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Abstract: In oil production optimization, we usually aim to maximize a deterministic scalar
performance index such as the profit over the expected reservoir lifespan. However, when
uncertainty in the parameters is considered, the profit results in a random variable that can
assume a range of values depending on the value of the uncertain parameters. In this case, a
problem reformulation is needed to properly define the optimization problem. In this paper
we describe the concept of risk and we explore how to handle the risk by using appropriate
risk measures. We provide a review on various risk measures reporting pro and cons for each of
them. Finally, among the presented risk measures, we identify two of them as appropriate risk
measures when minimizing the risk.
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1. INTRODUCTION

In oil production optimization, we are in general interested
in maximizing an economic measure, like the profit or the
net present value (NPV), over the expected reservoir life
time. When uncertainty is taken into account, the profit
is not a single quantity but has a probability distribution,
i.e. the profit is described by a random variable ψ. An
optimization problem involving ψ in terms of a control
input u, must express ψ as a scalar quantity. Traditionally,
this single quantity is the expected profit (Van Essen
et al., 2009; Capolei et al., 2013). By using only the
expected profit, however, we are not able to include others
important indicators, that shape the profit distribution ψ,
such as the profit deviation and the risk preference. The
role of a measure of deviation is to quantify the variability
of a random variable ψ and the uncertainty in ψ is often
measured by the standard deviation of ψ, e.g. in classical
portfolio theory (Markowitz, 1959), the standard deviation
σ(ψ) is used to quantify uncertainty in returns of financial
portfolios. In the oil community, Bailey et al. (2005);
Alhuthali et al. (2010); Yeten et al. (2003) propose to
reduce the uncertainty in profit by including the standard
deviation in the cost function. In many decision problems
dealing with safety and reliability, risk is often interpreted
as the probability of a dreadful event or disaster (Ditlevsen
and Madsen, 1996; Rockafellar and Royset, 2010), and
minimizing the probability of a highly undesirable event
is known as the safety-first principle (Roy, 1952). In this
paper we identify the risk as a measure of the risk of

? This research project is financially supported by the Danish
Research Council for Technology and Production Sciences. FTP
Grant no. 274-06-0284 and the Center for Integrated Operations in
the Petroleum Industry at NTNU.

loss. When speaking of such a measure applied to the
random profit, ψ, we have in mind that higher outcomes
of ψ are welcome while lower outcomes are disliked.
To reduce the risk of loss then, we seek to lower the
probability of the low profits. Certainly, deviation and
risk are related concepts and often these terms are used
interchangeably, e.g. in finance, we can interpret the profit
volatility, measured by the standard deviation, as risk.
Following this idea, Capolei et al. (2015) introduce the
mean-variance criterion for production optimization and
suggest to use the Sharpe ratio as a systematic procedure
to optimally trade-off risk and return. They interpret the
standard deviation as a measure of risk. However, the
mean-variance approach is more suited to reduce the profit
uncertainty than to reduce the risk of loss. Fig. 1 illustrates
two drawbacks of the mean-variance framework when used
to measure risk preferences. First of all, the mean variance
approach is insensitive to the profit shape distribution.
Fig.1a is a sketch representing different profit distributions
having the same values for mean and the variance. In
the mean-variance framework these distributions yield the
same risk preference. In Fig.1b instead, the distributions
in blue have a lower standard deviation, σ, than the
distribution in black. If we use the standard deviation as
a risk measure, the blue distributions have a lower risk
than the black profit distribution, no matter what their
expected values are. Furthermore, the standard deviation
as a measure of risk is symmetric, which means that it
penalizes higher profits and lower profits symmetrically.
This last shortcoming have been recognised by Markowitz
(1959) who proposed to use the semideviation instead.
However, even by using the semideviation, we still do not
have common properties that make sense both for a risk
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measure like risk aversion and monotonicity, see Section
3.

In this paper we follow an axiomatic approach to define
risk, i.e. we first define the principles that an appropriate
risk measure should have, then we select risk measures that
satisfies such principles. The risk axioms that we use are
the principles that define coherent averse risk measures as
introduced and defined in Artzner et al. (1999); Rockafellar
(2007); Krokhmal et al. (2011); Zabarankin and Uryasev
(2014). At our knowledge, this is the first time that such an
axiomatic approach is used in oil production optimization.

The paper is organized as follow. Section 2 formulates
the oil production optimization problem under uncertainty
as a risk minimization problem. Section 3 describes the
basic properties that we require from an appropriate risk
measure, while a number of risk measures are discussed in
Section 4. Conclusions are presented in Section 5.
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Fig. 1. The mean-variance framework is indifferent to
shape distributions. Fig.1a is a sketch representing
different profit distributions having the same mean
and variance. In the mean-variance framework, these
distributions yield the same risk preference. In Fig.1b,
the distributions in blue have a lower standard de-
viation σ than the distribution in black. If we use
the standard deviation as a risk measure, this means
that the blue distributions have a lower risk than
the black profit distribution, no matter what their
expected values are.

2. PROBLEM FORMULATION

In oil production optimization, the profit can be visualized
as a function

ψ = ψ(u, θ) (1)

of a decision vector u ∈ U ⊂ Rnu representing the control
vector, with U expressing linear decision constraints, and
a vector θ ⊂ Rm representing the values of a number
of parameters variables such as the permeability field,
porosity, economic parameters, etc. The function ψ usually
represents the NPV or some other performance index, and
its computation typically requires the use of a reservoir
simulator to solve the reservoir flow equations. If there
is no uncertainty in the parameters values θ, we can
maximize ψ by solving the following deterministic optimal
control problem (Brouwer and Jansen, 2004; Sarma et al.,
2005; Nævdal et al., 2006; Foss and Jensen, 2011; Capolei
et al., 2013)

max
u∈U

ψ(u, θ) (2)

However, in oil problems there is a high uncertainty due
for example to the noisy and sparse nature of seismic data,
core samples, borehole logs, and future oil prices and plant
costs. Mathematically, we may represent model uncer-
tainty by making the parameter vector θ a random variable
that has some probability distribution and that belongs to
some uncertainty space Θ. Consequently, the profit ψ is a
random variable. Due to the complexity of real oil reser-
voirs and the accompanying measurement problem, we
don’t know the probability distribution of θ, thus, we have
only incomplete informations about the uncertainty space
Θ. For these reasons, the traditional way of modeling the
uncertainty in oil production problems is to consider a fi-
nite set of possible scenarios for the parameters (Krokhmal
et al., 2011; Van Essen et al., 2009; Capolei et al., 2013,
2015). This means that we substitute Θ with the dis-
cretized space Θd := {θ1, θ2, . . . , θnd

}. As a consequence,
a control input u, will correspond to a finite set of possible
profit outcomes ψ(u, θ1), . . . , ψ(u, θnd

), with probabilities
p1, . . . , pnd

, respectively, where pi = Prob[θ = θi] ∈ [0, 1]
and

∑nd

i=1 pi = 1. Usually the possible realizations θi are
considered equiprobable, i.e. pi = 1/nd. It should be noted
that defining the uncertainty set Θd is a highly interdisci-
plinary exercise. Furthermore, uncertainty will be updated
as subsurface properties further reveal themselves from
measurement surveys and production data in addition to
new forecasts on oil price and costs.

When uncertainty is taken into account, the following
stochastic optimization problem can be written

max
u∈U, θ∈Θd

ψ(u, θ) (3)

However, this formulation is not well defined. The problem
is that the decision vector u must be chosen before the
outcome of the distribution of θ and consequently the value
of ψ, can be observed. To obtain a well defined problem,
we can substitute the random variable ψ by a functional
R : ψ → R that yields a scalar measure of ψ, and depends
both on u and θ. In this way we can reformulate problem
(3) as

min
u∈U

R(ψ(u, θ ∈ Θd)) (4)

Note that we have switched to a minimization problem
because we will interpret R as a risk measure to minimize.
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R is a surrogate for the distribution of ψ, thus, different
R expressions capture differents aspects of the profit
distribution. So far, different measures, R, have been
proposed in the oil community such as the expected profit,
i.e. R = −Eθ[ψ] (Van Essen et al., 2009) or the mean-
variance measure, i.e. R = −

(
λEθ[ψ] − (1 − λ)σ2(ψ)

)
with λ ∈ [0, 1] (Capolei et al., 2015). However, for many
reasons, that we will discuss in Section 4, none of these
measure are satisfactory. Finally, we should stress that in
this paper we focus on single objective optimization only.
We do not consider important aspects that are connected
to multi-objective optimization, e.g. the trade-off between
long term vs short term profit (Van Essen et al., 2011).
However, our analysis on risk measures can be extended
to these cases. We can for example use the weighted sum
method (Liu and Reynolds, 2015) to trade-off a long term
profit measureR(ψlong) versus a short term profit measure
R(ψshort) by solving

min
u∈U

λ R(ψshort) + (1− λ) R(ψlong) (5)

for different λ ∈ [0, 1].

3. COHERENT AVERSE MEASURES OF RISK

Measures of risk have a crucial role in oil production opti-
mization under uncertainty, especially in coping with the
losses in profit due to a too aggressive oil field development
plan. The role of a risk measure is to assign to the random
profit, ψ, a numerical value R(ψ) that can serve as a
surrogate for overall profit. The risk comparison of two
choices ψ′ and ψ′′ then reduces to comparing R(ψ′) and
R(ψ′′) and a decision maker, during the decision process,
should prefer solutions that minimize the risk or that
maintain the risk below a certain threshold. In this paper,
we consider as appropriate risk measures, the coherent and
averse measures of risk as defined by Artzner et al. (1999);
Rockafellar (2007); Krokhmal et al. (2011):

Definition 1. Coherent Averse measures of risk are func-
tionals R : ψ → R satisfying

(A1) Risk aversion:
• R(c) = −c for constants c (constant equivalence)
• R(ψ) > −Eθ[ψ] for nonconstant ψ (averseness).

(A2) Positive homogeneity: R(λψ) = λR(ψ) when λ > 0.
(A3) Subadditivity: R(ψ′ + ψ′′) ≤ R(ψ′) + R(ψ′′) for all

ψ′ and ψ′′.
(A4) Closure: ∀c ∈ R, the set {ψ|R(ψ) ≤ c} is closed.
(A5) Monotonicity: R(ψ′) ≥ R(ψ′′) when ψ′ ≤ ψ′′.

These axioms require additional explanation. Axiom (A1)
formalizes the risk averse principle, see also Fig. 2. A risk-
averse decision maker does not rely on the expected profit
exclusively and always prefers a deterministic payoff of
Eθ[ψ] over a non constant ψ. The risk of a deterministic
profit is given by its negative value, i.e. R(c) = −c. R(c) =
−c implies R(Eθ[ψ]) = −Eθ[ψ], so that the other condition
R(X) > −Eθ[ψ] can be restated as R(ψ) > R(Eθ[ψ])
for ψ 6= c and constant c, which is the risk aversion
property in terms of R. The positive homogeneity axiom
(A2) ensures invariance under scaling, e.g. if the units of ψ
are converted from one currency to another, then the risk
is also simply scaled with the exchange rate. Finally, the
positive homogeneity enables the units of measurements of
R(ψ) to be the same as those of ψ. The subaddivity axiom

(A3) is a mathematical expression of the fundamental risk
management principle of risk reduction via diversification.
Also, it follows from the constant equivalence, i.e. R(c) =
−c, and axiom (A3) that

R(ψ + c) = R(ψ)− c (6)

which is called translation invariance. This is explained by
its financial interpretation. If ψ is the payoff of a financial
position, then adding cash to this position reduces its risk
by the same amount; in particular one has

R(ψ + R(ψ)) = 0 = R(0) (7)

i.e. adding a quantity of cash equal to the risk of ψ
to ψ reduces to the risk of getting a deterministic zero
payoff. The translation invariance principle, provides us
with a natural way of defining an acceptable risk (Artzner
et al., 1999; Rockafellar, 2007). We can consider a risk
acceptable if its value is lower than the risk of obtaining a
deterministic reference payoff cref , i.e.

R(ψ) ≤ R(cref ) = −cref (8)

In oil problems, cref could come from the expected income
by investing in an alternative project. However, typically
we consider the risk as acceptable when its value is lower
than the risk of a deterministic zero profit, i.e. cref = 0
and (8) thus becomes

R(ψ) ≤ 0 (9)

The monotonicity axiom (A5) says that we consider ψ′

no less risky than ψ′′ if every realization of ψ′′ is no
smaller than every realization of ψ′, see Fig. 3. In the liter-
ature, risk measures that satisfy axioms (A1-A4) are called
averse measures of risk (Rockafellar, 2007; Krokhmal et al.,
2011). Risk measures that satisfy axioms (A2-A5) and
the constant equivalence property are called coherent risk
measures in the sense of Artzner (Artzner et al., 1999;
Krokhmal et al., 2011). A final note on risk measures prin-
ciples is that the positive homogeneity and the subadditiv-
ity imply convexity of the risk measure R(.) (Rockafellar,
2007; Krokhmal et al., 2011). The convexity property is
important when we want to minimize the risk, R, because
it allows the optimizer to find solutions that are globally
optimal. Therefore, we would like to formulate convex
oil production optimization problems. In oil optimization
problems, however, ψ = J(u, θ) is computed by a function
J that is non convex with respect to the decision vector
u. As a consequence, R(J(u, θ)) is non convex and the
optimizer can only yield local minima solutions. Unfortu-
nately, the non convexity originates from the physics of
the problem itself. However, future research in this field
may allow to efficiently approximate and reformulate the
problem by using convex surrogate models, e.g. piecewise
linear models where there, however, is a need to include
integer variables.

4. RISK MEASURES IN PRODUCTION
OPTIMIZATION

In this section, we review some traditional approaches of
measuring risk. For each approach we will discuss if and
how it adheres to the risk measure definition of Section 3.

4.1 Nominal profit

This approach is based on selecting one single realization,
θi, of the uncertainty space Θd, as outcome for the future
value of θ:
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Fig. 2. Aversity axiom. The constant equivalence property in Fig. 2a states that for constant profit distributions, a risk
measure as defined in Section 3 yields a well defined risk preference. Instead, when we use the standard deviation,
σ, the risk preference is not well defined. Fig. 2b shows two profit distributions ψ′ and ψ′′. ψ′ yields negative profits
and also negative expected profit. ψ′′ yields a negative profit only in the first realization and has positive expected
profit. Despite for the first realization results ψ′′ < ψ′, the probability of lower profits is much larger for the profit
distribution ψ′ than for ψ′′. However, if we use the standard deviation as a measure of risk, ψ′ would result with
lower risk, see Fig. 2c, because it has a lower standard deviation. Instead, a coherent averse risk measure would
allow to choice a risk preference for which ψ′ yields the lowest risk, see Fig. 2d.
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Fig. 3. The monotonicity axiom states that if we have two profit distributions ψ′ and ψ′′, and for every realization
ψ′ ≤ ψ′′, see Fig.3a, then a risk measure should yield a higher risk for ψ′ than for ψ′′, see Fig.3b. For the standard
deviation, see Fig.3c, the monotonicity axiom does not hold.

R(ψ) = −ψ(u, θi). (10)

Despite the fact that this approach is coherent (not
averse), it is open to criticism since it relies on one param-
eter sample only. Thus, one may argue that this approach
is closer to guess work than analysis. With this approach,
a profit distribution is acceptable in the sense of (9) when
the profit for the chosen realization θi is greater than zero.

4.2 Certainty Equivalent profit

This approach is based on using the expected value of the
parameters, Eθ[θ], as outcome for the future value of θ:

R(ψ) = −ψ(u,Eθ[θ]) (11)

This approach was used in Capolei et al. (2013, 2015). The
idea is that the expected value of the parameters yields a
good representation of the model. However, there are some
problems with this approach. First of all, the expected
value of θ may not be a possible realization of Θ, i.e. it
could be that Eθ[θ] /∈ Θ. Secondly, as a risk measure it
is neither averse nor coherent. In fact, the aversity and
the monotonicity axioms are not valid because of the
nonlinearity and nonconvexity of ψ. With this approach,
a profit distribution is acceptable in the sense of (9) when
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the deterministic system with the expected value of θ for
the parameters, has a profit greater than zero.

4.3 Expected profit

R(ψ) = −Eθ[ψ] (12)

This is a coherent measure of risk commonly used in oil
production optimization where it is called robust optimiza-
tion (Van Essen et al., 2009; Capolei et al., 2013, 2015).
With this risk measure, a profit distribution is acceptable
in the sense of (9) when the expected profit is greater than
zero. Despite its widespread use, this risk measure has
some important drawbacks. These are its risk neutrality
and the fact that there is no control on the possible
outcome of very low profit realizations. The use of the
expected profit as risk measure in (4) is justified when the
following two assumptions hold (Krokhmal et al., 2011):

• Long run assumption: The control found as a solution
of the stochastic problem will be employed repeatedly
under identical or similar conditions.
• Low variability of the profit realizations. If the profit

is highly variable, then the possible outcome of very
low profit realizations could be disastrous.

However, in oil production optimization we do not apply
the control to many oil reservoirs that are in similar condi-
tions and that share the same uncertainty distribution of
the parameters, i.e. we do not have repetition. So, the long
run assumption does not hold. Further, the variability in
the profit distribution ψ could be high due to high uncer-
tainty in the parameters. For these reasons, the expected
value of the profit does not seems to be the right choice
for risk management in oil production optimization.

4.4 Worst-case scenario

R(ψ) = − inf
θ
{ψ} (13)

This is a coherent and averse measure of risk used
for example in Alhuthali et al. (2010). However, often
it provides a too conservative risk measure. In fact, its
major drawback is that it does not take into account the
probability distribution of ψ. With this risk measure, a
profit distribution is acceptable in the sense of (9) when
the lowest possible profit is greater than zero.

4.5 Standard deviation and variance

R(ψ) = −σθ(ψ), R(ψ) = −σ2
θ(ψ) (14)

By definition, σθ(ψ) measures the deviation of the profit
from the expected value. The risk preference with this risk
measure does not obey the constant equivalence principle.
In fact, taken two constant profit distributions c1, c2 we
have σθ(c1) = σθ(c2) = 0, see Fig. 2a. Consequently, with
this risk measure it makes no sense to talk of acceptable
risk in the sense of (9). Further, the standard deviation
misses risk averseness and monotonicity (see the axioms
in Section 3). In general, this measure lacks aversity and
coherency, see Fig. 2 and Fig. 3. The standard deviation
was used as an uncertainty measure, for example in Yeten
et al. (2003); Bailey et al. (2005); Alhuthali et al. (2010);
Capolei et al. (2013) and interepreted as a risk measure
in Capolei et al. (2015). The variance, σ2, compared to σ,
misses also the positive homogeneity and subadditivity.

4.6 Safety margin

R(ψ) = −
(
Eθ[ψ]− λσθ(ψ)

)
, λ > 0 (15)

This is an averse risk measure, but it is not coherent
because it does not satisfy the monotonicity axiom. With
this risk measure, a risk is acceptable, in the sense of (9),
when the expected value of ψ is λ units larger than the
standard deviation of ψ, i.e.

Eθ[ψ] ≥ λσθ(ψ), λ > 0 (16)

The safety margin risk measure (15) was used by Yeten
et al. (2003); Bailey et al. (2005); Alhuthali et al. (2010).
However, they did not use (15) directly to measure the
risk. Rather, they used the λ parameter as a weight
to find solutions with different profit-uncertainty trade-
offs. By varying λ, they were able to compute different
(Eθ[ψ], σθ[ψ]) solution pairs.

4.7 Mean-Variance

R(ψ) = −
(
λEθ[ψ]− (1− λ)σ2

θ(ψ)
)
, λ ∈ [0, 1] (17)

For λ = 1 we find the expected profit measure (12) and for
λ = 0 we find the variance (14). For λ ∈ (0, 1), (17) satisfies
the risk aversion axiom, however, it does not satisfies the
positive homogeneity, the subadditivity, and the monocity
axioms. Then, for λ ∈ (0, 1), (17) is neither averse nor
coherent. Because (17) does not satisfies the translation
invariance principle (6), we cannot give a sense to the risk
acceptance constraint (9). The mean-variance risk measure
(17) was used by Capolei et al. (2015). However, they did
not use directly (17) to measure the risk. Rather, they
used the λ parameter as a weight to find Pareto solutions
with different profit-risk trade-offs. They used Eθ[ψ] as a
measure of profit and σ2

θ(ψ) as a measure of risk.

4.8 Value at Risk (V aRα)

Value-at-Risk (V aR)) is one of the most widely used risk
measures in the area of financial risk management and is a
major competitor to the standard deviation measure (JP
Morgan, 1994; Jorion, 2006). Given a profit distribution
ψ, V aRα(ψ) is defined as the negative α-quantile

V aRα(ψ) = −qψ(α), α ∈ (0, 1) (18)

where
qψ(α) = inf{z

∣∣Prob[ψ ≤ z] > α}. (19)

The quantile with α confidence level, denoted as qψ(α),
is the value for which the probability that the profit ψ
is lower than qψ(α) is no greater than α, see Fig. 4c.
The Value-at-Risk concept has its counterparts in the
form of probabilistic, or chance constraints, that were
introduced by Cooper and Symonds (1958), and since then
have been widely used in many disciplines as operations
research and stochastic programming, systems reliability
theory, reliability-based design and optimization, and oth-
ers (Ditlevsen and Madsen, 1996; Rockafellar and Royset,
2010). With a chance constraint, we may declare that a
profit ψ should exceed a certain predefined level cref with
probability of at least 1− α, with α ∈ (0, 1):

Prob[ψ ≥ cref ] ≥ 1− α (20)

whereas in the case of α = 0, constraint (20) reduces to the
worst case approach in Section 4.4. From a risk reduction
point of view, the probabilistic constraint (20) has a dual
aspect. One aspect is that for a fixed α, we would like to
find the highest value of cref such that (20) is satisfied.
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This ensures that with a probability greater than 1 − α,
the profit lower bound is the highest possible. On the
other hand for a fixed cref value, we would like to have
α as low as possible to increase the probability of having
profits larger than cref . The chance constraint (20) is also
called the failure probability constraint in reliability theory
(Ditlevsen and Madsen, 1996; Rockafellar and Royset,
2010). The probabilistic constraint (20) is equivalent to

Prob[ψ < cref ] ≤ α (21)

and it can be expressed as a constraint on the Value-at-
Risk of ψ (Krokhmal et al., 2011; Zabarankin and Uryasev,
2014):

V aRα(ψ) ≤ −cref (22)
One of the major deficiencies of V aRα is that it does not
take into account the tail of the profit distribution beyond
the α−quantile level. Even more importantly, V aRα does
not satisfies the subadditivity axiom (A3) (Artzner et al.,
1999). In addition, V aRα is discontinuous with respect
to the confidence level α, see Fig. 4c, meaning that small
changes in the values of α can lead to significant jumps
in the risk estimates provided by V aRα. Despite V aRα
does not satisfies the translation invariance principle (6),
because V aRα is not subadditive, we can still give a sense
to the risk acceptance constraint (9) by using the proba-
bilistic interpretation (21). Then, a profit distribution is
acceptable in the sense of (21) when

V aRα(ψ) ≤ 0 (23)

The meaning of (23) is to limit with α the probability of
having negative profits (loss), i.e.

Prob[ψ < 0] ≤ α. (24)

4.9 Conditional Value at Risk (CV aRα)

R(ψ) = CV aRα(ψ(u, θ)) (25)
As a measure of risk, V aRα(ψ) lacks continuity with
respect to α, provides no information of how significant
losses in the α-tail could be and it is not subadditive,
see axiom (A3) in Section 3. These V aR’s deficiencies are
resolved by the conditional value-at-risk (CV aR) (Rock-
afellar and Uryasev, 2002) defined as the average of V aR
on [0, α]:

CV aRα(ψ) =
1

α

∫ α

0

V aRs(ψ)ds, α ∈ (0, 1) (26)

Since CV aRα(ψ) dominates V aRα(ψ) i.e. CV aRα(ψ) ≥
V aRα(ψ) (Krokhmal et al., 2011; Zabarankin and Urya-
sev, 2014), we can approximate the chance constraint (20)
with

CV aRα(ψ) ≤ −cref . (27)
CV aRα yields a convex upper bound approximation for
the failure probability. This was used in structural engi-
neering problems by Rockafellar and Royset (2010). In the
oil community, CV aRα has been used by Valladao et al.
(2013) as a deviation measure. They used a λ parameter
as a weight to find Pareto solutions with different expected
profit - profit deviation trade-offs. They used Eθ[ψ] as
a measure of profit and D = Eθ[ψ] + CV aRα[ψ] as a
deviation measure. Note that this deviation measure D,
similarly to the standard deviation σ, does not satisfy the
risk aversion and the monotonicity axioms. In the limit
of α approaching zero, CV aRα reduces to the worst-case
measure (13). In fact, we have

lim
α→0+

CV aRα(ψ) = − inf
θ
{ψ} (28)

and in the limit of α approaching one we find the expected-
profit measure 4.3. In fact, we have

lim
α→1−

CV aRα(ψ) = −Eθ(ψ) (29)

Finally, CV aRα for α ∈ (0, 1) satisfies all the axioms of a
coherent averse measure of risk, given in Definition 1. By
using CV aRα as a risk measure, a profit distribution is
acceptable in the sense of (9) when

CV aRα(ψ) ≤ 0 (30)

Considering that CV aRα is an approximation of the
chance constraint (21), the meaning of (30) is to limit with
α the probability of having negative profits (loss), i.e.

Prob[ψ < 0] ≤ α. (31)

However, differently from V aRα, CV aRα considers infor-
mation about the tail of the profit distribution beyond
the α−quantile level, and yields a smooth and convex
approximation of (20). In Fig. 4d we compute CV aRα for
a test profit distribution resulting from the scenario with
8 profit realizations of Fig. 4a.

5. CONCLUSIONS

When we look at the oil production optimization problem
as a risk minimization problem, we find that common risk
measures used in the oil community are non satisfactory.
Instead, we propose the conditional value at risk and the
worst-case scenario as appropriate risk measures for risk
minimization.
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