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Abstract: The system reliability of gas turbine engines on offshore platforms, maintained (i.e. repaired) 

upon process failures, is considered in this study. A set of condition monitoring (CM) data (i.e. failure 

events) of a selected gas turbine engine is considered, where the system maintenance actions with 

minimum repair conditions (i.e. that should not disturb the failure rate intensity) are assumed. A 

nonhomogeneous Poisson process is used to model  the age dependent reliability conditions of a gas 

turbine engine and maximum likelihood estimation (MLE) for calculating the same model parameters is 

implemented.  Finally, a summary on the system behavior under failure intensity, mission reliability and 

mean time between failures (MTBF) is also presented in this study. 
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

1. INTRODUCTION 

Industrial power plants are life critical systems in offshore 

platforms and their operational behavior (i.e. failure rates) 

can be used to encounter their diagnostic and prognostic 

challenges. Since these power plants play a crucial 

operational role in the oil and gas industry, this study 

proposes to understand the system failure behavior under 

aging conditions and that can also be used to formulate 

optimal maintenance policies.  In general, these power plants 

consist of various engine-power configurations (i.e. 

reciprocating engine, gas-turbines, etc.) to satisfy the power 

requirements of offshore platforms. These engines are 

operating under harsh ocean environmental conditions; 

therefore condition monitoring (CM) and conditions based 

maintenance (CBM) applications should be implemented to 

overcome the respective degradation conditions. 

This study is based on an offshore power plant with four 

industrial gas turbine engines/generators and that is located in 

a floating production, storage and offloading (FPSO) unit. 

The offshore platform is located in Campos Basin in Rio de 

Janeiro and an additional study on the same platform is done 

in (Machado et al., 2014). These FPSO units have often been 

used by the offshore industry to receive, to process and to 

store the hydrocarbons produced from nearby offshore 

platforms and sub-sea production systems. This system 

consists of 4 turbo-generators consisting of aero-derivative 

gas turbine engine with normal capacity of 25000 (kW) 

coupled with electric generators with normal capacity of 

28750 (kVA). The required grid load of the offshore platform 

approximately 35-45 (MW) and each generator is rated for 

approximately 12-15 (MW). Therefore, at least 3 generators 

in the isochronous mode should be operated to satisfy the 

requirements of the offshore platform.  

In general, gas turbines have been used under open cycle and 

combined-cycle application in various power plants. In 

combined cycle approach, the exhaust gas temperature can be 

used to run steam generators as an energy recovery approach. 

As the power plant consists of several gas turbine engines, 

the system reliability measures on a selected gas turbine 

engine is considered in this study. Therefore, the system 

failure intensity of a gas turbine has been considered to 

model the overall power plant behavior. Furthermore, it is 

important to identify the system failure situations in these 

power plants ahead of time; therefore the optimal 

maintenance policy should be implemented to minimize the 

operational cost. That has been done by analyzing the CM 

data from the respective gas turbine engine. 

2. SYSTEM RELIABILITY 

Complex systems can often be repaired after failure events 

and those system failures can be modeled as stochastic 

processes. A system operational period (i.e. system age) that 

starts at 0t  and continues until Tt   with a number of 

failures )(TN  is considered in this model. Furthermore, these 

failure events are recovered by a same number of repairs with 

negligible time periods. The time periods for those failures 

from 0t  can be considered as
NXXX ,,, 21  . The thi   

successive operational period between two failures events can 

be considered as 
1 ii XX  where Ni ,,2,1  . These failure 

events are often been considered as an independent, 

identically distributed (IID) random variable that can be 

molded as a Poisson process (HPP) with the respective 

failure rate (  ).  One should note that these repairable 

systems have often been modelled as Poisson process models 

and the inter-occurrence times (i.e. functioning time failures) 

in those events are independent events with exponential 

behavior, in which can be presented in system failure rates. 
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 However, the system failure rate with an increasing (i.e. 

deteriorating), constant (i.e. neither deteriorating nor 

improving) or decreasing (i.e. improving) trends can be 

observed by the Laplace trend test (LTT). Hence, the LTT 

test statistics can be written as (Kim et al., 2004): 
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When the LTT value is greater than zero, the system has an 

increasing trend (i.e. decreasing reliability)  and the Laplace 

trend test value is less than zero, the system has a decreasing 

trend (i.e. increasing reliability) can be concluded. This test 

statistics approximate a standard normal distribution, 

therefore the significant level of the results can also be 

observed from the standard normal table. Therefore, this test 

has been considered as the first step in this CM data analysis.  

However, a Poisson process model with a constant failure 

rate (i.e. homogenous Poisson process) cannot capture the 

system reliability throughout its life cycle. Therefore, that has 

often been limited to a section of the system life cycle.  

Hence, the system operational considerations such as mission 

reliability, reliability growth or deterioration, and 

maintenance polices cannot be included in these models (i.e. 

constant failure rates). Therefore, a nonhomogeneous Poisson 

process for modelling of the system failure events in a gas 

turbine engine is also considered. One should note that the 

time intervals between two respective failures in a 

nonhomogeneous Poisson process cannot be IID, because the 

system age has effected on the system failure rate. Hence, the 

system failure rate intensity of a system can be written as 

(Crow, 1990): 

  1  tt  (2) 

where 0  and 0  are  system parameters and t  is the 

age of the system. One should not that when 1 ,  t  is 

decreasing (i.e. the phase of infant mortality), when 1 , 

 t  is a constant (i.e. the phase of useful life) and 

when 1 ,  t  is increasing (i.e. the phase of wear-out). It 

is assumed that the system has restored to its previous 

conditions after each failure with "minimal repair", where the 

intensity of the system failures has not been disturbed (Crow, 

1975). Therefore, this behavior can also be described under 

the famous "bath-tub curve" for a system life cycle (Klutke et 

al., 2003). Similarly, the power laws mean value function 

(i.e. the expected number of failures,) for a nonhomogeneous 

Poisson process with the failure intensity in (2), the expected 

number of failures for the same system during the system life 

time of  ii tt    1
, can be written as: 
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where   iii nttN 1
 is the number of failures that are 

experienced during the same system life time. One should 

note that (3) represents the expected number of failures (i.e. 

mean value) during the same system life time. Hence, the 

probability of encountering 
in  failures during the same 

system life time can be written as: 
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Therefore, the mission reliability (i.e. the probability that the 

system operational conditions that are satisfied without any 

failures) of the system for the same system life time can be 

written as: 
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However, to calculate the conditions derived in  (3), (4) and 

(5), the parameters for the nonhomogeneous Poisson process 

model in (2) should be estimated. Hence, maximum 

likelihood estimation (MLE) is proposed to estimate those 

parameters and there are several optimal properties of MLE 

can be identified with respect to other parameter estimation 

methods (Myung, 2003).  Considering the failure events in 

(4), the likelihood function can be written as (Smith and 

Oren, 1980): 
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Considering (6), the log likelihood function can be written as: 

     !logloglog,log

1

1 i

N

i

iii nttnTL  



   (7) 

The partial derivatives of both parameters,   and  , should 

be considered in (7) to calculate the maximum likelihood 

values for the respective parameters and that can be written 

as: 
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Hence, the maximum likelihood values of   and   in (8) 

satisfy the following conditions: 
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One should note that (9) should be solved iteratively and that 

has a unique solution for the parameters of   and  . 

However, the solution can calculate under time truncated and 

failure truncated situations.  A situation with the observations 

that are truncated after a prefixed time for a respective 

number of failures (i.e. the number of failures is a random 

variable) is considered as time truncated.  A situation with the 

observations that are truncated after a prefixed number of 

failures for a respective time interval (i.e. the time interval is 

a random variable) is considered as failure truncated. 

However, a time truncated situation with respect to the 

IFAC Oilfield 2015
May 27-29, 2015

Copyright © 2015, IFAC 201



 

 

3 

 

 

 
 

system age in a gas turbine engine, is considered in this 

study. Hence, (9) can be derived as (Crow, 1974): 
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Hence, the unbiased estimator for the variable,  can be 

written as (Crow, 1975):  

 ˆ1

N

N 
  (11) 

As the next step, the confidence bounds for the parameters of 

  and   should be derived. Considering the parameter, ̂ , 

the confidence bounds for hypotheses testing the true value of 

  are derived by using a Chi-square distribution with M2  

degrees of freedom (Crow, 1975): 






ˆ

22 M
  (12) 

(12) can be used to test hypotheses on  . By considering 

M is moderate, the statistics of   can be written as (Crow, 

1975): 
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where (13) is distributed approximately with mean 0 and 

variance 1. Hence, the approximate confidence bounds for 

 , were the   1001  percent lower and upper confidence 

bounds can be written as: 
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where 
P  is the  -th 

2
1    percentile for a normal 

distribution with mean 0 and variance 1.  Hence, the 

  1001   percent lower and upper confidence bounds for   

can be written as: 
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One should note that (14) and (15) have often been 

categorized as the conservative simultaneous confidence 

bounds on the parameters of   and   with    10011    

percent. As the next step of this study, the estimated and 

actual system failure events should be compared to observe 

the goodness for the proposed model. Considering a situation, 

where the actual system failure events are known, Cramer-

Von Mises goodness statistics can be used to test the null 

hypothesis. Hence, the proposed NHPP model with the 

estimated parameter values and its capabilities to 

appropriately capture the actual system failure behaviour can 

be inspected. Hence, the Cramer-Von Mises goodness test 

can be written as (Crow, 1974): 
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Considering the hypothesis 1H  for the system failures are 

following a 1 , where the constant failure rate is 

associated. Hence, the hypothesis 2H  can be presented as 

that the failure rate follows a nonhomogeneous passion 

process with the proposed intensity function and   is 

unspecified.  If the hypothesis 2H  has proven to be accepted, 

the parameters estimated for   and    are acceptable.  

Hence, if 2
MC  is greater than the selected critical value, the 

hypothesis 2H  is rejected and if 2
MC  is less than the selected 

 
Fig. 1: Shutdown periods and Failure periods for TG-A 
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critical value, the hypothesis 
2H  is accepted at the respective 

significant levels.  

Finally, the mean time between failures (MTBF) is calculated 

for the proposed model. Hence, the instantaneous MTBF can 

be written as: 

       1
1ˆ1 ˆˆˆˆ



  tttM  (17) 

The confidence interval for  tM̂  (i.e. estimated value 

of  tM ) provides a measure of the uncertainty around the 

calculated value. The two sided  1001   percent confidence 

intervals on  tM  can be written as (Crow, L. H., 1977): 

     tMtMtM ˆˆˆ
21   (18) 

where 
1  and 

2  can be obtained from the available data 

tables in (Crow, 1977) for the   1001  percent lower and 

upper confidence bounds. 

3. PARAMETER ESTIMATION 

The system shutdown and failure events for a selected gas 

turbine engine (TG-A) for the last 4 year period (i.e. the total 

operational period) is presented in Figure 1. This CM data 

consist of a total monitoring period of 34708 (Hrs) of the 

shutdown and failure periods of the selected gas turbine 

engine. That has been divided into 3500 (Hrs) operational 

intervals under 10 plots in the same figure, in which has the 

improved visibility. The shutdown periods are represented 

under blue color blocks and the system failure periods are 

represented under red color blocks (see Figure 1). 

Considering the CM data of the gas turbine engine, the 

cumulative non-shutdown period for the same gas turbine 

engine is derived, where the shutdown periods have been 

removed and the non-shutdown period are combined to 

calculate a cumulative total operational period. One should 

note that the combination point of two non-shutdown periods 

is considered as an event separator. These event separators 

are introduced to keep track of the non-shutdown periods. 

Furthermore, the respective failure periods are adjusted in 

accordance with the removal of the non-shutdown periods. 

Therefore, the cumulative non-shutdown period has reduced 

to 23649 (Hrs) from the total operational period of 34708 

(Hrs). Then, the lengths of the failure periods are removed 

from the cumulative non-shutdown period and the failure 

events are introduced. Therefore, this approach has reduced 

the operational period (i.e. system age) for the respective gas 

turbine engine, where the total operational hours has reduced 

approximately to 22596 (Hrs) (i.e. (Hrs) 22596T ) from the 

cumulative non-shutdown period of 23649 (Hrs).  

The system operational period (i.e. calculated operational 

hours (COHs)), the event separators, and failure events are 

presented in the Figure 2. Furthermore, the machine recorded 

operational hours (MROHs) with the separators that were 

recorded by the gas turbine engine itself are also plotted in 

the same figure. It is expected that the MROHs should 

overlay within the COHs and the failure events.  However, 

the MROHs have been shifted left with respect to the COHs 

and the failure events as presented in the figure. One should 

note that the MROHs consist of fewer hours than the COHs 

of the same gas turbine engine.  

The number of failures for the same gas turbine engine with 

respect to the system age is presented in plot (a) of Figure 3. 

Furthermore, the respective MROHs and COHs values with 

respect to each failure are presented in plot (b) of Figure 3  

 
Fig. 2: Operational hours and Failure events for TG-A 
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and the respective errors between the MROHs and COHs 

values are presented in plot (c) of Figure 3. 

Even though, it is expected that the MROHs and COHs may 

have same values for respective failures, there are some 

deviations. In some situations, the error value is increased to 

a larger value initially and that is decreased to a much lower 

error value. This results show that the MROH values may 

have some time delay on recording the data with compare to 

the COH values. Furthermore, it is noted that the system 

start-up and shutdown hours have not been recoded under the 

MROHs due to the fact that it may not operate the MROH 

counting system during the start-up and shutdown periods. 

Therefore, the MROHs consist of fewer hours than the COHs 

and the errors between those two values are increasing (see 

plot (c) of Figure 3). However, the COHs data have been 

used for the parameter estimations process, the calculation of 

the failure intensity function with respect to the system age. 

Furthermore, it is concluded that the same machine has been 

used throughout the entire period (i.e. machine has not been 

replaced with another machine) by considering the MROHs. 

Then, Laplace trend test in (1) has been used to evaluate the 

behavior of the system failure rate and the calculated value 

can be written as: 

1.1894LU  (19) 

The Laplace trend test value is greater than zero, therefore the 

gas turbine engine with slight increasing failure rate (i.e. 

decreasing reliability) can be concluded. The significant level 

(from the standard normal table) of the results in can be 

further analyzed, where 1894.1LU  can approximate the 

statistical significance to 88%. Therefore, the proposed 

nonhomogeneous Poisson process model in (2) is a suitable 

candidate (within the respective statistical significance) for 

modeling the system reliability in a gas turbine engine. As 

the next step, the estimated values for the failure intensity 

function are calculated by considering (10) and that can be 

written as: 

0028.0ˆ  , 1.0542ˆ   (20) 

Therefore, the gas turbine engine characterization slightly 

under the wear-out phase can be concluded. The respective 

failure intensity function for the selected gas turbine engine 

with respect to the system age is presented in plot (d) of 

Figure 3.  Hence, unbiased estimator for   in (11) can be 

calculated as: 

1.0447  (21) 

The approximate confidence bounds for  , where %90  lower 

and upper confidence bounds in (14) can be calculated as: 

9254.0L , 1831.1U  (22) 

The lower and upper confidence bounds for   can be written 

as: 
4105879.6 L , 0121.0U  (23) 

Hence, %81  conservative simultaneous confidence bounds 

on the parameters   and   are presented in (22) and (23) 

equations, where 1.  and 1. . The mission reliability for 

15 day (i.e. 360 (Hrs) intervals is presented in plot (e) of 

Figure 3. The mission reliability represents the probability 

that the selected gas turbine engine survives without any 

failures within the next 15 days (i.e. 360 (Hrs) with respect to 

its age. As presented in the figure, the mission reliability is 

decreasing with respect to the system age despite the present 

maintenance actions. 

 
Fig. 3: System event data for TG-A 
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Furthermore, the expected number of failure with next 15 

days (i.e. 360 (Hrs) at the end of operational hours of 22596 

(Hrs) has also been calculated by using (3): the calculated 

value is 1.8476 failure events per 15 days (i.e. MTBF is 

approximately 194.85 (Hrs). Therefore, it is concluded that 

every 16 days 2 system failures in average can be observed 

under the present operational conditions.  The instantaneous 

MTBF for the same gas turbine engine under the same 

operational period is presented in plot (f) of Figure 3. One 

should note that the MTBF value has reduced to 194.85 (Hrs) 

at the end of the operational period and that can be 

approximated as 8.12 (days). Therefore, it can be concluded 

that a system failure can occur approximately every 8 day in 

average for this gas turbine engine. Hence, the estimated 

lower and upper bound for the MTBF with the two-sided 

90% confidence interval can be written as: 

  (Hrs) 48.246)(22596) (Hrs 27.156  HrsTM       (24) 

where the table values can be extrapolated as (AMSAA, 

2000) 802.01  and 265.12  . Therefore, the system can 

face a failure in approximately 6.51 (days) to 10.27 (days).  

The actual failures (Actual) of the gas turbine engine and the 

predicted failures (Estimated) with respect to the system age 

are presented in  plot (g) of Figure 6. The average failure rate 

for actual and estimated situations using for 2256 (Hrs) by 

considering 20 intervals are presented in plot (h) of Figure 3. 

These results present an increasing failure rate with respect to 

the system age. Finally, the Cramer-Von Mises goodness-of-

fit for the derived parameters   and   is conducted. The 

requirement of Cramer-Von Mises goodness-of-fit to be 

N=110, 01.0  then  34.0
2
TC  (AMSAA, 2000). So the 

model to be accepted for the same significant level is 
22

TM CC  . A Cramer-Von Mises goodness of test for this 

model is calculated: 

0.4315 2 MC           (25) 

Hence, the hypothesis 2H  for the presented model should be 

rejected due to 22
TM CC   for the significant level of 01.0 .  

4. CONCLUSIONS 

An overview of the mathematical reliability modelling of gas 

turbines in offshore platforms is presented in this study. The 

system CM data has been analyzed and the failure intensity, 

the mission reliability and the MTBF conditions for the 

present system status have been derived. However, the 

hypothesis 2H  for the presented model is rejected and there 

are three challenges can be observed with respect to the 

available data. Firstly, the   value is approximately equal to 

1. Secondly, the system start-up failures and operational 

failures are combined in this data and that should be 

separated. Thirdly, the differences between the actual and the 

predicted failures are not strongly consistence with actual 

failure situations (see plot (g) Figure 3). One should note that 

several repeated failures can be observed around 10111 (Hrs) 

and 18924 (Hrs) of the system age in the same figure. These 

two situations have influenced on the failure model in the gas 

turbine engines and that effect should be compensated to 

improve the model accuracy, in which has been proposed as 

the future work. 
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