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Abstract: This paper proposes a procedure to automatically select transient windows for system
identification from routine operation data. To this end two metrics are proposed. One quantifies
the transient content in a given window and the other provides an overall measure of correlation
between such transients and the chosen model input. The procedure is illustrated using data
from an oil well that operates in deep waters.
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1. INTRODUCTION

The set of techniques for constructing models from ob-
served data is known, in the control theory context, as
System Identification.

To construct models from a data set it is necessary to
have a set of data that contains relevant information about
the system. Some times only “routine operation” data is
available and, other times, it will be necessary to create
tests for extract dynamic information about the system.

There are tests that excite a wide range of system fre-
quencies (e.g. pseudorandom binary signal (PRBS)) and,
therefore, are proper for linear system identification since
the output data obtained will contain significant informa-
tion about the system dynamics.

For nonlinear models there is a need to drive the system
over a wider range of amplitudes and PRBS may not be
the best choice as shown by Leontaritis and Billings (1987).
Classical system identification textbooks offer some prac-
tical guidance in what concerns testing (Ljung, 1987).

Sometimes it will not be possible to perform experiments
on the system and historical data is used. Since the data
is recorded during “routine operation”, the system will
probably be in steady state most of the time and there
will be few data windows containing relevant dynamical
information.

Therefore in practical problems of system identification
from routine operation data the choice of informative
windows of data are both subjective and greatly time
consuming. Hence this paper puts forward a criterion to
aid in the choice of informative windows of data from a
large data set. The method was developed for an oil well
(Teixeira et al., 2014), but should also be useful in other
applications.

In this paper, two metrics are proposed to classify windows
from the oil well recorded data with the identification in
view. Each metric addresses one of the following points:

(1) The transient is appropriate for identification only
if it contains relevant information about the system
dynamics;

(2) The output should be well correlated with the input,
otherwise the transient is caused by an unmeasured
disturbance and the window are not appropriate for
identification of an input-output model.

Using such metrics it is possible to create automatic
routines that choose good transients for identification.

The remainder of the paper is organized as follows. In Sec-
tion 2 some mathematical concepts are quickly revisited.
These concepts will be used on Sections 3 and 4 to define
the metrics. In Section 5 the use of the metrics is illustrated
considering a real numerical problem, and finally, some
concluding remarks are provided in Section 6

2. MATHEMATICAL BACKGROUND

2.1 Singular Value Decomposition (SVD)

Theorem 1. Any m × n matrix A with rank r can be
factored as (Strang, 1988):

A = UΣVT ,

where U (m × m) and V (n × n) are both ortogonal 1 .
And Σ is a m × n matrix containing r elements on its
main diagonal:

Σ = diag(σ1, σ2, . . . , σr).

The scalars {σ1, σ2, . . . , σr} are the singular values of A
and σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Proof. This is shown in (Strang, 1988, pp.450-451).

The key ideia behind the SVD factorization is to take into
consideration the diagonalization of AAT and ATA:

Corollary 2. The columns of U are the eigenvectors of the
matrix AAT and the columns of V are the eigenvectors of
1 The matrix U is ortogonal if and only if UUT = I
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the matrix ATA. The singular values {σ1, σ2, . . . , σr} are

the square roots of the nonzero eigenvalues of both AAT

and ATA.

This can be easily understood considering:

AAT = (UΣVT )(VΣTUT ) = UΣΣTUT ,

and interpreting UΣΣTUT as the diagonalization of the
symmetric matrix AAT . The diagonal matrix containing
the eigenvalues of AAT is:

ΣΣT = diag(σ2
1 , σ

2
2 , . . . , σ

2
r),

and the columns of U are its eigenvectors.

Analogously, the columns of V are eigenvectors of ATA
and its eigenvalues are the squared singular values.

2.2 Cross Correlation Function

Given two stationary signals y(k) and u(k), the cross
correlation function measures the similarity between u
and copies of y shifted (lagged) by τ . It is defined as the
expected value (E{·}) of u times a shifted copy of y:

ruy(τ) = E{u(t)y(t+ τ)}, (1)

The cross correlation function can be estimated for a finite
time series with m samples by:

r̂uy(τ) =
1

m

m∑
k=1

u(k)y(k + τ). (2)

An important practical consideration is how large the cross
correlation should be so it indicate statistically significant
correlation between two signals. And, in fact, for two
uncorrelated signals u(t) and y(t) (where the expected
cross correlation is zero) there is a 95% probability that
the estimated normalized cross correlation falls within the
confidence interval :

−1.96√
m
≤ ρuy(τ) ≤ 1.96√

m
, (3)

where ρuy = r̂uy/σuσy is the normalized cross correlation
(σ stands for standard deviation).

Hence if the cross correlation is outside the confidence
interval at some lag (τ) it is fair to say that the two signals
have a high probability to be correlated at lag τ .

The correlation between a stationary signal y(t) and a
shifted version of itself is known as autocorrelation and
is denoted by:

ryy(τ) = E{y(t)y(t+ τ)}. (4)

All previous considerations are equally valid for the auto-
correlation function.

3. DYNAMIC BASED METRICS

More informative signals are better suited for identification
and will yield better parameter estimation. The next
section will discuss how to adjust an autoregressive model
to the signal y and a clear way to evaluate this signal
activity will arise as consequence.

3.1 Autoregressive (AR) Models and Regressor Matrix

A linear autoregressive (AR) model is defined as

y(k) = a1y(k−1)+a2y(k−2)+· · ·+any(k−n)+e(k), (5)

where e(k) is white noise and the scalar parameters
{a1, a2, . . . , an} may be estimated from recorded data. If
the signal y is known from the instant k = 1 to the instant
k = m, then

y (1) = a1y(0) + a2y(−1) + · · ·+ any(−n+ 1) + e(1)

y (2) = a1y(1) + a2y(0) + · · ·+ any(−n+ 2) + e(2)

...
...

...
...

...
...

y (m) = a1y(m− 1) + a2y(m− 2) + · · ·+ any(m− n) + e(m),

(6)

which can be rewritten in the matrix form as:

Ax + e = y, (7)

where A ∈ Rm×n is called the AR regressor matrix. Such
matrix and vectors have the following structure:

A =


y(0) y(−1) . . . y(−n+ 1)
y(1) y(0) . . . y(−n+ 2)

...
...

. . .
...

y(m−1) y(m−2) . . . y(m−n)

 ;

y =


y(1)
y(2)

...
y(m)

 ; e =


e(1)
e(2)

...
e(m)

 ; x =


a1
a2
...
an

 .
The AR regressor matrix may be written as:

A = [A1 A2 . . . An].

where Ai ∈ Rm is the i-th column of matrix A. Equation 7
may be rewritten as:

[A1 A2 . . . An]


a1
a2
...
an

 + e = y,

or, equivalently as a1A1 + a2A2 + · · ·+ anAn + e = y.

The range of matrix a A is defined as the vector space
that contais all possible results of Ax or, in other words,
all vectors that may be written as linear combinations of
the columns of A: a1A1 + a2A2 + · · ·+ anAn.

Because of the noise vector e, the output vector y does
not belong to the range space of the matrix A and there
is no general exact solution to (7). Its is generally possible
to find a solution x̂ in the least square sense, which
corresponds to the orthogonal projection ŷ of y onto the
range space of A. In this case the solution x̂ is such that:

Ax̂ = ŷ,

or, equivalently â1A1 + â2A2 + · · ·+ ânAn = ŷ.

The next theorem states the importance of the rank r of
the matrix A on the parameter estimates.
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Theorem 3. Given the equation

Ax̂ = ŷ, (8)

with rank(A) = r, x̂ ∈ Rn and ŷ ∈ Rm belongs to the
range of A. The solution x̂ belongs to a subspace of
dimension n− r.

Proof. Matrix A has r linear independent rows, hence
Eq. 8 imposes r linearly independent constraints to the
solution x̂. The vector x̂ belongs to the Rn of dimension
n. Each constraint narrows by one the solution subspace,
so the solution x̂ belongs to a subspace of dimension n−r.

Theorem 3 makes it easy to see that if n > r (there are
redundant regressors in the model), then infinitely many
solutions are possible to Eq. 8. Hence in order to have a
unique solution, the number of parameters should be equal
to the rank of the matrix A. Hence the rank of a given
AR regressor matrix is an upper bound to the number of
parameters that can be estimated for such regressors.

Thus the rank of the AR regressor matrix A is deeply
related with how much information one can extract from
a signal and, therefore, is a good metric to evaluate if a
window is suitable for identification.

3.2 Covariance Matrix

The covariance matrix of y ∈ Rm is defined as:

Cy = E{(y− µy)(y− µy)T } ∈ Rm×m, (9)

where µy is the mean value of y, and for the purpose of lin-
ear system identification it is zero. Under this assumption
Cy can be estimated as

Ĉy = lim
m→∞

1

m
ATA. (10)

Theorem 4. The AR regressor matrix A (rank r) and the

estimated covariance matrix Ĉy have the same rank.

Proof. From Corollary 2 the eigenvalues of Ĉy equals the
singular values of A squared. From Theorem 1, the matrix
A have r non-zero singular values. Thus, Ĉy have r non-
zero eigenvalues. Since the number of non-zero eigenvalues
is equal the rank of a matrix, so rank(Ĉy) = rank(A) = r.

In this paper the rank of the AR regressor matrix will be
used to evaluate the suitability of a window for system
identification. However, accordingly to Theorem 4, the
rank of the covariance matrix could also be used.

For a stationary input signal, the rank of Ĉu is known
as persistence of excitation (Ljung, 1987). There are two
main diferences between the concept of persistence of
excitation and the concept of AR regressor matrix rank
(proposed in this paper):

• Persistence of excitation is usually applied to the
input of a system. It quantifies which tests will result
in a good set of data for system identification. On
the other hand, the rank of the AR regressor matrix
is applied to the system output, usually obtained from
routine operation.
• Persistence of excitation is defined for stationary sig-

nals. The purpose of the rank of the AR regressor

matrix is the complete opposite of it, evaluate tran-
sients from recorded data.

3.3 Effective rank

Two ways to estimate the effective rank will be presented:

(1) From Theorem 1 the number of nonzero singular
values is the rank r of the corresponding matrix.
Hence, one measure of the effective rank ref1 of a
matrix is the number of singular values that have
normalized values σi/σ1, greater than a minimum
value l1:

σi
σ1
≥ l1.

(2) Another measure of effective rank ref2 can be obtained
counting for how many singular values σi − σi−1 is
greater them a minimum value l2:

ref2 =

n∑
i=2

H[(σi−1 − σi)− l2], (11)

where H is the Heaviside (step) function which re-
turns 1 if the argument is non-negative and returns 0
if it is negative.

The first alternative can always be applied and is a com-
mon form to calculate the effective matrix rank. However,
in the context of evaluate the signal activity in a transient,
the second approach have produced more coherent results
in numerical experiments and will be used from now on.

4. CORRELATION-BASED METRICS

The analysis of the output signal activity is very important
to see if a window is suitable for identification. However
the output activity may be caused by an unmeasured
disturbance, and any attempt to use such a window of data
to identify a model that explain the output as a function
of the input will be ill-fated, since the output is not caused
by the measured inputs.

Therefore a way to evaluate if the output and the in-
put have relation between them is needed. The cross-
correlation function (CCF), explained in Section 2, arise
as a good alternative to solve this problem and will be the
main topic of this section.

4.1 A scalar metric based on the CCF

The cross-correlation function (CCF) of a signal is a
sequence of values. In fact, it is a function of the lag.
This gives specific information as to how correlated are
two signals at each lag. However, if one desires an overall
picture of the correlation of the signals, the use of CCF is
hard to automatize.

The test proposed by Ljung and Box (1978) summarizes
the auto-correlation function in only one number. A sim-
ilar attempt will be made here for the CCF. In order to
get an overall assessment of the level of correlation of two
signals, the following scalar metric is proposed:

s =

τmax∑
τ=−τmax

g(ρ(τ), τ, p), (12)
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where τmax is the maximum lag of interest and g(ρ(τ), τ, p)
is defined as:

g(ρ(τ), τ, l) =


0, if |ρ(τ)| ≤ p,
|ρ(τ)| − p
|τ |

, if |ρ(τ)| > p and τ 6= 0,

|ρ(τ)| − p, if |ρ(τ)| > p and τ = 0,

ρ(τ) is the normalized CCF and p = 1.96/
√
m, m is the

window length in samples. The 95% confidence interval is
given by ±p.
When a single number is used instead of the CCF a lot
of information will be lost. However, using (12) it is easy
to establish “overall correlation” between the variables. Of
course this is an oversimplified approach, however it is an
objetive way to evaluate correlation between input and
output and a computer can do it. This approach will be
used in this paper.

5. NUMERICAL RESULTS

In this section, data recorded from an oil well will be
analyzed in search of suitable windows for identification.
The set of data recorded was sampled at one sample per
minute. Data from several oil wells recorded during the
last years are available.

Using only routine operation data, the final goal of the
global project is to develop soft sensors for the downhole
pressure. This is achieved by estimating models using
system identification and Kalman filtering methods, that
infer the desired pressure based on seabed and platform
measurements. This article deals with a subproblem that
arises from it: how to choose which are the windows of
data that are most relevant for system identification. The
procedure must be simple yet effective in order to be
implemented on computer and automatically analyze large
amounts of recorded data.

The metrics ref2 (11) and s (12) will be used to implement
this task on a computer. Before, some specificities of the
oil well problem should be considered:

• The pressure measure from the permanent downhole
gauge (PDG) sensor is the variable of interest (model
output), and seabed and platform measures will be
used as input for the model;
• In the case of severe slugging, before computing the

aforementioned metrics, the signals will be low-pass
filtered.
• During some valve maneuvers, the system dynamics

do not correspond to normal operation dynamics,
for which the soft sensors are being developed. The
corresponding windows of data should be discarded
by the algorithm.

A more complete review of the process and the variables
involved can be found in (Teixeira et al., 2014)

Using computer routines a large set of data can be scanned
looking for transients with highest ref2 and that satisfy
s > 3. The procedure is based on a sliding window and
is described on Algorithm 1. It is important to highlight
that ref2 will be preferred because the signal is typically
oversampled.

Algorithm 1 Scanning a data set looking for windows for
system identification

1: y = [y(1), y(2), . . . , y(N)]T % recorded data: y ∈ RN .
2: Define the window increment c
3: Nc = bN/cc % Number of windows
4: for i = 1 : Nc do
5: y{i} = y(ic : ic+m) % ith window
6: Build the AR regressor matrix Ai ∈ Rm×n
7: Calculate ref2i (for an appropriate l2) for each Ai

8: end for
9: Sort the effective ranks ref2i and obtain a list q with the

index of windows in descending order of effective rank;
10: % Note that if m > c, consecutive windows yi and yi+1

will have elements in common. When this happens we
will say two windows overlap

11: for i = 1 : Nc do
12: if y{q(i)} overlaps with y{q(1 : i− 1)} then
13: Remove q(i) from the list
14: end if
15: end for
16: for i = 1 : size(q) do
17: Calculate the index si for y{q(i)}
18: if si < 3 then
19: Remove q(i) from the list q
20: end if
21: end for
22: Pick the first 3 windows from list q and choose the one

that suits you better for identification

Figure 1 shows a month of recorded data from the down-
hole pressure (N = 43201). Running the first fifteen lines
from Algorithm 1 a list of non-overlapping window sort
by the effective rank is obtained. The Figure 1 is colored
accordingly to this list: Red indicates transients with high
ref2 (higher positions on the list) and colors close to yellow
correspond to lower values of that metric (lower positions
on the list).The gaps between the windows have been
plotted using black lines and the transients have been
numbered from 1 to 11 to future reference.

The parameters used for this case is c = 50, m = 3000,
l2 = 0.1 and n = 100. The choice of these parameters are
not so critical, however the user should be attempt to the
following guidelines when choosing it:

• The number of columns of the regressor matriz n
is related with the time of computation. High value
of n will lead to more time of computation. We
recommend to use n = m/30;

• The maximum effective rank is equals to min(n,m).
Since n < m the maximum effective rank is n. The
effective rank is not useful to discriminate windows
with full effective rank. The situation when lots of
windows have the full effective rank can be avoided
setting the parameter l2 with a higher value.

From previous studies it is known that a good variable to
be used as an input to the model is a pressure measure
from the platform. The metric s (12) that is an overall
measure of the correlation between this variable and the
PDG downhole pressure is shown in Table 2 for each of
the numbered transients.
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Fig. 1. PDG pressure colored according to ref2 .

Table 2: Correlation index s for
each of the numbered transients

transients s transients s

1 1.26 6 1.90
2 3.47 7 0.09
3 1.27 8 4.95
4 1.36 9 1.18
5 7.59 10 0.57

11 6.40

Accordingly to Algorithm 1 transients that have the index
s greater than 3 will be considered possible windows for
identification, the rest of transients will be discarded from
the list. So only transients 2, 5, 8 and 11 (indicated in
boldface in Table 2) are possible choices for identification.
The three best classified windows are: 5, 8 and 11. The
Algorithm selection of windows match with the authors
experience.

It is interesting to notice that although transients 6 and
7 have high values of ref2 , they are not correlated to the
potential input and, therefore, should not be used. This is
automatically detected by the procedure.

The computation of this example required 3.6 seconds on a
MacBook Air with processor Intel Core i5, CPU 1.3 GHz.

6. CONCLUDING REMARKS

The main steps in system identification are: (i) experiment
design and data collection; (ii) choice of the mathematical
representation; (iii) choice of model structure; (iv) param-
eter estimation; and (v) model validation.

This paper aims at providing tools that will facilitate the
first step of the system identification procedure (described
above). In order to do so, a procedure has been devised to
test if a data window is suitable for parameter estimation.
One advantage of the proposed procedure is the possibility
to create automatic routines capable of finding, within a
possibly very long data set, transients that are adequate
for system identification.

Although the final models will be ARX or NARX (poly-
nomial or neural), the paper proposed to build an in-
formation matrix composed of AR regressors only. It is

argued in this paper that the rank of such a matrix can
be interpreted as an indicator of “signal activity”, which is
considered to be one of two important features that a data
window must have to be used in identification. The second
characteristic is that input and output must be correlated
withing the data window.

It is important to notice that the fact that only AR
regressors are used to detect signal activity in no way
imposes restrictions on the model class used at a later
step in the identification. As a matter of fact polynomial
NARX models have been estimated from data windows
selected by the procedure put forward in this paper.

The user may desire to perform adjustments to the win-
dows automatically selected by the proposed method, but
still the total time required to choose windows for system
identification is greatly reduced. The metrics proposed in
this article can be readily generalized to the multivariable
case.
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