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Abstract: In gas-lifted oil wells the monitoring of downhole pressure plays an important role.
However, the permanent downhole gauge (PDG) sensor often fails. Because maintenance or
replacement of PDGs is usually unfeasible, soft-sensors are promising alternatives to monitor
the downhole pressure in the case of sensor failure. In this paper, a data-driven soft-sensor is
implemented to estimate the downhole pressure using committee machines composed by finite
impulse response (FIR) neural networks. Experimental results in three real datasets of the
same oil well indicate that the identified soft-sensor is able to predict the downhole pressure
with satisfactory accuracy. The model input variables were selected by statistical tests which
increased insight concerning such variables. Committee machines outperformed single-model
soft-sensors on experimental data.
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1. INTRODUCTION

The soft-sensors are mathematical models capable of es-
timating a process variable using measurements of other
process variables. They have been used in many indus-
trial applications as process monitoring and sensor fault
detection (Fortuna et al., 2007). According to (Kadlec
et al., 2009) there are three classes of soft-sensors: model-
driven, data-driven and hybrid. The model-driven soft-
sensors are based on first-principle models, called white-
box models, whilst data-driven soft-sensors are based on
models identified using data available from the process, or
black-box models. Finally, there are those that incorporate
features of these two previous classes, called hybrid soft-
sensors.

In the oil industry, one important application of soft-
sensors is to estimate the downhole pressure of oil wells,
since the monitoring of this pressure allows engineers to
optimize production techniques (Eck et al., 1999; Wang
and Li, 2013). However, the permanent downhole gauge
(PDG) sensor failure often happens (Teixeira et al., 2014).
Due to the difficulty in accessing the sensor installation
site, soft-sensors are promising alternatives to monitor the
downhole pressure when the sensor measurements are no
longer available.

Due to their universal approximation capability, Neural
Networks models have been widely used to develop soft-
sensors (Gonzaga et al., 2009; Roverso, 2009). To im-
prove model performance, committee machines can be
built (Soares et al., 2011; Sui et al., 2011). The field of
committee machines studies the combination of models.

As a rule of thumb, combining estimators is more robust
and accurate than using a single one (Perrone and Cooper,
1993).

Committee machines can be divided into two groups:
ensemble and modular architectures. The former combines
redundant predictors in the sense that each one could solve
the task as a whole (Hansen and Salamon, 1990), however,
the best result is expected to be achieved by using the
combination. In the modular approach, the problem is
divided into different sub-tasks and each predictor takes
charge of a sub-task whereas the final solution has to be
composed of all predictors (Sharkey, 1999).

Thus, the objective of this work is to implement a data-
driven soft-sensor to estimate the downhole pressure of a
real oil well. The contribution of this paper is to introduce
a procedure to select input variables of neural models
using statistical tests, and to design ensembles composed
by Neural Networks models to estimate the downhole
pressure. Besides a discussion about some relationships
among oil process variables is also presented.

This paper is organized as follows. In Sec. II, a simplified
description of the investigated process is presented. The
Materials and Methods are presented in Sec. III and Sec.
IV presents the results. Conclusions are drawn in Sec. V.

2. PROCESS DESCRIPTION

The offshore oil extraction process involves extracting the
oil contained in reservoirs located below the seabed using
floating platforms or vessels. These are responsible for
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Fig. 1. Simplified P&ID diagram of a gas-lifted oil well.
The corresponding variables are described in Tab.1.

Table 1. Process variables. Tags correspond to
the codes shown in Fig. 1.

Tag Process Variable Location

PT1 Downhole pressure Seabed

TT1 Downhole temperature Seabed

PT2 Wet Christmas Tree pressure Seabed

TT2 Wet Christmas Tree temperature Seabed

PT3 Pressure downstream of gas-lift choke valve Platform

TT3 Temperature before gas-lift shutdown valve Platform

FT3 Instantaneous gas-lift flow rate Platform

PT4 Pressure upstream of gas-lift shutdown valve Platform

PT5 Pressure upstream of production choke valve Platform

TT5 Temperature before production choke valve Platform

PT6 Pressure upstream of shutdown valve Platform

the production management, storage and, in some cases,
primary processing of the production.

When there are several wells being managed by the same
platform, manifolds are used. Such pieces of equipment are
responsible for the simultaneous production of different
wells and may be located at the seabed, and connected to
the respective wet Christmas tree (WCT). In offshore oil
extraction, the continuous gas-lift method is usual choice
for artificial lift in mature wells (Jadid et al., 2006).

This technique consists of injecting pressurized gas in the
production string continuously in a controlled manner.
Choke valves located at the platform are used to control
the amount of gas. Precise control of the gas-lift operation
is necessary, since the ratio of produced oil and injected
gas is non-linear, meaning that increasing the gas injection
after a point does not correspond to higher production
(Ray and Sarker, 2007; Jadid et al., 2006; Singh et al.,
2013).

In order to monitor and control the gas-lift system and the
oil production, data from several sensors are available to
the operator (Fig. 1). One of the available sensors is the
PDG sensor (PT1 and TT1), located inside the production
string. This location enables the measurement of valuable
data for the efficient operation of the production but also
renders the sensor subject to intense wear.

Despite improvements in the construction, PDG sensors
still have a short lifespan. Approximately 30% of the

Table 2. Experimental datasets.

Datasets Size (samples) Use

A1 55,615 training and validation

A2 95,586 test

A3 41,760 test

sensors fail within 5 years of installation (Frota and
Destro, 2006). There is, also, a great difficulty or even an
impossibility of replacement or maintenance of the sensors
due to their location. To perform this tasks, it is usually
necessary to stop production, causing major economical
losses.

Therefore, on the one hand, PDG sensor is a valuable tool
to achieve efficient production and, on the other, sensor
lifespan is relatively short with replacement or repair being
sometimes economically unfeasible. In this context, soft-
sensors become alternatives to increase data reliability or
even act as a substitute in cases of sensor failure. Thus, this
work aims at implementing soft sensors for the downhole
pressure (PT1).

3. MATERIAL AND METHODS

3.1 Experimental Data

We will use data from various sensors to identify models to
estimate the downhole pressure. In this investigation, the
input variables are restricted only to those measured from
platform sensors. In a less conservative study variables
from the WCT could also be considered.

Three datasets from the oil well A are available. The
sampling frequency of these datasets is 1 sample/minute
and Tab. 2 summarizes their size and application during
the model estimation process. Figure 2 shows the downhole
pressure to be estimated for each dataset. Dataset A1 was
used to train the neural models and to define their struc-
tures (train and validation). Generalization performance
was evaluated on the dataset A2 (test). Dataset A3 shows
the moment the PDG fails (test).

3.2 Neural Network Models and Committee Machines

In this work, only FIR (Finite Impulse Response) black-
box Neural Network (NN) models are identified which can
be represented by

y(k) = F [u1(k − 1), ..., u1(k − nu1),

u2(k − 1), ..., u2(k − nu2),

un(k − 1), ..., un(k − nun)], (1)

where F is a non-linear function implemented by feed-
forward multi-layer perceptron neural networks (MLPs),
and nui is the maximum delay of the input ui, where
i = 1, . . . n and n is the number of inputs. We choose the
FIR structure to prevent obtaining unstable models since
the objective is to perform model free run simulation. The
model inputs are the following variables measured from oil
platform sensors: pressure upstream of the shutdown valve,
pressure upstream of the production choke valve, temper-
ature before production choke valve, pressure upstream
of the gas-lift shutdown valve, temperature before gas-lift
shutdown valve and instantaneous gas-lift flow rate.
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Fig. 2. Downhole pressure of available datasets: (a) A1,
(b) A2 and (c) A3 (see Table 2).

From this model structure, the goal becomes the esti-
mation of the neural network parameters (training pro-
cess) that is accomplished using the LevenbergMarquardt
algorithm. To improve models performance, committee
machine are employed.

An ensemble with components that are less correlated, (i.e.
there is diversity within the committee), are likely to have
better generalization (Barbosa et al., 2011). In this way,
one important feature to be explored in the construction
of ensembles is diversity (Liu and Yao, 1999; Brown et al.,
2005). However, the search for diverse members may result
in individuals with poor generalization. So, there is an
optimum balance to be achieved (Brown et al., 2005).

Based on how diversity is created, Brown et al. (2005)
presented a categorization of ensemble methods: (i) start-
ing point in hypothesis space: for example varying the
initial weights of a network; (ii) set of accessible hypoth-
esis: changing the input training data of each member as
the techniques bagging (bootstrap aggregating) (Breiman,
1996) and boosting (Schapire, 1990) or manipulating the

Algorithm 1 Bagging

1: Choose the learning algorithm L, the number M of
estimators fi and the number of samples Nbag

2: for i = 1, . . . ,M do
3: Compose a new training set, Tbag, with Nbag sam-

ples, randomly chosen (with replacement) from the
original training set T

4: Train the ith estimator: fi = L(Tbag)
5: end for

Fig. 3. Training (black) and validation (red) sets of A1.
Some details of this dataset are shown in Fig. 7
where the downhole pressure dynamic behaviour can
be better observed.

architecture of the components; (iii) hypothesis space
traversal: which includes penalty methods (Liu and Yao,
1999) and evolutionary approaches (Barbosa et al., 2011).

Bagging (Algorithm 1) is one of the most popular tech-
niques for creating committees, it is based on the re-
sampling of training patterns to obtain different training
subsets for each ensemble member (Breiman, 1996). In this
technique, subsets are randomly generated by sampling
with replacement the original data set, some observations
may be repeated among the generated subsets.

To design the ensembles, decisions need to be made with
respect to the choice of the committee size (number of
ensemble members), the combination procedure, and the
models architecture and parameters (Barbosa et al., 2011).
Each ensemble member is a neural network composed by
hidden nodes with hyperbolic tangent activation function
and one linear output node. The ensemble output, fens, is
the average of the M components outputs, fi.

The original dataset is divided into several training (600
samples) and validation (150 samples) windows. The final
samples are separated for validation as shown in Fig. 3.
Each Neural Network is trained using 25% of the available
training samples chosen by the bagging algorithm.

4. EXPERIMENTAL RESULTS

Figure 1 shows that seven process variables are available
from platform sensors to construct the downhole pressure
soft sensor. There are many other variables available,
such as valve positions, but the ones considered the most
informative for this well were chosen. For instance, the
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pressure downstream of the gas-lift choke valve (PT3) was
exclude since it was corrupted by noise. Thus, six platform
variables may be used for model identification.

Using dataset A1 (Fig. 3), two data groups were defined:

• Group 1: data from 5,000 to 15,000 samples;
• Group 2: data from 20,000 to 30,000 samples.

These groups were selected to study the influence of
variables for predicting distinct dynamics of the downhole
pressure: changing of operating point (Group 1) and severe
slugging (Group 2). After some Fourier analysis and trial
and error experiments, the lags of the neural model inputs,
nui (see Eq. 1), were defined as [1, 42 and 136] for variables
related to the gas-lift injection and [1, 5 and 22] for
variables related to the produced fluid measurements. The
number of hidden nodes (ten) of the Neural Network was
also chosen comparing performances of NN with 5, 10, 15
and 20 hidden nodes.

To define which of the six platform variables would be
used, several tests were implemented that consisted in
training 100 Neural Networks (training data: 70% of the
data samples of Groups 1 and 2) such that one of the six
variables was excluded as model input and the tests per-
formance were compared to the results obtained by neural
models identified using the six variables on validation data
(the remainder 30% of data samples of each group). A
multiple comparison procedure was implemented using
the Tukey’s honestly significant difference criterion, based
on the Studentized range distribution (confidence level of
95%) on validation data of Group 1 and on validation data
of Group 2. If the mean squared error (MSE) of a variable
exclusion test is significantly greater than the MSE of the
test where no variable was excluded, it indicates that the
excluded variable is important to predict the downhole
pressure.

It is pointed out from the results (see Fig. 4): (a) that when
the instantaneous gas-lift flow rate (FT3) or temperature
before production choke valve (TT5) were excluded the
model performance deteriorated (Fig. 4a) in relation to a
model in which no variable was excluded, so they should
be kept as model inputs; (b) the pressure upstream of the
production choke valve (PT5) and pressure upstream of
the shutdown valve (PT6) should be also kept as inputs
(Fig. 4b).

Therefore, only the variables like temperature before gas-
lift shutdown valve (TT3) and pressure upstream of the
gas-lift shutdown valve (PT4) can be excluded from the
model without loss of performance. However, the use of
PT4 renders training more robust, thereby it will be kept.
The final neural model structure identified is shown in
Fig. 5.

Figure 4 also reveals an interesting relationship. Variables
related to gas-injection are important to predict the down-
hole pressure operating points whereas variables related to
the fluid production are important to predict severe slug-
ging. This is more evident when the variable temperature
before production choke valve (TT5) is analysed.

As discussed before, committee machines usually achieve
better generalization performance than a single estima-
tor. Thus, we compared the performance of a committee

(a)

(b)

Fig. 4. Input variable analysis using Turkey’s statistical
test (95% confidence level - 100 Neural Networks were
identified for each test), (a) Group 1 and (b) Group 2.

SDV Gas-Lift Pressure (PT4) 

lags: 1,42,136

Gas-Lift Flow Rate (FT3)   

lags: 1,42,136

SDV Pressure (PT6)  

lags: 1,5,22

Choke Valve Pressure (PT5) 

lags: 1,5,22

Choke Temperature (TT5)

lags: 1,5,22

Downhole 

Pressure

10 Neurons

...

Fig. 5. Neural Network structure.

machine composed of 10 neural networks to a single neu-
ral network (Fig. 6). As expected, the committee outper-
formed the single estimator. The ensemble size was se-
lected applying statistical tests. Due to space constraints,
only the best result (10 members) is presented.

Fig. 6. Committee machines performance analysis using
Turkey’s statistical test (95% confidence level - 100
Neural Networks or Committee Machines were iden-
tified for each test).
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(a)

(b) (c)

(d) (e)

Fig. 7. Committee machine simulation on validation dataset A1: (a) total window, (b)–(e) detailed views. Only model
simulation on validation data windows is shown.

The simulations of the estimated committee over the
validation datasets A1 and A2 are presented in Fig. 7
and Fig 8 (a), respectively. It can be inferred that the
model is able to predict the downhole pressure with good
accuracy. In such cases, the mean absolute percentual
errors (MAPE) were 0.45% for dataset A1 (validation) and
1.49% for dataset A2 (generalization test error). These
results are very competitive if compared to the results
presented in (Teixeira et al., 2012, 2014).

Aiming at evaluating the model performance over dataset
A3 (sensor failure), we used data from PT2 (Wet Christ-
mas Tree pressure). It was previously observed that such
a variable has a very similar behaviour to the downhole
pressure in this oil well and it was not used as model
input variable. So, Fig. 8 (b) presents the model predic-
tion of downhole pressure on dataset A3 and measured
PT2. It can be seen than their behaviour are very similar

indicating that the model is probably predicting well the
downhole pressure when it is no longer available.

5. CONCLUSIONS

In this paper a data-driven soft sensor is designed for pre-
diction of downhole pressure in gas-lifted oil wells. Combi-
nations of Neural Networks, called Committee Machines,
are employed to estimate the downhole pressure. The
selection of input variables was realized using statistical
tests. These tests were shown to be appropriate to select
the input variables and also to study the influence of some
variables in distinct system dynamics.

As expected, the use of combination of estimators im-
proved the soft-sensor performance. A simple ensemble
creation procedure was implemented (bagging) and the
ensemble yielded a MAPE less than 1.5% in two exper-
imental datasets.
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(a)

(b)

Fig. 8. Committee machine simulation over the datasets:
(a) A2 and (b) A3.

Future studies will examine different ensemble techniques
like boosting and will analyse if the mixture of experts
approach is more appropriate, defining models for each
operating point. Besides, it is also desired to implement
an automatic algorithm to define the lags of the input
variables, which is a computational NP-hard problem. To
solve this automatically specific optimization algorithms
should be built.
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