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Abstract: A Moving Horizon Estimator (MHE) is designed for a petroleum production well
with an Electric Submersible Pump (ESP) installed for artificial lift. The focus is on estimating
the flow rate from the well, the viscosity of the produced fluid, and the productivity index of the
well. The software package ACADO is used to implement a Moving Horizon Estimator using a
third-order nonlinear model. Simulation results show that the implemented estimator is able to
estimate the desired variable and parameters. The resulting C-code solver is very fast, admitting
real-time implementation.
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1. INTRODUCTION

Information about the flow rate and phase fractions from
individual wells in an oil field is important for flow rate
allocation and production optimization. Measurements of
these have traditionally been performed with specialized
and costly instrumentation. Multi-phase flow metering has
been a challenge for offshore applications, both due to the
complexity of such fields, and space requirements, costs
and uncertainties associated with such instrumentation
(Varón et al., 2013). Moreover, for fields producing oil with
a high viscosity, multi-phase flow meters may not be very
reliable.

The Electric Submersible Pump (ESP) is one of the most
widely used methods for artificial lift in the oil industry
(Takacs, 2009; Varón et al., 2013). There are a number of
variables that affect the life-time of ESP installations, such
as power consumption, flow rate, pressure, temperature,
thrust forces and vibration. Operation outside of certain
limits on these variables may lead to failure or reduced
life-time of the ESP, which has a huge economic impact,
both due to the costs of replacing the pump, and the loss
of production.

Reliable measurements are difficult to obtain for many
important variables and parameters in ESP-lifted wells.
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As a lot of instrumentation is usually included in ESP
installations, using the ESP as a flow meter has recently
been investigated. Extensive testing of both flow meters
and ESPs for flow allocation purposes was performed in
Beall et al. (2011). It was shown that flow meter accu-
racy is highly dependent on correct fluid characterization,
specifically viscosity and phase fractions are important
parameters. In Olsen et al. (2012) the ESP tests and flow
rate allocation was further discussed, and the results from
the ESP tests were used to develop an algorithm that
estimates flow rates based on measurements from the ESP
system and fluid properties, combined with models of the
ESP system components. The flow rate measurements de-
pend on the pump speed, ESP head or brake horsepower,
and the viscosity of the fluid. Promising results with this
approach were reported. Uncertainties in the flow rate
measurements by using the ESP as a flow meter were
investigated in Varón et al. (2013), where it was shown that
this depends on the pump speed and fluid viscosity. This
reveals that a main limitations in this approach is that
it depends heavily on correct information about certain
parameters, such as the viscosity of the produced fluid.

Estimators (observers) are usually implemented to esti-
mate unmeasured states in a system model that is used
for control and monitoring purposes. The Kalman Filter
is an efficient solution to the estimation problem for linear
systems, but the estimation of nonlinear systems is still a
challenging problem. Various nonlinear extensions of the
linear Kalman filter has been developed, including the Ex-
tended Kalman Filter (EKF) and the Unscented Kalman
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Fig. 1. ESP-lifted well

Filter (UKF), the EKF probably being the most commonly
implemented estimator for nonlinear systems (Julier and
Uhlmann, 2004). The Moving Horizon Estimator (MHE)
(Rao et al., 2003) is an optimization-based method for
nonlinear estimation that works on a limited number of
past measurements (a ’window’ or ’horizon’). The main
advantages of MHE is the explicit consideration of state
and parameter constraints, optimality of the estimates (in
a least-squares sense), and the stability properties (Kühl
et al., 2011).

In the recent years, several researchers have investigated
estimation in petroleum wells based on dynamic models of
the wells. Estimation in gas-lifted wells was investigated
e.g. in Bloemen et al. (2004); Eikrem et al. (2004); Aamo
et al. (2005), and for drilling applications in e.g. Siahaan
and Nygaard (2008); Paasche et al. (2011); Kaasa et al.
(2012); Nikoofard et al. (2014); Hasan and Imsland (2014).

In this paper, MHE is implemented for a well with an
ESP and a production choke valve, as shown in Fig. 1.
The focus is on estimating the flow q from the well, the
viscosity µ of the produced fluid, and the productivity
index PI of the well, based on measurements that typically
are available in such systems. Both flow rate of the
produced fluid and the well productivity index (PI) are
very important parameters for flow rate allocation and
production optimization, and both flow rate and viscosity
of the produced fluid are needed to determine whether the
ESP has safe operating conditions.

A main feature of the approach presented in this paper is
that not only a model of the ESP, but a dynamic model
of the entire well is used to get better estimates of the
unknown parameters. This includes models of the pressure
drop in the well between the ESP and the production
choke, the pressure drop over the production choke, and
the inflow from the reservoir. Moreover, the estimations
are based on measurements from a certain time window
(estimation horizon), which adds up to reliability and
accuracy of the estimates.

Table 1. Model variables

Inputs Unit Meas

f ESP frequency Hz yes

z Production choke valve opening - yes

Pressures Unit Meas

pm Manifold pressure Pa yes

pwh Wellhead pressure Pa yes

pp,out ESP outlet pressure Pa yes

pp,in ESP inlet pressure Pa yes

∆pp Pressure difference across ESP Pa yes

pbh Bottomhole pressure in well Pa no

∆pf Frictional pressure drop in the well Pa no

F1 Frictional pressure drop below ESP Pa no

F2 Frictional pressure drop above ESP Pa no

Flow rates Unit Meas

q Average flow rate in well m3/s no

qc Flow rate through production choke m3/s no

qr Inflow from reservoir into well m3/s no

ESP Unit Meas

I Electric current in ESP motor A yes

H Head developed by ESP m no

P ESP brake horsepower (BHP) W no

2. SYSTEM MODEL

The estimation in this paper is based on a dynamic model
of the well and the ESP. The estimation also depends on
available system information, such as measured variables,
known model parameters and empirical test data. In
this section, the model that is used in the estimator is
presented, and the information assumed to be available is
outlined.

2.1 Model Variables

The considered well is shown in Fig. 1. (A vertical well
is depicted, but the model also describes deviated wells.)
These are the main variables in the system:

• The control inputs to the system are the rotational
frequency f of the ESP, and the production choke
valve opening denoted z.

• pm denotes the manifold pressure, which is treated as
a disturbance in the model.

• The wellhead pressure is denoted pwh, and the bot-
tomhole pressure is denoted pbh.

• pp,in and pp,out denote the pressures at the inlet and
outlet of the ESP, and ∆pp = pp,out − pp,in the
pressure increase provided by the ESP.

• I denotes the electric current supplied to the ESP
motor.

• q denotes the average flow rate in the well, qc the flow
rate through the production choke valve, and qr the
inflow from the reservoir.

A complete list of variables that are used in the model
is given in table 1. Model parameters are described in
sections 2.4 and 2.5.

2.2 Measurements

The following assumptions are made regarding available
measurements in the system:
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• Pressure sensors are installed at the production man-
ifold, so that the manifold pressure pm and the well-
head pressure pwh are measured.
• The ESP is equipped with pressure sensors so that
pp,in, pp,out and thus ∆pp are measured.
• The Variable Speed Drive (VSD) provides measure-

ments of the electric current I supplied to the ESP
motor, and the rotational frequency f of the ESP. 1

• The choke opening z is known or measured.

The variables that are assumed to be measured are also
indicated in table 1.

2.3 Model

The model used in the estimator is based on a simple
model of an ESP-lifted well developed by Statoil (Pavlov
and Alstad, 2010; Pavlov et al., 2014), and is modified to
include Viscosity Correction Factors (VCFs) in the model
of the ESP. The resulting model is a nonlinear third-order
model, given by the following differential equations:

ṗbh =
β1
V1

(qr − q) (1a)

ṗwh =
β2
V2

(q − qc) (1b)

q̇ =
1

M
(pbh − pwh − ρghw −∆pf + ∆pp) (1c)

and the following algebraic equations:

Flow: qr = PI (pr − pbh) (2a)

qc = Cc

√
pwh − pm z (2b)

Friction: ∆pf = F1 + F2 (2c)

Fi = 0.158 · ρLiq
2

DiA2
i

(
µ

ρDiq

) 1
4

(2d)

ESP: ∆pp = ρgH (2e)

H = CH(µ)H0(q0)

(
f

f0

)2

(2f)

q0 =
q

Cq(µ)

(
f0
f

)
(2g)

Additional measurements are given by the following equa-
tions:

I =
Inp
Pnp

P (3a)

P = CP (µ)P0(q0)

(
f

f0

)3

(3b)

pp,in = pbh − ρgh1 − F1 (3c)

Depending on the fluid properties and pressure/temper-
ature conditions in the well, density and viscosity may be
different in different parts of the well. In this paper we
consider a well where changes in these properties through-
out the well are not significant. This corresponds to a well
producing with a low gas-to-oil ratio and primarily with
oil continuous flow.
1 In most cases an ESP is driven by an asynchronous motor. This
means that the rotational frequency f of the ESP shaft will be
different from the frequency of the AC current supplied to the motor.
Many modern VSDs for ESPs can provide accurate estimates of the
shaft speed, and the assumption that f is measured will be valid for
such VSDs.

Table 2. Model parameters

Well dimensions and other known constants

g Gravitational acceleration constant 9.81 m/s2

Cc Choke valve constant 2·10−5 *

A1 Cross-section area of pipe below ESP 0.008107 m2

A2 Cross-section area of pipe above ESP 0.008107 m2

D1 Pipe diameter below ESP 0.1016 m

D2 Pipe diameter above ESP 0.1016 m

h1 Height from reservoir to ESP 200 m

hw Total vertical distance in well 1 000 m

L1 Length from reservoir to ESP 500 m

L2 Length from ESP to choke 1 200 m

V1 Pipe volume below ESP 4.054 m3

V2 Pipe volume above ESP 9.729 m3

ESP data

f0 ESP characteristics reference freq. 60 Hz

Inp ESP motor nameplate current 65 A

Pnp ESP motor nameplate power 1.625·105 W

Parameters from fluid analysis and well tests

β1 Bulk modulus below ESP 1.5·109 Pa

β2 Bulk modulus above ESP 1.5·109 Pa

M Fluid inertia parameter 1.992·108 kg/m4

ρ Density of produced fluid 950 kg/m3

pr Reservoir pressure 1.26·107 Pa

Unknown parameters

PI Well productivity index 2.32·10−9 m3/s/Pa

µ Viscosity of produced fluid Varying Pa · s
* Appropriate SI units

2.4 Model Parameters

An overview of the parameters used in the model is given in
table 2. This includes fixed parameters (such as physical
dimensions of the well and the ESP motor ratings) and
parameters assumed to be obtained from analysis of fluid
samples (such as density ρ, bulk moduli βi, and the fluid
inertia parameter M). The reservoir pressure pr is also
assumed to be known from dedicated well tests. The
well productivity index PI and the fluid viscosity µ are
unknown parameters (to be estimated).

2.5 ESP Characteristics and Viscosity Correction Factors

ESP characteristics for Head H0(q) and Brake Horsepower
P0(q), as well as Viscosity Correction Factors (VCFs)
Cq(µ), CH(µ) and CP (µ) for flow, head and BHP, respec-
tively, are also assumed to be known for the particular
ESP used in the well. The ESP characteristics are given
for water at a given reference frequency, and are provided
by the pump vendor, while VCFs are usually obtained
from published sources (HI, 1969), or through dedicated
lab tests. The characteristics that are used in the model
are stated in table 3.

The ESP characteristics and VCFs used in this paper are
given by polynomials on the form:

P (x) =
4∑

i=0

cix
i (4)

with the corresponding coefficients ci for each variable
given in table 4. The VCFs are also shown in Fig. 2, and
are valid for viscosities up to 500 centipoise.
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Table 3. ESP characteristics and Viscosity Cor-
rection Factors (VCFs)

Var. Description Unit

H0 ESP head characteristics m

P0 ESP BHP characteristics W

q0 Theoretical flow rate at reference freq. m3/s

CH VCF for head -

CP VCF for brake horsepower of the ESP -

Cq VCF for ESP flow rate -

Table 4. Polynomial coefficients

c4 c3 c2 c1 c0

H0 0 0 -1.2454e6 7.4959e3 9.5970e2

P0 0 -2.3599e9 -1.8082e7 4.3346e6 9.4355e4

Cq 2.7944 -6.8104 6.0032 -2.6266 1

CH 0 0 0 -0.03 1

CP -4.4376 11.091 -9.9306 3.9042 1

Fig. 2. Viscosity correction factors

3. MOVING HORIZON ESTIMATION

A Moving Horizon Estimator (MHE) is implemented to
estimate the flow rate q and the unknown parameters µ
and PI. The implementation of the estimator is outlined
in this section.

3.1 ACADO Code Generation Tool

The estimator is implemented using the Code Generation
tool included in the ACADO toolkit (Automatic Control
And Dynamic Optimization toolkit) (Houska et al., 2011).
This tool exports highly efficient C-code for solving nonlin-
ear MPC and MHE problems by means of the real-time it-
eration scheme with Gauss-Newton Hessian approximation
(Houska et al., 2009–2013). The solver method is based
on results presented in Diehl et al. (2002), and is further
described in Kühl et al. (2011). The scheme uses only
one iteration per measurement sample, and divides the
problem into a preparation phase and a feedback phase.
The generated ACADO solver calls an embedded variant
of the active-set online QP solver qpOASES, implemented
in basic C++. 2 (Houska et al., 2009–2013; Ferreau et al.,
2014)

2 ACADO has an interface that allows for implementation of other
QP solvers, but qpOASES is the default solver and was used in this
paper.

3.2 MHE Formulation for ACADO Code Generation Tool

The ACADO Code Generation tool can be used to solve
an MHE problem formulated as follows:

min
x,u
‖x0 − xAC‖2SAC

+

N−1∑
k=0

‖h(xk, uk)− ȳk‖2Wk

+ ‖hN (xN )− ȳN‖2WN
(5a)

Subject to:

xk+1 = F (xk, uk, dk), k = 0, ..., N − 1 (5b)

xlowk ≤ xk ≤ xhighk , k = 0, ..., N (5c)

ulowk ≤ uk ≤ uhighk , k = 0, ..., N − 1 (5d)

N is the length of the estimation window (number of
intervals/samples), the subscript k refers to the time
samples in the estimation window, xk and uk denote the
estimated states and inputs at these samples, xN is the
estimate of the current state, and x0 is the estimate at the
beginning of the estimation window, i.e. N samples in the
past. ȳk and ȳN denote actual measurements, h and hN
are measurement models. SAC , Wk and WN are weighting
matrices. The constraint (5b) is the (nonlinear) system
model, 3 the constraints (5c) and (5d) place bounds (box
constraints) on the states and inputs.

xAC is the best available estimate of x0 before the current
sample, e.g. the estimate of x1 from the previous sample.
The first term in the objective function (5a) penalizes
any deviation in the estimated x0 from xAC , as xAC and
SAC contain all information obtained before the estimation
horizon. This is commonly referred to as the arrival
cost (AC). The weighting matrices may change between
each sample, and indeed, SAC is commonly updated by
Kalman Filter-based updates after each new measurement
(Rao et al., 2003). The other two terms in the objective
function penalize deviation between actual measurements
and estimated measurements modeled by h and hN , thus
the estimator will seek to find estimates such that the
behavior of the model corresponds to the actual dynamics
observed.

Even though the inputs typically are known (measured)
variables, they are also decision variables in the MHE for-
mulation. This means that the estimator is not restricted
to use the exact measurements of the inputs when fitting
the model to the measurements, and a noise filtering effect
is thus introduced. On the other hand, deviations in the
estimates from the measurements are penalized by the
weights in Wk, and reliable measurements should have
large weights.

Further details regarding ACADO Code Generation and
the MHE problem formulation can be found in Houska
et al. (2009–2013).

3.3 MHE Formulation for the ESP-lifted Well

A MHE problem for the considered system is implemented
in C++ as an Optimal Control Problem (OCP) using

3 (5b) describes a discrete-time system model. However, the current
version of ACADO Code Generation tool only supports a continuous-
time formulation of the system model; discretization is automatically
performed by ACADO.
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Table 5. MHE settings

N 15

Ni 5

Ts 1 second

Integrator type Explicit Runge-Kutta 4

Discretization type Multiple shooting

ACADO syntax (cf. Houska et al. (2009–2013)), formu-
lated as (5). The model given by (1)-(2) is also written in
this syntax and given as constraint (5b) in the OCP.

The parameters µ and PI are added as states with differ-
ential equations:

µ̇ = 0 (6a)

ṖI = 0 (6b)

The measured disturbance pm is treated as an input. The
state and input vectors are thus given by:

x = [pbh, pwh, q, µ, PI]
T

(7a)

u = [f, z, pm]
T

(7b)

The estimated measurement function h is given by:

h = [I, pp,in, ∆pp, f, z, pm, pwh]
T

(8)

and is implemented using the model (1)-(2) and (3). 4 As
hN may not depend on any inputs in ACADO, it is not
used.

The constraints (5c) and (5d) on the states and inputs,
respectively, are derived from physical considerations and
system knowledge, and are given by:

35 ≤ f ≤ 65 [Hz] (9a)

0 ≤ z ≤ 100 [%] (9b)

1 ≤ pm ≤ 50 [bar] (9c)

1 ≤ pwh ≤ 60 [bar] (9d)

1 ≤ pbh ≤ pr [bar] (9e)

0 ≤ q [m3/s] (9f)

0.1 ≤ µ ≤ 500 [cP] (9g)

Constraints on the inputs are included to provide better
estimates, e.g. the choke will never be estimated to be more
than 100 % open.

3.4 Settings and Weighting

There are a lot of settings that may affect the performance
of the MHE, including the length N of the estimation
horizon, number of integrator steps per sampling interval
Ni, integrator type and discretization type. The settings
used in the simulations are given in table 5.

The weighting matrix Wk is the main tuning parameter
in the estimator. In general, the weights should be chosen
based on how much the measurements and the measure-
ment models can be trusted. A noisier measurement or
a less accurate model should have a smaller weight. The
weights Wk used in this paper are given by

Wk = diag(1, 1, 0.67, 33.3, 10, 4, 3.33), ∀ k (10)

4 While SI units are used in the model and simulations, the pressures
in the measurement function are given in [bar], and the choke opening
in [%], for a better relative scaling of the variables.

Table 6. Standard deviation of measurement
noise

Measurement I pp,in ∆pp f z pm pwh

Std. dev. (σ) 0.02 0.02 0.02 0.005 0.001 0.01 0.01

These are mainly derived from the inverse of the standard
deviation of the measurement noise for each measurement,
given in table 6, and the inputs are weighted more than
the modeled measurements. The weights are also scaled
according to the typical range of each variable.

While ACADO includes functionality for Kalman Filter-
based updates of the arrival cost weighting matrix SAC

(see section 3.1), a constant SAC is used in the simulations.
This introduces more degrees of freedom when tuning the
estimator. The (original) model states are weighted quite
evenly in SAC , but the parameters µ and especially PI have
large weights. PI is assumed to be constant, and a large
arrival cost ensures that this parameter does not change
too fast in the estimation. The arrival cost used is given
by

SAC = diag(1 e−10, 2 e−10, 5 e 7, 1 e 2, 5 e 23) (11)

The state vector (7a) is given in SI units, and the arrival
cost is scaled accordingly.

4. SIMULATION RESULTS

Simulation results of the implemented MHE are presented
in this section.

4.1 Test Scenario

Data from a simulation scenario presented in Binder et al.
(2014), where an MPC was implemented for the system,
is used as a test scenario for the MHE. 5 The scenario is
modified to include a varying viscosity of the produced
fluid. The viscosity can change relatively fast due to
phenomena like phase inversion, where the flow transitions
from oil being present as droplets in a water continuous
flow, to water being present in an oil continuous flow, or
vice versa (Piela et al., 2008). In the model used in the
simulations, a change in the viscosity of the produced fluid
affects the whole well instantaneously, while in a real well,
a change in the viscosity would only propagate with the
speed of the flow in the well. The well dynamics would
thus be a lot slower as e.g. the friction in the well would
change slowly. In the simulations, we have tested the MHE
in an extreme (although somewhat unrealistic) scenario to
challenge the estimator and evaluate its performance in
extreme conditions.

4.2 Measurement Noise

The MHE is tested with measurement noise. Each mea-
surement is generated using

y = (1 + n) · yreal (12)

where n is a noise signal with normal distribution. The
standard deviation of the measurement noise for each
measurement is given in table 6.

5 The model used to generate the simulation data is identical to
the model used in the MHE, except that the MHE model assumes a
constant density ρ, and that they are discretized differently.
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Fig. 3. Estimation results

Table 7. Mean estimation error [%]

Time 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9

q 3.5 -3.9 -0.8 3.8 0.3 -2.1 0.2 -0.1

µ -24.5 43.7 9.5 -24.2 -1.7 29.9 -3.3 0.4

PI 0.1 0.0 -0.3 -0.1 0.0 0.0 0.0 -0.0

pbh -1.7 2.6 0.4 -2.2 -0.1 1.0 -0.1 0.1

4.3 Estimation Results

MHE estimation results are presented in Fig. 3. The real
data is shown as solid blue lines, the estimates are shown
as dash-dotted red lines. As can be seen, all estimates
are quite accurate, without any steady-state offset, though
there is a small lag in the estimates. The estimator does not
have any information about the dynamics of the parameter
µ, which changes very fast in this scenario, while µ̇ = 0
is assumed in the estimator model. This means that the
estimator needs to use feedback from the measurements
to make correction for this, and this needs some time in
order not to amplify measurement noise too much. This
error propagates to the other states, as the parameter µ is
an essential parameter in the system model.

In table 7, the average estimation error (in percent) is
calculated for each minute of the simulation. Due to the
lag in the estimates, there are large relative errors during
the transients, especially for the estimates of viscosity µ.
The estimates at steady-state are quite accurate, see e.g.
the last time interval in the table, from 8 to 9 minutes in
the simulation.

Fig. 4. Estimation results with increased density

Table 8. Mean estimation error with increased
density [%]

Time 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9

q 7.2 -0.8 0.9 7.0 4.7 0.6 1.0 1.2

µ -34.3 18.4 -9.7 -33.7 -15.3 22.2 11.0 -1.0

PI -0.7 -0.9 -1.9 -2.2 -1.8 -1.5 -1.6 -2.1

pbh -4.1 -0.3 -2.4 -5.0 -2.9 -1.3 -1.7 -2.2

4.4 Parameter Sensitivity

Although many parameters in the model are assumed to be
known and constant, some parameters may be inaccurate
or varying. E.g. the fluid density ρ may change in the
period between the times fluid samples are taken, and thus
may be inaccurate. To investigate how such model inac-
curacies may affect the estimations, a simulation with an
increased fluid density is performed. ρ is set to 1000 kg/m3

in the simulator, while it is kept at 950 kg/m3 in the
estimator model. The results are shown in Fig. 4 and
table 8. The estimates are still quite good, though the
highest viscosity levels are not estimated very accurately,
and the estimates of the flow rate are thus a bit too high,
e.g. in the interval between 5 and 6 minutes. The estimates
of PI are also less accurate. Nevertheless, this shows that
the estimator is quite robust to unknown errors in the
model parameters.

4.5 Computation Time

As mentioned in section 3.1, the nonlinear MHE problem
is solved in two phases. A feedback phase is run for each
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Table 9. MHE computation time in [µs]

Mode Preparation Feedback Total

Avg. Worst Avg. Worst Avg. Worst

Original 300 430 496 833 796 1 263

Increased ρ 300 479 490 1 079 790 1 467

new measurement, and a preparation phase is run after the
estimate is ready, to prepare for the next measurement.
The computation times of the MHE solver on a computer
running OS X 10.9, with a 2.6 GHz Intel Core i7 processor
and 16 BG of RAM, are presented in table 9. As can be
seen in the table, the solver is very fast, and the MHE
problem is solved in less than a millisecond on average. The
worst-case computation time is less than 1.5 milliseconds.

5. CONCLUSIONS

In this paper, a Moving Horizon Estimator was success-
fully implemented for a well with an Electric Submersible
Pump. The implemented estimator was able to estimate
the flow rate and the productivity index of the well, and
the viscosity of the produced fluid. ACADO was used to
implement the estimator, and proved to be a capable soft-
ware package, providing a fast and efficient solver for the
MHE problem. As the solver was very fast, the estimator
may also be feasible to implement on industrial embedded
hardware, though this was not investigated in this paper.
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