
A Methodology for Autonomous

Robotic Manipulation of Valves

Using Visual Sensing ?

Rafael O. Faria ∗, Florentin Kucharczak ∗∗

Gustavo M. Freitas ∗, Antonio C. Leite ∗

Fernando Lizarralde ∗, Mauricio Galassi ∗∗∗, P̊al J. From ∗∗∗∗

∗ Department of Electrical Engineering, COPPE
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
(e-mail: rafael.o.faria@gmail.com, fernando@coep.ufrj.br)

∗∗ Department of Control, Vision and Robotics,
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Abstract: This work presents a methodology for autonomous manipulation of valves using a
dual-arm robot and the visual sensing provided by cameras mounted on the head and each robot
arm. A novel image-based identification and pose estimation method is devised to determine
the valve to be manipulated as well as to estimate its position and orientation with respect to
the robot base. The valve pose is used in the positioning and alignment of the robot end effector
enabling the manipulation task to be carried out autonomously. Experimental results, obtained
with a BaxterTM robot performing valve turning tasks, illustrate the feasibility of the proposed
methodology. The main objective of this work is to provide capabilities to develop new solutions
and innovative technologies to deal with the challenge of manipulating valves autonomously in
poorly structured and harsh environments.
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1. INTRODUCTION

Offshore Oil & Gas industry is becoming increasingly de-
pendent on efficient and low-cost solutions to justify the
high investments associated with extracting oil in remote
areas, in particular from wells with high exploration and
operation costs. In addition, the oil companies consider the
improvement of Health, Safety, and Environment (HSE)
as a top priority in all their operations. Robotic solu-
tions possess advantages for solving most of the above-
mentioned problems and are regarded a promising technol-
ogy for making offshore platforms safer and more efficient.
A natural consequence of these automated solutions is the
reduction of human operators in unhealthy areas, which
represents a significant improvement in HSE conditions
on offshore platforms. In this context, robots can replace
humans in tasks performed in unhealthy, hazardous, and
confined areas. Several studies also point out the potential
increase in efficiency and productivity with robot opera-
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tors, as robots can work around the clock and perform a
number of operations with higher accuracy and repeata-
bility than humans (From, 2010). For example, Anisi et al.
(2010) considers the use of robots in Oil & Gas facilities in
operations that require both high precision and strength,
regardless of weather conditions, using industrial robots.

Several research groups have developed mobile robots
with different levels of autonomy for offshore automation.
Fraunhofer IPA has for instance proposed a mobile robot
for simple offshore inspection and maintenance tasks. One
example is MIMROex (Bengel et al., 2009), which is capa-
ble of navigating safely in a cluttered environment, build-
ing maps, and executing inspection tasks autonomously.
Another robot developed for offshore environments is Sens-
abot (NREC/CMU, 2012), capable of safely inspecting
and monitoring hazardous and remote production facil-
ities. The robot can sustain high temperatures, is able
to reach areas with difficult access, and is certified to
operate in explosive and toxic environments. SINTEF-ICT
is another research group that is interested in applying
robotic systems to the Oil & Gas industry, particularly
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in the topside of offshore platforms. Two industrial robot
manipulators, mounted on a gantry crane and fixed on
the floor, have been used to perform inspection and main-
tenance operations in a laboratory production process
(Kyrkjebø et al., 2009). DORIS is an offshore inspection
and monitoring robot being developed by COPPE/UFRJ
in collaboration with Petrobras and Statoil. The robot
moves on a rail carrying different sensors, analyzing sensor
data in loco or storing it for future analysis. The sensors
can identify abnormalities such as intruders in restricted
areas, abandoned objects, smoke, fire, as well as liquid and
gas leakages (Carvalho et al., 2013).

In the specific case of valve manipulation using robots,
several studies have been developed since the early works
(Trivedi et al., 1989; Abidi et al., 1991; Aspes et al.,
1993). Underwater manipulation of valves is discussed in
Palomeras et al. (2014), while Yoon et al. (2005) derive the
motion process of the valve turning task from a teleopera-
tion procedure. In Ahmadzadeh et al. (2013), a hierarchical
autonomous valve-turning scheme for underwater robotics
is developed and tested in a laboratory setup. An imitation
learning approach is used to learn the reaching phase,
while a hybrid force/motion controller is used for the
turning phase (Ahmadzadeh et al., 2014).

Humanoid robots have also gained much attention in re-
cent years and have been applied to valve operation. One of
the tasks to be solved for the DARPA Robotics Challenge
is to close three valves of different size and type using a
humanoid robot (Alunni et al., 2014; Dellin et al., 2014;
Hebert et al., 2014). Furthermore, Ajoudani et al. (2014)
study the use of an intrinsically compliant humanoid robot
for valve manipulation. The use of robot manipulators
for offshore automation is still in its infancy and most
projects focus on monitoring the offshore facilities rather
than performing active intervention on the platforms.

In this paper, we present a methodology that uses a dual-
arm robot for active manipulation of control valves. The
robotic system is able to identify what valves to operate in
a cluttered environment, estimate the pose of the selected
valve and turn its wheel. Our approach only requires the
user to remotely choose the target valve being able to
operate it autonomously. We consider this work as our first
step towards developing a complex autonomous robotic
system for offshore automation.

2. PROBLEM FORMULATION

Consider the problem of autonomous robot-based ma-
nipulation of valves disposed with uncertain positions
and orientations. Consider further that common industrial
valves are used, with markers attached in their wheels.
We propose to use point-light markers (e.g., LEDs), since
these present less sensitivity to ambient light variations
compared to ordinary markers. Although our methodology
could also use other types of markers such as infrared or
RFID (radio frequency identification) tags, which would
require additional equipment, the purpose of this work is
to focus on using the robot embedded sensors.

The markers are used to determine what valve has to
be operated, named the target valve, and to estimate
the location and orientation of the valves in the robot

Fig. 1. Dual-arm robot and the valve system.

workspace. Here, the following assumptions are adopted:
(A1) only one set of markers corresponding to the same
valve is alight; (A2) there is no valve positioned in front
of the other. In addition, we consider that the robot has
neither prior knowledge of the valves pose, nor what valve
should be operated. All decision-making and control are
computed in real time based on the images captured by
the cameras.

The robotic system discussed in this paper is a dual-arm
robot equipped with a head camera in addition to eye-
in-hand cameras on each manipulator. The head camera
captures the whole workspace, which it uses to detect a
set of LEDs identifying the target valve and estimating its
position and orientation. The robotic system then chooses
which robot arm to use for the operation, and approaches
the selected arm to the valve. We use the camera attached
to the wrist to position the end effector near the valve and
to plan the manipulation task. Finally, the robot rotates
the target valve and returns to the initial state waiting
for a new target valve to manipulate. Fig. 1 shows the
BaxterTM robot, the coordinate systems and the valves
in order to illustrate the problem formulation.

3. IMAGE-BASED POSE ESTIMATION SYSTEM

In this section, we present the image processing and pose
estimation algorithms that integrate the image-based iden-
tification and pose estimation system. These algorithms
will be used to (i) determine which valve has to be manip-
ulated and to (ii) determine the position and orientation
of the valve, estimating the normal vector of the plane
formed by the attached LEDs.

3.1 Image Processing Algorithm

An important part of every visual-based identification and
estimation system is the precise and efficient determina-
tion of the image features. According to Gao et al. (2003),
at least three image features can be used to solve the
Perspective-n-Point (PnP) problem. In our work, for the
sake of simplicity we use four common LEDs as visual
markers attached to the valve wheel (see Fig. 2). Indeed,
considering four point-light markers the PnP problem be-
comes less complex to solve due to the redundancy of
visual information (Oberkampf et al., 1996).
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Fig. 2. Valve prototype and the attached LEDs.

Several techniques for the detection of light sources can be
found in literature (Bouganis and Brookes, 2004; Lopez-
Moreno et al., 2013). However, for the case of bright
blob detection, the proposed methodologies are based on
relative detection of the maximum brightness. In fact,
the tracked features are determined in function of the
maximum value of the image brightness. This assumption
can not be considered for LEDs detection since the image-
based algorithm must be robust to the existence of any
other light sources, considering reflections as well. The
great advantage of this methodology is the possibility of
obtaining a really reliable binary output in the presence
(or not) of the four markers in the current image frame,
regardless of the scenario. The methodology developed to
perform the LEDs detection is composed of four main
steps, described in the following:

Step 1 - CIE LUV conversion: After setting the intrinsic
parameters of the camera, each image frame recorded is
converted from the traditional RGB color space to the
CIE LUV color space (Trezona, 2001) as seen in Fig. 3(a).
The key idea is to extract the LEDs features from the
image background. It is worth mentioning that among
the color representations tested, each one with different
purposes, CIE LUV presents the best performance in
terms of features dissociation. Indeed, the great benefit of
this color space conversion is an increase of the background
attenuation and edge enhancement ratio for the LEDs;

Step 2 - Selection of Lightness Channel: The third channel
of the LUV image is a gray scale representation of the
gamma-corrected brightness component of the color. In
this step, we create a new image, as seen in Fig. 3(b),
using only the “V” channel as our main interest is to keep,
extract and enhance the LEDs edges;

Step 3 - Canny Filtering: From Fig. 3(b), we can see that
the variations in the light halo are much more important
than the light itself. In this step, the objective is to remove
all visual information from the image that does not belong
to the LEDs contour, using the well-known Canny filter
(Canny, 1986). This image processing filter is composed
of different steps as well. The first one is the application
of a 2D Gaussian filter in order to attenuate noise. The
second step aims to find the intensity gradient of the
image, applying a pair of vertical and horizontal gradient
convolution masks. Then, the intensity and direction of
the 2D gradient is calculated. The last step consists
in determining whether a pixel belongs to the contour,
performing a non-maximum suppression and hysteresis
thresholding method. The lower and upper values of the
gray scale thresholds are chosen as µ1 = 100 pixel and
µ2 = 200 pixel respectively, in order to obtain a robust
contour detection;

(a) (b) (c) (d)

Fig. 3. The steps of LEDs detection methodology: (a) CIE
LUV conversion; (b) V channel selection; (c) Canny
filtering; (d) Contour selection.

(a) (b)

Fig. 4. Normal vector representation of the valve wheel:
(a) Image frame Fv; (b) Camera frame Fc.

Step 4 - Contour Selection: In order to find the centroid
coordinates for each LED in the image, a range of feasible
radius and minimum values for the solidity condition were
defined. The solidity condition is defined as the ratio of
contour area to its convex hull area, where a value close
to unity implies in a circular edge. However, in general,
the detection algorithm finds more than one contour
representing the same LED which generates a number of
candidate centroid coordinates. To overcome this multiple
solutions problem, we propose to calculate the mean value
of the coordinates for all centroids of the same LED in
order to determine only one centroid for each.

Since the valves are fixed on the panels with different
poses, it is necessary to obtain some extra information
about the relative pose between the robot end effector
and the lighted valve. The Baxter robot is equipped with
a monocular video camera in both hands, and, thus,
the visual-based estimation problem consists in using the
relationship between 3D points of the real scenario and
its 2D projections in the image frame Fv to calculate
the valve pose in the camera frame Fc (PnP problem).
In the presented solution, an iterative pose estimation is
performed using coplanar feature points (Oberkampf et al.,
1996) represented by the valve markers. Then, from the
corners coordinates of the square formed by the LEDs and
their correspondent 2D projections in the image frame Fv,
it is possible to estimate the valve pose (Fig. 4).

3.2 Pose Estimation Algorithm

In this section, we present the pose estimation algorithm
used to calculate the normal vector to the plane formed
by the LEDs, in order to obtain the valve pose. The
pose estimation algorithm provides the distance from the
camera center to the object center in the image plane, as
well as the normal vector η, which indicates the direction
where the valve plane is pointing to, with respect to
the camera frame Fc, as shown in Fig. 4. The normal
vector also indicates the final direction which the robot
end effector should be pointing to, and it will be used to
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Fig. 5. Calculation of the roll angle for the end effector.

Fig. 6. Six-step sequence of operation.

generate the desired orientation for the robot end effector.
Let α be the pitch angle, that is, the angle between
the normal vector η and the horizontal plane (xc-zc). In
addition, let β be the yaw angle, that is, the angle between
the normal vector η and the vertical plane (yc-zc).

The angle α can be obtained from the inner product
between the unitary vectors ηyz and yc as:

α = arccos(ηyz · yc)− π/2 , (1)

where ηyz is the projection of vector η into vertical plane
(yc-zc). Similarly, the angle β can be obtained from the
inner product between the unitary vectors ηxz and xc as:

β = arccos(ηxz · xc)− π/2 , (2)

where ηxz is the projection of vector η into the horizontal
plane (xc-zc). The roll angle φ is defined as the angle which
the robot end effector has to turn in order to position the
gripper inside the valve wheel so that it is far from the
valves spokes or bars. From Fig. 5, we define γ as the
angle between the horizontal line and the LED closest to
this line. Then, it is possible to compute the angle φ as:

φ =

{
π/4− γ , γ ≤ π/2 ,
π − (π/4 + γ) , γ > π/2 .

(3)

It is worth mentioning that it is enough to rotate only the
last joint of the arm by the angle γ to avoid the collision
with the valve spokes.

4. OPERATING PROCEDURE

In this section, we develop a sequence of operations, using
the modular functionality of each step as a guideline
(Fig. 6). It is assumed that the robot does not know which
valve it has to operate. So, the first step in the algorithm
is to use the head camera to search if there is any valve
lighted up and, if so, obtain the approximate position of
it (Head Search step).

The search starts moving the head camera by an angle θ
on a range from π to −π (Fig. 7). From Fig. 8, the two
blue stripes mark the region of interest R, defined near
the centre of the image, and the four red dots indicate the
position of the detected LEDs. If four LEDs are detected
and they are within the regionR, the robot stops searching
at that point and saves the angle θ. In case the head
reaches the angle π without detecting any LEDs, the
search continues while it returns to the initial position.

Fig. 7. Coordinate system of the robot head.

Fig. 8. Head camera view during the Head Search step.

θ

xb
base

θ

valve

zc

xc

yb

head

xh
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camera
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Fig. 9. Alignment between the camera and robot frames.

This step will continue until the operator finally turns on
the LEDs and the robot detects it.

Now, depending on the value of angle θ, the robotic system
will place one of the arms in a suitable position (looking
position), so that the hand camera can visualize the panel
which has the lighted up valve (Arm Search step). The
looking position pl depends on the angle θ and can be
defined as pl = [ r sin(θ) r cos(θ) zl ]T, where r ∈ R is
the actuation radius (see Fig. 9) and zl∈R is defined ad-
hoc. If θ≥0 the left arm is chosen; otherwise, if θ<0 the
right arm is selected. From that point, we can activate the
hand camera of the selected arm and use the image-based
algorithm from Section 3. We choose to keep the camera
always aligned with the yr-zr plane, so that the visual
estimation of the normal vector can be simplified (Fig. 9).
Note that, the camera is kept aligned with the robot yb-
zb plane and this assumption avoids image distortions
during the visual estimation. The algorithm will return
the orientation of the valve as well as the distance between
the valve center and the camera center, with respect to the
camera frame Fc.

According to our experiments, in order to obtain a better
visual estimation it is recommended to approximate the
camera to the valve and centralize them, before doing the
final estimation (Zoom & Centralization step). So, we use
the first estimation to position the arm close enough to the
valve, keeping a certain distance d ∈ R, which is neither
too close nor too far away from it. We also found out that
the estimation of the coordinate zc is precise enough, but
the estimation of coordinates xc and yc are not. So, in
order to minimize the positioning errors, we proposed to
centralize the valve and the images centers. The alignment
is performed using the kinematic control scheme described
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Fig. 10. Correction of end-effector position.

in the Section 5.2. We use the rotation matrix, denoted
by Rbc∈SO(3)1, to transform the coordinates of the error
vector in the camera frame Fc into the coordinates of
the same vector in the base frame Fb according to the
composition of rotation matrices given by Rbc = RbeRec

where Rec =Rz(−π/2) is the rotation matrix of the camera
frame Fc with respect to the end-effector frame Fe, and
Rbe is the rotation matrix of the end-effector frame Fe

with respect to the robot base frame Fb, to be defined.

Once the hand camera is closer and aligned, the pose of the
valve is estimated again in order to obtain a more precise
result (Pose Estimation step). The estimation needs to
be precise, since it will be used to determine the relative
pose between the end effector and the valve. So, we
implemented a digital filter to the estimated output data,
that is, roll, pitch and yaw angles and the position vector.
The filter first eliminates eventually undesired measures,
such as, the values of pitch and yaw angles greater in
module than 1.3 rad. Then, the filter takes the mean of
all estimated values and it also eliminates estimations that
are two standard deviation above this mean.

Using the filtered estimation, the arm is placed in front
of the valve and the end effector is aligned at the normal
direction to the valve plane. However, since any change
in the end-effector orientation will result in misalignment
with respect to the valve center, it is necessary to calculate
the updated position of the end effector by the following
correction equations:

zd = d tan(α) , yd = d tan(β) , (4)

where zd∈R is the height that the end effector should go
down/up and yd ∈ R is the lateral distance that the end
effector should go left/right in order to be normal to the
valve plane (Fig. 10).

Another important concern is that we obtained the mea-
sures with respect to the camera frame Fc, but the end-
effector center is located in a different point. So, we first
correct this offset and use the zd and yd values from the
correction equations. Let p0 ∈ R3 be the robot position
which is zoomed and centralized to the valve. The final
pose of the robot end effector is given by:

pbe = p0 + [ 0 dy+yd dz+zd ]T , (5)

Rbe = Ry(π/2) Rx(β) Ry(α) Rz(φ) , (6)

where pbe ∈R3 and Rbe ∈ SO(3) denote the position and
orientation of the end effector with respect to the robot
base; Rx, Ry and Rz are elementary rotation matrices
around x, y, and z axes, respectively; dy = 0.034 m and
dz = −0.026 m are the offset between the camera and
the end-effector frames. The above equations comprise the
Alignment & Corrections step.

1 The term SO(3) denotes the special orthogonal group or the
rotation group for the three-dimensional space.

Finally, we use the kinematic control scheme to move
the end effector to the desired pose and, after that, we
define a straight line as the new reference which the
robot arm has to follow (Approximation & Manipulation

step). The distance to travel is defined as dt =
√
z2d + y2d

minus a small security value, to ensure that the end
effector will not touch the valve. Once this movement is
finished, the gripper is inside the valve and the robotic
system only rotates the last joint of the arm to perform
the manipulation. After that, the robot arm follows the
same straight line in the opposite direction. To conclude
the manipulation task, the arm returns to the Looking
position.

It is still necessary to determine what to do after the first
manipulation. In order to increase the autonomy of the
robotic system, we decided to wait a period of time Twait

for the last activated camera continues to look for some
valve at the same panel. If during this period a valve of
this panel is lighted up, the algorithm jumps to Arm Search
step. However, if the time Twait is over, the Head Search
step is activated again and the head camera starts to find
any lightened valve, as already described.

In the case of occlusion of one or more LEDs, the visual
estimation algorithm continues in the Arm Search step
until finding the adequate number of visual markers. If
the detection is not succeeded during a given period of
time, the current step stops and the algorithm returns to
the Head Search operation.

5. EXPERIMENTAL SETUP AND RESULTS

In this section, we present the experimental evaluation of
the proposed methodology2 . We first briefly describe the
equipment and the experimental setup used to perform the
tests of autonomous valve manipulation. Next, we present
practical results to illustrate the feasibility of our proposal.

5.1 Experimental setup

The robotic system is composed by a BaxterTM Robot
(Rethink Robotics) with 7-DoF per arm for maximum
flexibility and range, where each arm is endowed by
an interchangeable end effector and a video camera for
recognizing objects, parts and workspace (Guizzo and
Ackerman, 2012). Baxter also has a 360 degrees sonar
array and a front camera mounted in its head for human
presence detection. Each arm has torque, velocity and
position sensing in each joint. Other integrated sensors are
3-axis accelerometers and infrared range finders in each
wrist, however these were not used to perform the valve
manipulation task.

In the experiments, we have used a Baxter Research
Robot. The main difference compared to the industrial
model is related to the software. The research model is able
to perform tasks according to the algorithms developed
with the open-source Robot Operating System (ROS)
platform (Quigley et al., 2009). Based on the manufacturer
Unified Robot Description Format (URDF) model, we
have created a simplified representation of the robot arm

2 The experiments can be viewed in the accompanying video clip in:
https://www.youtube.com/embed/szRbhB58YMY?rel=0
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Fig. 11. Links and joints representation for the Baxter arm.

(Fig. 11), where the links lengths Li are expressed in
meters and the robot joints Ji are of revolution type.
From this model, we can obtain the standard parameters
of the Denavit-Hartenberg convention for the robot arm
(Siciliano et al., 2010).

The operating environment has two task panels, each one
supporting a set of four valves ad hoc adapted with four
attached LEDs to carry out proof-of-concept experiments.
The valves are located in the robot workspace and installed
in different positions and orientations, requiring different
capabilities from the robotic system. In order to simplify
the manipulation task, the valves have been modified. Due
to the torque limitations of the Baxter joints, the wheels
are not rigidly connected to the valves stems, being able to
rotate freely. Another adaptation was to couple four LEDs
in each wheel, which helps the robot to identify the target
valve and estimates its position and orientation.

The precision of the valve manipulation task depends on
the robot positional accuracy, which is about 5 mm for
the whole workspace, according to the manufacturer. In
order to succeed in the experiments, the 12 mm thick end-
effector fingers have to go inside the valve wheel (55 mm
of radius). If we consider the end effector correctly aligned
to the valve centre, the maximum acceptable positioning
error due to visual estimation inaccuracy is about half of
the valve radius, that is, 27.5 mm.

As previously mentioned, there are three cameras available
locally on the robot. A single camera is located in either of
Baxter’s hands, on the left and right, and a third camera
is positioned on Baxter’s head. In the experiments, the
head camera was used to locate the valve highlighted by
the LEDs, whereas the cameras mounted in the eye-in-
hand configuration were used to identify the normal vector
to the plane formed by the LEDs, during the alignment,
positioning, and approaching phases.

Due to limited bandwidth capabilities of the Baxter visual
system only two cameras can be used simultaneously and
it is not straightforward to interchange among the three
built-in cameras in real time. Thus, for the experiments,
we selected the two hand cameras and replaced the head
camera by a Logitech HD Webcam C270, directly con-
nected to the computer by a USB port. Default behavior
on Baxter startup is for both of the hand cameras operate
at a resolution of 320 × 200 pixels at a frame rate of
25 fps. In the experiments, we used the resolution of
1280×800 pixels at a frame rate of 20 fps for all cameras.
Finally, before running the image processing routine, we
have to determine the image distortion coefficients (radial
and tangential) k, as well as the focal length f , the prin-
cipal point coordinates cx, cy and the skew coefficient αs,

using a conventional calibration method provided by the
OpenCV library. The calibrated camera parameters are:
fαs =402.3 pixel, cx =669.6 pixel, cy =404.3 pixel.

5.2 Robotic manipulator control

In this section, we consider the pose regulation problem
for the Baxter robot. A control scheme based on the
inverse kinematics algorithm with Jacobian pseudo-inverse
is used. Let pd ∈ R3 and Rbd ∈ SO(3) be the desired
(constant) position and orientation. Let p ∈ R3 and R ∈
SO(3) be the current end-effector position and orientation.
The arm pose is obtained from the forward kinematics map
expressed in terms of the manipulator joint angles q∈Rn.

We adopt a non-singular representation for the current
orientation Rbe and the desired orientation Rbd given by
the correspondent unit quaternions Q = [Qs QT

v ]T ∈ H
and Qd = [Qsd QT

vd ]T ∈ H, respectively. Notice that,
Qs,Qsd ∈ R are the scalar parts and Qv,Qvd ∈ R3 are
the vector parts of the quaternions3 . The position and
orientation errors of the end effector, given by ep∈R3 and
eo ∈ R3, can be computed using the following equations
(Siciliano et al., 2010):

ep = pd − p , (7)

eo = ∆Qv = QsQvd −QsdQv − S(Qvd)Qv , (8)

where S is the skew symmetric operator and eo is the
vector component of the quaternion error.

The control objective is defined as:

p→ pd ∴ ep = [ 0 0 0 ]
T
, (9)

Qv → Qvd ∴ eo = [ 0 0 0 ]
T
. (10)

A control law u ∈ Rn which drives the pose error e ∈ R6

asymptotically to zero is given by:

u = J∗
[
Kp 0
0 Ko

]
︸ ︷︷ ︸

K

[
ep
eo

]
︸︷︷︸

e

, (11)

where the position and orientation gain matrices are given
by Kp = kp I3 and Ko = ko I3 respectively, where kp and
ko are scalar gains. To overcome the singularities problem
in the Jacobian matrix J , a damped least-squares (DLS)
pseudo inverse is used:

J∗ = JT
(
J JT + λ2 I6

)−1
, (12)

where λ∈R is the damping factor which is properly chosen,
since a fixed value for λ could prevent the end effector to
reach the desired pose. The scalar λ can be defined in
terms of the manipulability measure w(q) =

√
det (J JT)

as λ = ‖e‖/w(q) .

Since the Baxter arm is redundant, we can exploit the
redundance of the Jacobian using optimal control to mini-
mize a functional (Siciliano et al., 2010). The Baxter arm
has tight joint limits, thus we can use the arm redundancy
considering a secondary objective functional:

µ = −
(

1

n

) n∑
1

(qi − q̄i)
(qiM − qim)2

, (13)

where qi is the current i-th joint angle, qiM is the maximum
limit of the i-th joint angle, qim is the minimum limit
3 The symbol H denotes the unit quaternion group satisfying the
algebra of quaternion (Siciliano et al., 2010).
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Fig. 12. Errors signals: (a) position ep; (b) orientation eo.

and q̄i is the middle value of i-th joint range. The second
component of the control law, denoted by uopt, is given by:

uopt = ( I7 − J∗J ) kj µ , (14)

where kj is a constant gain. Thus, based on the kinematic
control approach, the joint velocity control signal q̇ ∈Rn

can be obtained as:

q̇ = u+ uopt = J∗K e+ ( I7 − J∗J ) kj µ , (15)

where K=diag{Kp,Ko} is the pose gain matrix.

5.3 Practical results

In the experimental tests, the Baxter robot has to visually
identify the valve of interest, lighted by the LEDs, and turn
the valve wheel clockwise or counter-clockwise, according
to the priority sequence assigned by the operator. As
described in the Operating Procedure section, the valve
manipulation task is composed of 6 steps (Fig. 6).

We collected data during the experiment under the kine-
matic control focusing on the alignment and correction
step, since this phase requires the continuous change of
both position and orientation of the robot end effector.
The control algorithm is implemented in Python and the
control loop of the program runs on a computer at sam-
pling time of 20 ms on a 3.4 GHz Intel i7-3770 processor
with 4 Gb RAM. We connect the PC to Baxter over LAN
using a Linux workstation running ROS and the Baxter
SDK, an Open-source Software Development Kit. The
control parameters were: kp = 0.8 s−1, ko = 0.7 rad s−1,
and kj =20.

Fig. 12(a) and (b) illustrate the position and orientation
errors of the robot end effector, denoted respectively by
ep and eo, during the experiment. The time history of the
joint control signals u and uopt is presented in Fig. 13(a)
and (b) respectively. As can be observed, the position and
orientation errors convergence asymptotically to zero, and
the joint velocity control signals vanish.

It is worth mentioning that exhaustive experiments were
conducted to demonstrate the performance of the pose
control scheme for the robot end effector. To evaluate
the performance of the visual estimation algorithm 20
additional tests were carried out, where the Baxter robot
had to manipulate the valves located at different positions
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Fig. 13. Joint control signals: (a) u; (b) uopt.
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Fig. 14. Estimation errors: (a) valve position; (b) valve
orientation.

and orientations. The estimation errors are presented in
Fig. 14(a) and (b), where it is possible to observe the
small magnitude of the valve position and orientation
errors. Satisfactory results were achieved and about 95% of
the test were properly performed. The manipulation has
failed at Test 18 due to the combination of high values
of the pitch, yaw and distance errors. The main reason
of this erroneous manipulation comes from the imprecise
spacing of the LEDs located at the valve wheels. Thus,
the improvement of the robustness and accuracy of the
visual estimation algorithm, with respect to positioning
uncertainties of the point-light markers, could leverage the
experimental results.

6. CONCLUDING REMARKS AND PERSPECTIVES

In this paper, we present a methodology for autonomous
manipulation of control valves by using a dual-arm robot
and the visual information provided by two video cameras
mounted in each arm in the eye-in-hand configuration.
The control scheme for positioning the robot end effector
and regulation of its orientation is based on the inverse
kinematics algorithm, which uses the pseudo-inverse of
the Jacobian matrix and an additional term of projection
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to avoid the mechanical joint limits. The visual detection
system is designed in terms of an image-based identifica-
tion and estimation algorithm, which visually identifies the
valve to be manipulated looking for a set of lighted LEDs
attached to the valve wheel and estimates the normal
vector to the plane formed by the LEDs.

Experimental tests, performed with a BaxterTMRobot and
a simplified valves system developed ad-hoc for proof-of-
concept purpose, were presented to illustrate the feasibility
of the proposed scheme. Furthermore, it is noteworthy to
mention that the proposed methodology could be extended
for application in Oil & Gas production systems provided
that the simplifying assumptions can be changed. First, we
considered that all valves to be manipulated were located
within the robot workspace, but in a real scenario the
robot should be mounted on the top of a mobile vehicle or
rail to increase its dexterity and reach. In the experimental
tests we only consider valves with the same type of manual
handwheel (mass and dimension), but the key idea is to
develop a library of wheels based on the most common
models of control valves available on an offshore plant.
In this context, to manipulate any sort of control valves,
with different sizes, we have to use a robot arm with higher
torque capacity and force feedback.

Future works following the ideas developed here are:
(i) implementing an obstacle avoidance and detection
algorithm enabling the robot to operate in unstructured
environments; (ii) considering the presence of uncertainty
in the robot kinematic and dynamic parameters, which is a
more realistic assumption from the practical point of view,
particularly when the robot end effector grasps different
objects to use as a tool; (iii) extending the proposed
approach to consider different types and sizes of valves
commonly found in refineries and Oil & Gas platforms;
(iv) utilizing faster and more accurate image processing
techniques to reduce the execution time of the LEDs
detection algorithm; (v) developing new experiments with
IR cameras and sensors to increase the robustness of the
robotic system to image disturbances caused by the usual
presence of smoke and steam in the working environment.
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