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Abstract: Oilfield development involves several key decisions, including the number, type,
location, drilling schedule, and operating controls of the wells. If optimized independently, i.e.,
without considering the coupling between the decision variables, only suboptimal solutions are
obtained. A generalized oilfield development optimization approach is proposed to simultane-
ously optimize these decision variables. It is shown that the source/sink term in the governing
multiphase flow equations includes all the decision variables for optimization. By incorporating
the drilling cost in the net present value objective function, the proposed formulation transforms
the problem into a sparsity-promoting optimization, which is efficiently solved using sparse
reconstruction algorithms. Numerical experiments are presented to show the performance of
the method for simultaneous optimization of the number, location, type (injection/production),
control trajectories, and drilling schedule of the wells.

Keywords: generalized field development optimization, well placement, production
optimization, sparse reconstruction.

1. INTRODUCTION
Several methods have been proposed for solving field de-
velopment optimization problems. The majority of the ex-
isting algorithms consider separate optimization problems
for each individual decision variable without accounting for
the interplay between these variables. Examples of these
approaches are well placement optimization to identify the
optimal well locations given predetermined and fixed well
controls (Bangerth et al., 2006; Zandvliet et al., 2008), and
well control optimization in which the operational settings
of the wells (rates and pressures) are optimized for a fixed
well configuration (Brouwer, 2004). Recent studies in the
literature have attempted to include multiple variables
in the field development optimization problem. As an
initial step towards such integrative solution approaches,
Li and Jafarpour (2012) proposed a sequential scheme for
solving the joint well placement and control optimization
problem. Li et al. (2013) applied a generalized version of
the SPSA algorithm (Spall, 1992; Spall et al., 2006) to
simultaneously optimize well locations and controls and
reported significant improvement in production perfor-
mance. Other methods have also been proposed to solve
joint field development optimization problems (Forouzan-
far and Reynolds, 2013; Humphries et al., 2013; Isebor
et al., 2013). Both gradient-based local search methods and
gradient-free global search algorithms have been applied to
field development optimization problems. Gradient-based
methods are computationally efficient and monotonically
improve the objective function. However, they easily get
trapped in local solutions and are sensitive to initializa-
tion. Global search methods, on the other hand, do not
need gradient information, but are computationally more
demanding and can be prohibitive for large-scale problems.

We propose a novel approach for formulating and solving
generalized field development optimization problems by
exploiting the inherently sparse nature of the vector of
decision variables in field development optimization. We

show that the decision variables are collectively captured
by the source/sink term of the discretized governing flow
equations, which are sparse since only a very small number
(often far less than 1%) of grid cells in the model con-
tain source/sink terms. By including the cost of drilling
in the net present value (NPV) objective function, the
problem is posed as a sparsity-promoting optimization. We
adopt algorithmic developments in sparse reconstruction
and compressive sensing (Donoho, 2006; Baraniuk, 2007;
Candès and Wakin, 2008) to solve the resulting optimiza-
tion problem.

2. PROBLEM STATEMENT
We motivate the problem formulation by presenting the
governing equations of the subsurface flow from a systems
view (Jansen, 2013). For a two-phase (oil-water) incom-
pressible flow system, after ignoring capillary pressure,
the governing equations for phase n (n=oil,water) can be
expressed as (Jansen, 2013)
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Note that, from physical saturation constraint, we have
Sw + So = 1. The finite difference discretized version of
the equations can be written as
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where, the discretized transmissibilities are defined as
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The matrix form of the resulting discretized equations (for
water and oil, n = w, o) can be expressed as[
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In (4) the saturation and pressure variables in all cells are
denoted by the vectors p and s. Vectors qw and qo in the
source/sink term of Equation (4) denote, respectively, the
flow rates of water and oil phases in all the cells with their
entries arranged in the following format

qTw , [ · · · (qw)i,j · · · ],qTo , [ · · · (qo)i,j · · · ] (5)

From Equation (5), the entries of the source/sink vector
are zero for cells that do not contain a well. Hence, the
source/sink vectors in Equation (4) contain the infor-
mation about well locations, types, and control settings.
Therefore, these vectors constitute the decision variables
of the generalized field development optimization problem
as discussed below. Since in a large oilfield only a small
number of grid blocks are intersected by wells, the vast ma-
jority of entries in the source/sink vector (qT = [qTw qTo ])
are 0s; that is, q is sparse. This interpretation highlights
the similarity between the field development optimization
problem and sparse reconstruction problem, where sparse
solution to an optimization problem is sought. The optimal
solution of the source/sink vector should minimize the
number of wells while maximizing the production or NPV.
Solution sparsity is promoted by the drilling cost. Note
that, the entries in the source/sink vector ([qTw qTo ]T )
in Equation (4) are expressed for a single timestep. In
order to incorporate dynamic well controls, we expand
the source/sink vector into a source/sink matrix Q as
follows (note that, we use a matrix form to facilitate the
discussion, but for optimization purpose this matrix is
vectorized)

Q =


qt11 qt21 · · · qtT1
qt12 qt22 · · · qtT2
...

...
. . .

...

qt1N qt2N · · · q
tT
N

 (6)

The rows of Q correspond to the indices of all grid blocks
(that can contain wells) and its columns consist of well
control trajectories (in time). In (6), T denotes the total
number of control steps and N denotes the total number
of grid blocks in the discretized domain. In the current

matrix representation, the entry q
tj
i indicates the fluid flow

rate of the well located in grid block i at control time step
tj . The well type is determined by the sign of each entry
in Q, by convention, injector (+) and producer (−). It is
important to note that the sparse nature of the solution
does not depend on the type of well controls used (rates or
bottom-hole pressure). While we have used rate-controlled
injection and production wells, the formulation can be
generalized to the case where a mixture of BHP-controlled
and rate-controlled wells are used.

A sparsity constraint can be applied to the rows of Q
in (6) to minimize the number of wells to drill. On the

other hand, since the columns of Q consist of control
trajectories, there’s no need to promote sparsity along
the columns. Other constraints may be imposed along
the columns of Q to impart a desirable behavior. Such
constraints may be enforced through minimization of some
norms (Bach et al., 2012). This formulation of the gen-
eralized field development focuses on finding Q with a
sparse structure along its rows and a non-sparse structure
along its columns. Note that Q contains all the decision
variables for field development, including the number, lo-
cation, type, and drilling schedule of the wells. The main
challenge after formulating such an optimization problem
is solving it with an efficient and reliable algorithm.

The multivariate optimization problem for generalized
field development can now be expressed as

Q∗ = arg min
Q∈[0,1]N×T

J(Q)

subject to Q ∈ ΘQ

gi(Q) = 0 , i = 1, 2, · · · , n

fj(Q) ≤ 0 , j = 1, 2, · · · ,m

(7)

The dimension of this problem is N×T where ΘQ denotes
the feasible set for the N × T dimensional matrix Q. The
general problem can be formulated by incorporating equal-
ity, gi(.), and inequality, fj(.), constraints. Example of
equality and inequality constraints are mass balance equa-
tions and economic water-cut constraints, respectively.

2.1 Objective Function

In this study, NPV is used as the production performance
metric for optimization. It incorporates the cost of drilling
wells, operating costs (water injection, recycling, and dis-
posal), as well as the revenue from produced hydrocarbon,
and is formulated as

NPV =

T∫
0


Nprod∑
i=1

ro(t) qo,i(t)︸ ︷︷ ︸
oil revenue

−
Nprod∑
i=1

rw,disp(t) qw,disp,i(t)︸ ︷︷ ︸
water disposal cost

−
Ninj∑
i=1

rw,inj(t) qw,inj,i(t)︸ ︷︷ ︸
water injection cost

 1

(1 + d(t))t︸ ︷︷ ︸
discount factor

dt − C(Q)︸︷︷︸
capital costs

(8)

In (8) the integral term represents the operating cost
(with negative sign) and C(Q) is the drilling cost; Nprod

and Ninj are the number of production and injection
wells, respectively; ro(t), rw,disp(t) and rw,inj(t) denote the
time dependent oil production, water disposal, and water
injection costs ($/stb), respectively. The annual discount
factor d(t) is particularly important for drilling schedule,
and is applied to the drilling cost (C(Q)) as well as the
operating cost. Hence, the objective function is defined as:

J(Q) = −NPV = O(Q) + C(Q) (9)

Mathematically, the drilling cost in the objective function
serves as a sparsity-promoting term; that is, it promotes
solutions with minimum number of wells (drilling cost) to
maximize the NPV. We rewrite J(Q) as:
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J(Q) = O(Q) + C(λ,Q) (10)

where,

C(λ,Q) =

[ N∑
i=1
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(
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(qti)
p
) q
p
] 1
q
' ‖ Q ‖Λ;p,q (11)

λi =
γ

(1 + d)bi
(12)

The term (C(λ,Q)) in (11) is a weighted mixed norm,
LW ;p,q of Q that accounts for the drilling cost and serves as
a sparsity constraint along the rows of Q. Since the entries
of the nonzero rows are control allocations of the corre-
sponding wells in time, p affects the behavior of the control
trajectory. The q-norm, on the other hand, is applied to the
rows to promotes sparsity (minimize the number of wells).
The constant ε is a small constant introduced to avoid
matrix singularity during the iterations. The parameter λi
is applied to the mixed-norm expression in (11) to properly
account for the discounting factor (based on the drilling
time). The cost of drilling a single well is denoted as γ,
which is adjusted by the discount factor 1

(1+d)bi
, where d

and bi represent the annual interest rate and number of
years passed since the ith well is drilled. Note that the
discounting factor in the objective function controls the
drilling schedule by giving preference to wells that are
drilled later.

The sparsity-based formulation in this work is inspired by
the concept of group sparsity and group LASSO problem
introduced in (Yuan and Lin, 2006; Turlach et al., 2005;
Zhao et al., 2009). Since the `0-norm, used for counting the
number of wells to quantify well costs, is not well-behaved,
approximate methods are typically used to solve the prob-
lem. For sparsity along the rows of Q, a sufficiently small
q, 0 < q < 1, q � 1, has been shown to have a similar
sparsity-promoting behavior as `0-norm. However, given
that the well cost will be affected for any norm other than
`0, it is imperative to ensure that at the solution the well
cost is properly reflected by using a very small q value
(e.g.,q < .01). The `p-norm functions with different values
of p are displayed in Figure 1.a.

3. SOLUTION METHOD

In this section, we develop an iterative gradient-based al-
gorithm for solving the generalized field development opti-
mization problem. We first describe the proximal gradient
optimization techniques with properties that are suitable
for optimization of non-smooth (black-box type) functions
in large-scale problems.

3.1 Iterative Shrinkage Thresholding Algorithms

Proximal splitting optimization methods (Combettes and
Pesquet, 2011; Parikh and Boyd, 2013) use the concept
of proximal mapping to find the solution to a convex
optimization problem more effectively than classical ap-
proaches. Proximity operator of a convex function is in
fact a generalization of the notion of projection onto a
convex set and can be defined as:

proxf (x) = arg min
u

(
f(u) +

1

2
‖ u− x ‖22

)
(13)

For the constrained optimization problem

Fig. 1. (a) `p norm functions for different values of p; (b)
Shrinkage function

x∗ = arg min
x

O(x)

O(x) = f(x) + g(x)
(14)

proximal mapping can be used to reformulate the problem
in (14) into an unconstrained problem that can be solved
using the following iterative scheme

xk+1 = proxαkg(xk − αk∇f(xk)) =

arg min
u

(
g(u) +

1

2αk
‖ u− (xk − αk ∇f(xk)) ‖22

)
(15)

where, αk is the step size. This simple framework can
be generalized to handle as many non-smooth constraint
functions as desired, implying that a complicated objective
function can be decomposed into the sum of its separate
simpler components. The iterative shrinkage algorithms

Table 1. Iterative shrinkage thresholding pseudocode

initialization t1 = 1 , X1 = Q0

for k ≥ 1(while convergence criteria not satisfied)

tk+1 =
1+
√

1+4t2
k

2
Qk+1 = Qk − 1

L
Pk∇QO(Qk)

Xk+1 = arg min
X

{
L
2
‖ X−Qk+1 ‖22 +C(λ,Qk)

}
= τ λ

L
(Qk+1) =

(
| Qk+1 | − λ

L

)
+

sign(Qk+1)

Qk+1 = Xk+1 +
tk−1
tk+1

(Xk+1 −Xk)

Qk+1 = PΩ(Qk+1)

End

In Table 1, τα(.) is a shrinkage operator for the updated

matrix (Qk+1), according to the specified threshold α(=
λ
L ). For soft thresholding, we have used the shrinkage
function shown in Figure 1.b, which is defined as

τα(x) =


x− α x ≥ α

0 −α ≤ x ≤ α
x+ α x ≤ α

(16)

The term ∇QO(Qk) in Table 1 is the gradient of the
operating cost with respect to the rate allocations at kth

iteration and is obtained using an adjoint model (Zandvliet
et al., 2008; Sarma et al., 2008); and L, defined in (17),
represents the gradient Lipschiz constant of ∇QO(.) that
sets an upper bound on the magnitude of the slope of
∇QO(.) within its feasible domain.

L = sup

{‖ ∇f(x1)−∇f(x2) ‖
‖ x1 − x2 ‖

}
(17)

Various methods have been proposed to numerically es-
timate the Lipschiz constant of a function (Wood and
Zhang, 1996). For the numerical experiments in this study,
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at each iteration, we approximate the Lipschiz constant of
∇QO(.) using

Lk ' k
max
m,n=1
m 6=n

{
‖ ∇O(qm)−∇O(qn) ‖

‖ qm − qn ‖

}
(18)

where q denotes the column-wise vectorized version of the
allocations matrix Q. The Lipschiz constant is approxi-
mated at each iteration as the maximum value among all
computed Lipschiz constants using all pairs of the gradi-
ents calculated up to the current iteration. The gradient
projection matrix Pk is applied to the gradient to modify
the update direction to ensure that the updated solution
lies within the feasible set defined by the constraints.

The field development optimization can be formulated as
a constrained nonlinear programming problem with box
constraints as well as a linear constraint (Luenberger and
Ye, 2008, Chapter 12):

min O(Q)

subject to q ≤ 1 , −q ≤ 1

1Tqi = 0 , i = 1, 2, · · · , T
(19)

where q denotes the column-wise vectorized version of
Q. Since entries of Q denote the control allocations for
each well at the specified control step, they should neither
exceed the normalized upper bound (the maximum control
allocation for an injector, normalized to +1) nor the
normalized lower bound (the maximum control allocation
for a producer, normalized to -1); hence, the inequality
constraints in (19) are designed to enforce the required box
constraints on entries of Q. The mass balance constraint
is met through a set of equality constraints to ensure
that the sum of injection/production allocations, with
their respective signs, is zero. The gradient projection
matrix can then be formed as (Luenberger and Ye, 2008,
Chapter 12),

Pk = [I−AT
q (Aq A

T
q )−1Aq ] (20)

in which Aq contains concatenated 1’s and 0’s according
to the indices of the updated matrix Q and the necessary
modifications to the gradient direction. The projection
operator PΩ(.) (Goldstein, 1964; Levitin and Polyak, 1966;
Bertsekas, 1982) acts on a nonempty closed convex set (Ω)
through the mapping P : Rn −→ Ω, and is defined as

PΩ(x) = arg min { ‖ x− u ‖: u ∈ Ω } (21)

The convex set Ω is defined based on the lower and upper
bounds, l and u respectively, as follows

Ω = {x ∈ Rn : l ≤ x ≤ u} (22)

As outlined in Table 1, at the end of each iteration, mass
balance is preserved by applying the projection operator
(PΩ(.)) to the updated allocations matrix.

4. NUMERICAL EXPERIMENT
We examine the performance of the proposed algorithm
using the PUNQ-S3 reservoir model and a two-phase (oil-
water) flow simulation in Matlab Lie et al. (2012). The
log-permeability maps of the 5 layers in the PUNQ-S3
model are shown in Figure 2. The field contains 28× 19×
5 discretized grid blocks, many of which are not active
as displayed in Figure 2. The simulation parameters are
summarized in Table 2. The price of oil, and cost of water
injection and disposal were set to $80/stb, $10/stb and

$10/stb, respectively. The annual discount rate is assumed
to be 10% and the control trajectories are divided into 5
evenly spaced increments over the reservoir life cycle of 10
years. All wells are under fluid flow rate controls.

Table 2. Simulation parameter setup used for the
numerical experiment in example 2

Parameters PUNQ-S3 Reservoir

Reservoir grid dimensions 28×19× 5 = 2660
Number of active cells 1761
Physical cell dimension 40×40× 40ft3

Rock porosity 30 %
Simulated reservoir life cycle 10 yrs
Number of control steps 5
Fluid phases Oil-water (2-phase)
Initial water saturation 0.05
Injection volume 1 PV
Perforation direction Vertical
Injectors control mode Total water injection rate
Producers control mode Total fluid production rate
Well drilling cost $10 M

Fig. 2. Optimized well locations for five initializations; injectors
and producers are marked with (×) and (•), respectively.

Table 3. Optimization results

Initialization no Ninj Nprod NPV

1 2 7 $94.6 M
2 3 7 $93.8 M
3 4 5 $93.8 M
4 4 8 $87.8 M
5 3 10 $76.0 M

The solution is initialized by assigning very small rates to a
large number of randomly placed producers and injectors.
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The wells are perforated in all 5 layers of the PUNQ
reservoir except for the ones placed in the grid cells that
are only active within the first 2 layers of the formation.
Using the proposed sparsity-promoting gradient projec-
tion method and the adjoint sensitivities with respect to
well controls, insignificant wells are successively removed
to reduce drilling cost and increase the contribution of
dominant wells, leading to the optimal configuration of the
wells at convergence. In addition, the control trajectories
are automatically estimated and used to infer the drilling
schedule. Optimized well configurations for 5 different
initializations are displayed in Figure 2. Details of the
optimized parameters are summarized in Table 3. From
Figure 2, it can be seen that the optimized configuration
for different initializations vary in number and location
of the wells, which is expected given the local nature
of gradient-based algorithms, the number (and type) of
variables, and the complexity of the objective function.
From Table 3, it is also observed that the optimized NPVs
are close to each other, and fluctuate around ∼ $90 M,
except for Case 5. To check for solution (local) optimality,
we perturbed the optimal locations of the wells and ver-
ified that the NPV values actually decreased when local
perturbations were applied.

The evolution of the objective function throughout the
iterations is plotted in Figure 4 where it can be seen
that on average, it has taken about 60 iterations for the
algorithm to converge. Optimized well control trajectories
for each of the five initializations are displayed in Figure 3.
Overall, as a result of incorporating the discount factor,
the algorithm tends to add some of the wells later in time
to reduce the capital cost. For instance, from the control
trajectories for wells in the optimized configuration for
initialization 3, it can be seen that producers 2, 1 and
3 are added in the third, fourth and fifth control steps,
respectively, while producers 4 and 5 start operating at
the beginning of water injection.
An advantage of the developed formulation is that it can
easily impose constraints on the control trajectories by
adjusting the parameters p and q in the `Λ;p,q norm (Equa-
tion 11) or by supplying different constraints along the
columns of the control matrix. In our experiments, the pa-
rameter p controls the variation in the control trajectories
of active wells by imposing minimum `p norm constraint
along the columns of Q. In general, promoting sparsity on
the control trajectories (columns) is not desirable, hence
we set p > 1. Large values of p penalize high injection or
production rates. In fact, very large values of p can trans-
form the problem into `∞,1 minimization (Turlach et al.,
2005), which is more sensitive to large entries in the active
rows of Q. Other user-specified constraints on the control
trajectory (such as bound constraints or smoothness) may
also be adopted with the proposed formulation.

5. CONCLUSION
We have developed a novel generalized framework for
oilfield development optimization. This framework can be
used to optimize the number, location, type of wells, as
well as their operating control trajectories in time, and
their drilling schedule. The generalized problem is for-
mulated to jointly optimize these design parameters by
accounting for the coupling between them. In our for-
mulation, the decision variables consist of the dynamic

Fig. 3. Optimized well control trajectories for five initializations.

source/sink (well) terms for all grid cells in the reservoir
(embedded in the wells total fluid flow rates) and their
dynamic trajectories throughout the reservoir life cycle.
By including the drilling and operating costs in the formu-
lation of the NPV cost function, we show that the NPV ob-
jective function has the structure of a sparsity-promoting
function. Hence, we solve the resulting optimization prob-
lem by adopting efficient optimization algorithms from
the sparse reconstruction literature. Specifically, an iter-
ative shrinkage thresholding scheme is used to eliminate
insignificant wells from the reservoir model (or add new
ones) to optimize the number of injectors and producers,
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Fig. 4. Objective function evolution.

to identify promising well locations, control trajectories,
and drilling schedule. The applicability and effectiveness
of the developed method was demonstrated using a two-
phase three-dimensional example based on the PUNQ-S3
geologic model.
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