they did not mention that the criterion in (4) only holds
for independent wells.

At present, there exist reservoir simulators capable of
predicting the GOR for di↵erent well rates. Gunnerud and
Foss (2010) used such simulators to generate well perfor-
mance curves, and presented an e�cient real time opti-
mizer (RTO) for solving large scale well allocation prob-
lems. However, execution times still range from minutes
to tens of minutes depending on the size of the problem.
If there is a sudden change (disturbance) in for example
GOR or reservoir pressure between each execution of the
RTO, the production will be sub-optimal.

In this paper, we propose to use reservoir simulators to
make simple linear static estimators. The goal is to predict
the mGOR for each well using available process measure-
ments, e.g. pressure and valve position. Next, we pro-
pose to use simple feedback controllers, like proportional-
integral (PI) controllers, to adjust the well rates such that
the predicted mGOR are equal for all wells. Because we use
the estimate in a feedback loop, we use the optimal closed-
loop estimator presented in Ghadrdan et al. (2013). One
of the benefits of this estimator is that it ensures that the
gain of the estimator, from measurements to prediction, is
not corrupted by measurement noise, which is essential for
control purposes.

By using feedback, we can continuously reject disturbances
and thus minimize the deviation from optimal operation.
This control structure can also be used in combination
with RTO. In such a scheme, the RTO finds optimal
allocation of well rates based on detailed models and
adjusts the setpoints for the feedback layer. Between each
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Fig. 1. Control of the predicted control variable ŷ by K
such that ŷ = ys by adjusting the plant input u. The
estimator is used in closed-loop.

execution of the RTO, the feedback layer will attenuate
disturbances and keep the production optimal.

The structure of the paper is as follows: The optimal
closed-loop estimator will be presented, followed by the
basis for and assumptions behind the case study model,
and ending with a simple case study demonstrating the
method.

2. THE OPTIMAL CLOSED-LOOP ESTIMATOR

In this section we give a brief overview of the closed-loop
estimator and the assumptions behind it. For the complete
derivation, please refer to Ghadrdan et al. (2013). Consider
the system given in Figure 1, and a linear static estimator
H on the form,

ŷ = Hxm. (5)

Here, ŷ is the predicted output (controlled variable) and
xm is the measurements with measurement noise. We
assume that the measurements x and the outputs y, which
we want to estimate, can be expressed as linear static
models;

x =Gxu+Gd
xd, (6)

y =Gyu+Gd
yd. (7)

The measurements xm, which are influenced by noise nx,
are expressed as

xm = x+ nx. (8)

It is also assumed that dim (y) = dim (u).

In closed-loop operation, the manipulated variables u are
adjusted to keep the estimated controlled variables ŷ at its
setpoint ys,

ŷ = ys.

In this case, the optimal closed-loop estimator H can be
found by solving the optimization problem (Ghadrdan
et al., 2013)

H = argmin
H

kH (FWd Wn
x

)k
F

(9)

s.t. HGx = Gy.

Here, F is the optimal sensitivity,

F = (@x@d )y=y
s

=
�
Gd

x �GxG
�1
y Gd

y

�
, (10)

and Wd and Wn
x

are diagonal scaling matrices, represent-
ing the expected disturbance and noise. If these are worst
case magnitudes, the estimator will minimize the worst
case prediction error (Halvorsen et al., 2003). If they are

average normally distributed deviation, the estimator will
minimize the expected prediction error (Kariwala et al.,
2008).

The gain of some estimators tends to approach zero
when the measurement noise approaches infinity. This
becomes a problem when using feedback control. Here the
manipulated variable u is used to adjust ŷ. If the gain
of the estimator is zero, the required u to reach setpoint
approaches infinity. The closed-loop estimator avoids this
problem with the constraint HGx = Gy. This ensures
that the gain is una↵ected even in the presence of large
measurement noise.

The optimization problem (2) can be written as

min
H

��H eF
��
F

s.t. HGx = Gy,

where eF = (FWd Wn
x

). Under the assumption that eF eFT

is of full rank, the optimal closed-loop estimator H has the
following analytical solution (Alstad et al., 2009),

HT =
� eF eFT

��1
Gx

�
GT

x

� eF eFT
��1

Gx

��1
GT

y . (11)

3. A SIMPLE MODEL

A simple steady-state pressure drop model has been devel-
oped for the well allocation problem (Figure 2). The model
consists of three parts: model for reservoir inflow, model
for pressure drop in a vertical pipe, and model for flow
across a valve. The multiphase fluid of oil, water and gas
is treated as a one phase pseudo fluid. These three parts
can be combined to create a network of wells, manifolds,
and clusters. This is a significantly simplified model, and
is only intended as a demonstration.

3.1 Reservoir inflow model

The inflow relations for oil and water are assumed to
follow the quadratic deliverability equation proposed by
Fetkovich (1973):

ṁo = ko
�
p2r � p2wf

�
, (12)

ṁw = kw
�
p2r � p2wf

�
. (13)

The flow of gas is given by the gas-oil ratio

ṁg = GOR⇥ ṁo. (14)

To represent gas coning conditions, we have assumed the
GOR to have the following relation to pressure,

GOR =
kg
ko

�
pr � pwf

�2
. (15)

This implies a rapid increase in GOR with increasing
production.

3.2 One phase pseudo fluid

To simplify our model, we approximate the multiphase
fluid (liquid and gas) as a one-phase pseudo fluid. Ne-
glecting mixing volumes, the density of the pseudo fluid
is approximated by its volumetric average

⇢mix = vg⇢
ig
g + vo⇢o + vw⇢w. (16)
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where ⇢ is the density and v is the volume fraction of the
respective phase. In terms of mass flows, the overall density
becomes

⇢mix =
ṁo + ṁg + ṁw

ṁ
g/⇢ig

g

+ ṁ
o/⇢

o

+ ṁ
w/⇢

w

. (17)

We assume that oil and water are incompressible, and that
the gas behaves as an ideal gas,

⇢igg =
pMg

RT
, (18)

where Mg is the molar weight of the gas, R is the ideal gas
constant and T the temperature.

3.3 Pressure drop through a vertical pipe

We estimate the pressure drop for multiphase flow in a
vertical pipe using the stationary mechanical energy bal-
ance. Assuming no slip between the phases and neglecting
friction, work and kinetic energy, the energy balance be-
comes

dp = ⇢mix g dh. (19)

Integrating (19) between the limits (p1, h1) and (p2, h2)
gives

↵ ln(p2/p1) + � (p2 � p1) = ṁtot g�h, (20)

where �h = h2 � h1,

↵ = ṁ
g

RT/M
g

, and � = ṁ
o/⇢

o

+ ṁ
w/⇢

w

.

The equation cannot be solved directly for the pressure p2.
By using a serial expansion of the natural logarithm,

ln
�
p2/p1

�
= ln

�
p1 + �p/p1) = ln

�
1 + �p/p1) ⇡ �p/p1, (21)

the pressure drop over the pipeline can be expressed as a
function of the pipe length inlet pressure and height �h,

�p = p2 � p1 =
ṁtot g p1 �h

↵+ p1 �
. (22)

3.4 Pressure drop across a valve

The mass flow across a valve is assumed given by a
standard valve equation,

ṁ = f(z)Cd A
q
⇢
�
p2 � p1

�
, (23)

where Cd is the valve constant, A is the cross section area,
and p1 and p2 are the pressures on each side of the valve.
f(z) is the valve characteristics, with the valve opening z
ranging between 0 when fully closed and 1 when fully open.
For simplicity, we assume linear valve characteristics

f(z) = z, where z 2 [0, 1]. (24)

We assume a one-phase pseudo fluid and the density in
(23) is calculated as the average density for the two sides
of the valve;

⇢ = 1
2

�
⇢mix,1 + ⇢mix,2

�
. (25)

pr = 300 bar

pm

ps
100 bar

well b
za
pwh,a

pwf,a

zb

pwf,b

pwh,b

well a

mmax
g = 500 t/d

PC

fully open
(z = 1)

Fig. 2. Sketch of the two-well case study with all rele-
vant nomenclature. Pressure control is shown varying
well a, but also other options are studied.

4. CASE STUDY

We consider a two-well case (well a and well b) with a
separator as shown in Figure 2. We assume the separator
is operated at its maximum pressure (100 bar), which
together with a given maximum compressor work, give
a maximum gas handling capacity of 500 t/d. The flow
characteristics as a function of the well flow pressure pwf

for the two wells are shown in Figures 3 and 4. Notice the
sharp increase in gas production with higher production
(lower flow pressure pwf ). For simplicity, only the well
valves can be manipulated, and the top valve is fixed to
fully open (z = 1). For nominal operation, the optimal
production is given in Table 1.

For each well the predicted output (controlled variable) is

ŷ = mGOR = Hxm,

and for each well, the manipulated variable, measure-
ments, and disturbances are as follows,

u = z, x =

0

B@

pwf

pwh

pm
z

1

CA , and d =

 
kg
pr
pm

!
. (26)

The disturbance kg represents a shift in the GOR, and pm
represents an upstream disturbance e.g. a change in gas
handling capacity.

4.1 The method

To obtain a simple method, we evaluate each well individu-
ally. This can be done by assuming that the manifold pres-
sure pm is a disturbance and independent of the other flow
to the manifold. Because we control the separator pressure
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Table 1. Optimal well allocation under nominal
operation (no disturbances)

well a well b total

z — 0.5177 0.8505 —
pwf bar 214.6 204.5 —
pwh bar 190.9 173.8 —
pm bar — — 151.1
mo t/d 289.9 265.0 555.0
mg t/d 263.7 236.3 500.0
mw t/d 145.0 496.3 641.3

ps, this is not quite true. The manifold pressure pm will
depend on the flow from the other well, and the optimality
criterion in (4) does not hold; However, the e↵ect of this
interaction is thought to be quite small. The more wells
connected to the manifold, the less influence the individual
well will have on the manifold pressure. For an infinite
number of wells, the manifold pressure will be independent
of the individual well flows and the optimality criterion (4)
holds. The wells can always be made independent of each
other by controlling the manifold pressure instead of the
separator pressure.

In addition, inputs and disturbances are assumed to be
independent of each other in the derivation of the closed-
loop estimator. This is clearly not the case for the input z
and the upstream disturbance pm. Nevertheless, we have
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Fig. 3. Well inflow characteristics for well a
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Fig. 4. Well inflow characteristics for well b

neglected this interaction in order to evaluate each well
individually. We could have used the separator pressure
ps to represent the upstream disturbances. However, when
finding the estimator we would have to consider the whole
well network.

4.2 The closed-loop estimator

The linear static model for each well was approxi-
mated by subjecting the respective well to a 1% positive
change in the manipulated variable u, and disturbances
d. The mGOR was approximated by linear approximation
�m

g/�m
o

from the nominal to the new steady state. The
expected disturbance is assumed to be ±10%, and the
measurement noise is assumed to be ±0.1 bar for pressures
and ±0.01 for valve position.

This gives the following optimal closed-loop estimators for
well a and well b,

Hwell a = (�1.7900 2.0128 0.3735 35.7994) , (27)

Hwell b = (�1.0521 1.1297 0.4626 24.3815) . (28)

For this two-wells case, we have two manipulated variables
and one operational constraint (maximum separator pres-
sure). One of the manipulated variables must control the
pressure, leaving only one free manipulated variable. This
gives three di↵erent control structures:

Open-loop a
well a valve is fixed (za fixed) and well b valve controls
separator pressure ps.

Open-loop b
well b valve is fixed (zb fixed) and well a valve controls
separator pressure ps (Figure 2).

Closed-loop mGOR
one well controls the optimality condition, the other
controls the pressure ps.

In general, for closed-loop mGOR with n wells and n
valves, one manipulated variable would be used to control
pressure. The remaining n � 1 valves would be used to
ensure equal mGOR for all wells.

We compared the di↵erent control structures when sub-
jecting the system to sets of disturbances. Sub-optimality
of a structure is quantified in terms of loss. We define
loss as the di↵erence between oil production with a given
control structure J and the optimal oil-production J?, for
a given disturbance. Mathematically this becomes

loss(d) = J(d)� J?(d). (29)

It is clearly seen from the substantially lower oil-loss that
the closed-loop estimator performs better than the open-
loop strategies for combined disturbances (Table 2).

For individual disturbances, the open-loop policies had
a smaller loss if the disturbance is in the other well. In
some cases they also performed better than the closed-loop
mGOR policy based on (4). This may seem surprising; one
would expect the open-loop strategies to always have worse
performance as there is no correction for disturbances. At
a closer inspection, the worst control strategy is to fix the
valve position on wells that are subjected to disturbances;
For example, fixing the valve on well a when there is
a disturbance down hole in well a. Naturally, the best
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Table 2. Comparison of control strategies with combinations of disturbances
a↵ecting the system.

Disturbance Optimal Open-loop a Open-loop b Closed-loop mGOR

well a: 10% inc. kg
well b: 10% inc. kg

za 0.4872 0.5177 0.4482 0.4778
zb 0.7682 0.7080 0.8505 0.7873

oil-loss — 0.3030 t/d 0.4995 t/d 0.0284 t/d

well a: 10% inc. kg
well b: 1% dec. pr

za 0.4868 0.5177 0.5077 0.5001
zb 0.9063 0.8250 0.8505 0.8703

oil-loss — 0.3112 t/d 0.1426 t/d 0.0582 t/d

well a: 10% inc. kg
5% dec. mmax

g

za 0.4576 0.5177 0.4373 0.4615
zb 0.8018 0.6703 0.8505 0.7927

oil-loss — 1.3579 t/d 0.1554 t/d 0.0057 t/d

well a: 10% inc. kg
well b: 5% inc. kg
5% dec. mmax

g

za 0.4589 0.5177 0.4176 0.4555
zb 0.7582 0.6395 0.8505 0.7656

oil-loss — 1.3009 t/d 0.6467 t/d 0.0045 t/d

Table 3. Comparison of control strategies with di↵erent isolated disturbances
a↵ecting the system.

Disturbance Optimal Open-loop a Open-loop b Closed-loop mGOR

well a: 10% inc. kg
za 0.4846 0.5177 0.4882 0.4913
zb 0.8593 0.7817 0.8505 0.8430

oil-loss — 0.3562 t/d 0.0042 t/d 0.0146 t/d

well b: 10% inc. kg
za 0.5202 0.5177 0.4744 0.5031
zb 0.7604 0.7652 0.8505 0.7931

oil-loss — 0.0018 t/d 0.6033 t/d 0.0835 t/d

well a: 1% dec. pr
za 0.5342 0.5177 0.5366 0.5318
zb 0.8557 0.8916 0.8505 0.8608

oil-loss — 0.0686 t/d 0.0015 t/d 0.0014 t/d

well b: 1% dec. pr
za 0.5199 0.5177 0.5388 0.5272
zb 0.8970 0.9027 0.8505 0.8789

oil-loss — 0.0014 t/d 0.1001 t/d 0.0148 t/d

10% dec. mmax
g

za 0.4597 0.5177 0.4110 0.4565
zb 0.7422 0.6269 0.8505 0.7491

oil-loss — 1.2854 t/d 0.9176 t/d 0.0040 t/d

Table 4. Comparison of closed-loop estimators with reduced number of
measurements.

Disturbance xT = (pwf pwh pm z) xT = (pwh pm z) xT = (pwh z)

well a 10% inc. kg
well b 10% inc. kg

za 0.4778 0.4788 0.4786
zb 0.7873 0.7853 0.7858

oil-loss 0.0284 t/d 0.0227 t/d 0.0241 t/d

well a 10% inc. kg
well b 1% dec. pr

za 0.5001 0.5066 0.5058
zb 0.8703 0.8533 0.8554

oil-loss 0.0582 t/d 0.1282 t/d 0.1183 t/d

well a 10% inc. kg
5% dec. mmax

g

za 0.4615 0.4678 0.4672
zb 0.7927 0.7782 0.7797

oil-loss 0.0057 t/d 0.0391 t/d 0.0344 t/d

well a 10% inc. kg
well b 5% inc. kg
5% dec. mmax

g

za 0.4555 0.4591 0.4585
zb 0.7656 0.7579 0.7591

oil-loss 0.0045 t/d 0.0000 t/d 0.0001 t/d
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solution appears when there is control action on the well
that is subjected to disturbance. The closed-loop strategy
is always close to the optimal solution.

4.3 The e↵ect of number of measurements

We have so far used 4 measurements for each well, see (26).
Because pm is the same for both wells, closed-loop mGOR
uses 7 independent measurements.

To investigate the e↵ect of fewer available measurements,
closed-loop estimators were made for the two following
cases for each well,

x3 =

 
pwh

pm
z

!
and x2 =

✓
pwh

z

◆
. (30)

The resulting closed-loop estimators for three available
measurements for each well (5 measurements overall) are

Hwell a,3 = (0.1949 0.1709 69.7064) ,

Hwell b,3 = (0.2419 0.1230 43.0890) .

In the case of two available measurements for each well
(4 measurements overall), the closed-loop estimator are

Hwell a,2 = (0.2117 70.3486) ,

Hwell b,2 = (0.2719 43.7314) .

The performance of the estimators with a reduced num-
ber of measurements is surprisingly good in some cases
(Table 4). For the three measurement estimator, one of
the disturbance scenarios actually results in zero loss,
outperforming the four measurement estimator. This is
a coincidence due to the particular numerical values, and
shows that one must be careful about drawing conclusions.
Nevertheless, the good result indicates that the method is
still applicable when few measurements are available. How-
ever, if the measurements contain noise, the estimators
using more measurements would most likely have better
performance.

5. CONCLUSION

In this paper, we have used the optimal closed-loop es-
timator to predict the mGOR for di↵erent wells using
pressure and valve-opening measurements. By adjusting
the respective well rates, these mGOR estimates have
been controlled such that they are equal for all wells. We
have shown that this method gives close-to-optimal pro-
duction despite disturbances in GOR, reservoir pressure
and gas handling capacity. One important advantage of
this method is that the estimators can be generated for
each well independently of the other wells in the field. The
method is also well suited for use with simple feedback
controllers, like a PI controller, for e�ciently rejecting
disturbances.
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Appendix A. CASE STUDY MODEL PARAMETERS

Table A.1. Parameters for the case study
model

well a well b

pr bar 300 300
ko t/bar2 6.576⇥ 10�3 5.462⇥ 10�3

kg t/bar4 8.239⇥ 10�7 5.373⇥ 10�7

kw t/bar2 3.344⇥ 10�3 1.031⇥ 10�2

h m 1000 1000
T K 373 373
Mg kg/kmol 16.04 16.04
⇢o kg/m3 800 800
⇢w kg/m3 1000 1000
R J/(kmolK) 8314 8314

Cd (kg/mbar d2)0.5 84600 84600
A m2 5.66⇥ 10�4 5.66⇥ 10�4

riser model

h m 1500
Cd (kg/mbar d2)0.5 84600
A m2 0.0011
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