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Abstract: This paper introduces a new localized approach to construct an efficient reduced
order model for fluid flow simulation and optimization in porous media flow. For nonlinear
systems, one of the most common methodology used is the proper orthogonal decomposition
(POD) combined with discrete empirical interpolation method (DEIM) due to its computational
efficiency and good approximation. Whereas regular POD-DEIM approximates the fine scale
model with just one single reduced subspace, the localized POD (LPOD) and localized DEIM
(LDEIM) that are introduced in this work compute several local subspaces. Each subspace
characterize a region of solutions and all together they not only can approximate the high fidelity
model better, but also reduced the computational cost of simulation. LPOD and LDEIM use
classification approach to find these regions in the offline computational phase. After obtaining
each class, POD and DEIM is applied to construct the basis of the reduced space. In the
online phase, at each time step, the reduced states and functions will be used to find the
most representative basis for POD and DEIM without requiring fine scale information. The
advantages of LPOD and LDEIM are shown in a numerical example of two phase flow in porous
media.

Keywords: model order reduction, localized POD, localized DEIM, classification, fluid
dynamics, reservoir simulation, production optimization.

1. INTRODUCTION

Reservoir management enables one to obtain the most fa-
vorable production scenario given the current information
of the reservoir, such as reservoir characterization param-
eters (permeability, porosity) and production data. Very
often, one is directed to computational methods (reser-
voir simulation) to assist on the search for the optimal
control strategy by sweeping all the spectrum of reservoir
uncertainties. This would be true except for two main chal-
lenges: the large amount of computational infrastructure
necessary to perform such calculations; and the fact that
there is no certainty in the range of parameters. In this
paper our primary focus is to tackle the first problem
by means of reduced order models. Note that the latter
issue can be investigated by uncertainty quantification and
parameter estimation.

In many cases, reduced-order modeling techniques have
shown to be a viable way of mitigating computational
complexity in simulation of large-scale reservoirs, while
maintaining high level of accuracy. The options range from
non-intrusive methods that do not depend on modifica-
tions of a reservoir simulation code Cardoso and Durlofsky
(2010); Ghommem et al. (2015), to a more intrusive and
sophisticated methods that depend on several modifica-
tions of legacy code or the development of new simulator
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codes, see Heijn et al. (2004); Gildin et al. (2013); Gildin
and Ghasemi (2014)

POD is one of the most efficient methodology used in
model order reduction context due to its computational
simplicity and good approximation (Van Doren et al.,
2004). However, computational savings are not always
attained because in order to evaluate nonlinear terms, the
reduced state needs to be projected back to fine scale
state yielding similar computational cost as the original
system. There are different techniques to alleviate this
problem. One approach is to linearize these nonlinear func-
tions (trajectories) around several known states and use
these piecewise linear solutions, see Cardoso and Durlofsky
(2010). Here, we use DEIM, where one construct another
subspace for reducing the nonlinear function evaluations
(Chaturantabut and Sorensen, 2010). In reservoir simula-
tion and optimization, these methodologies have shown to
yield reduction in the size of the approximated models
of several orders of magnitude (Ghasemi et al., 2015).
However, if the system exhibits a very dynamic state with
a wide range of changes, many POD and DEIM basis are
required to accurately approximate the state of the system
as well as nonlinear terms. A remedy to this problem is to
search for not just a single global subspace, but rather
multiple local subspaces and basis to capture nonlinear
dynamics. This process is called localization in this work.

With localization, the dimension of the reduced space can
be decreased more and consequently the computational
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cost is reduced even further. In this technique rather
than just one single subspace, multiple local subspaces are
constructed for the reduced system. In the online phase,
based on the state of system at each time step, the proper
subspace that has the best approximation will be selected.

The localization idea was introduced for POD in (Am-
sallem et al., 2012) and was verified in reducing the pres-
sure state in dynamical equations describing a MEMS
switch device. They suggested using auxiliary quantities
to ensure an online selection procedure is independent of
the dimension of the original system. However, the number
of these auxiliary quantities, which are computed in the
offline phase, scales cubically with the number of clusters.
This can be an issue especially in a optimization workflow,
whereby one updates basis of reduced model periodically
to obtain more stable and accurate solution. Following
localized POD (LPOD), localized DEIM (LDEIM) was
proposed in (Peherstorfer et al., 2014) based on machine
learning techniques and using efficient classification algo-
rithm. They discussed both parameter and state based
LDEIM approaches and applied it to a steady reacting
flow simulation.

In this paper, we extend LPOD and LDEIM to reduce the
computational cost of porous media fluid flow simulation.
We present a new approach to resolve the existing issues
in LPOD by reducing the number of required auxiliary
parameters. Also, an efficient reduced order model for the
fluid transport equation is presented by applying LDEIM
on the nonlinear function of fractional flow.

2. TWO-PHASE FLOW MODEL

In this section, we summarize the underlying partial differ-
ential equations related to porous media flow simulation.
In particular, we briefly discuss two-phase oil-water sys-
tems, see Aarnes et al. (2009) for more details.

We consider two-phase flow in a reservoir domain under
the assumption that the displacement is dominated by
viscous effects; i.e., we neglect the effects of gravity,
compressibility, and capillary pressure. The two phases are
water and oil, and they are assumed to be immiscible. The
Darcy’s law for each phase is as follows,

vl = −krl(s)
µl

K∇p, (1)

where vl is the phase velocity, K is the permeability tensor,
krl is the relative permeability to phase l (l = o, w), s is
the water saturation (we use s instead of sw for simplicity)
and p is pressure. Throughout the paper, we will assume
that a single set of relative permeability curves is used.
Combining Darcy’s law with conservation of mass allows
us to express the governing equations in terms of the so-
called pressure and saturation equations as,

−∇ · (λ(s)K∇p) = qw + qo, (2)

φ
∂s

∂t
+∇ · (fw(s)v) =

qw
ρw
, (3)

where φ is the porosity, λ is the total mobility defined as,

λ(s) = λw(s) + λo(s) =
krw(s)

µw
+
kro(s)

µo
, (4)

fw(s) is the fractional flow function,

fw(s) =
λw(s)

λ(s)
=

krw(s)

krw(s) + µw

µo
kro(s)

, (5)

and v is the total velocity defined as,

v = vw + vo (6)

In this paper, we follow a sequential formulation; at
each time step one solves for pressure and flux first and
then use these results to solve for saturation. We employ
mixed finite element methods to discretize the pressure
equation in order to preserve the conservative velocity
field, see (Ghasemi et al., 2015). One can write the pressure
equation after spatial discretization of the problem as the
following system of equations(

B(λ(s)) −CT
C 0

)(
v
p

)
=

(
0
g

)
(7)

where matrix B and C are derived from FEM discretiza-
tion and g results from the sink/source terms.

Generally, an implicit time (backward Euler) discretization
will be followed to solve for saturation profile, while a
mass conservative finite volume is used for the spatial
derivative discretization. Consider a cell Ωi with edges γij
and associated normal vectors nij pointing out of Ωi, the
saturation Eq. (3) will be discretized as,

φi
∆t

(
ski − sk−1i

)
+

1

|Ωi|
∑
j 6=i

Fij
(
ski
)

=
qw
(
ski
)

ρ
(8)

where ski is the cell-average of the water saturation at time
tk, and Fij is the numerical approximation of the flux over
edge γij ,

Fij ≈
∫
γij

fw (s)ij [vij (s)] .nijdv (9)

Note that to find fw (s)ij over each edge, upwinding
method is usually applied as discussed in Aarnes et al.
(2009).

3. MODEL REDUCTION

In the subsequent analysis, we propose different ap-
proaches to reduce the computational complexity associ-
ated with simulation of two-phase flows. Throughout the
paper, we refer to fully-resolved solution as the high fidelity
results. The main approach in this paper is to use POD-
Galerkin method to project the fine scale states to reduced
subspace and solve for fewer number of unknowns.

3.1 Proper Orthogonal Decomposition (POD)

As already stated, POD is typically performed on the
premise that the state solutions belong to a subspace with
dimension much smaller than a large scale model. Assume
the solution states are stored at each time step as,

Sx = [x1, x2, · · · , xns] ∈ Rn×ns (10)

where n is the total number of grid-blocks, ns is the
number of snapshots, xi can be a pressure, saturation,
or nonlinear function snapshot that is vectorized to be
stacked in the snapshots matrix S. These snapshots are
assembled into different matrices, Sp, Sv, Ss respectively.
After applying a singular value decomposition on these
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matrices, we select the projection matrix, Φ, by indicating
the fraction of total energy to be captured (Volkwein and
Kunisch, 2008).

After obtaining the projection matrix, the pressure, veloc-
ity and saturation are re-parametrized as,

p(t) = Φp pr(t), v(t) = Φv vr(t), s(t) = Φs sr(t) (11)

The pressure and saturation equations are now solved in
the reduced space by substituting variables of (11) into (7)
and (8). The reduced pressure equation is,(

ΦTv B Φv −ΦTv C
T Φp

ΦTp C Φv 0

)(
vr
pr

)
=

(
0

ΦTp g

)
(12)

Thus, the original system with (number of edges + number
of grid blocks) degrees of freedom is reduced to a dy-
namical system with few basis for velocity and pressure
combined.

Furthermore, the nonlinear saturation equation is solved
iteratively in reduced space as follows,

skr = sk−1r + ΦTs
(
A
(
vk
)
f
(
Φss

k
r

)
+ q+

)
(13)

Note that due to the presence of a nonlinear function f
in (13), at each iteration the reduced saturation should be
projected back to fine scale nonlinear function evaluation.
This issue increases computational cost, but can be mit-
igated by applying DEIM, as it is explained in the next
section.

3.2 Discrete empirical interpolation method (DEIM)

We briefly review the DEIM as presented in Chatu-
rantabut and Sorensen (2010). Let f(τ) ∈ Rn denotes a
nonlinear function where τ refers to time or a parameter.

We approximate the function f by projecting it into a sub-
space spanned by the basis functions Ψ = (ψ1, · · · , ψm) ∈
Rn×m as

f(τ) ≈ Ψ c(τ) (14)

The projection basis Ψ is determined very similar to
the POD basis for states. The function evaluations is
assembled in a matrix Sf ∈ Rn×ns and svd is employed
to compute the m modes. These modes are used as the
projection basis in the approximation given by (14).

To compute the coefficient vector c, we consider a matrix

P = [e℘1
, · · · , e℘m

] ∈ Rn×m

where e℘i = [0, · · · , 0, 1, 0, · · · , 0]T ∈ Rn is the ℘th
i column

of the identity matrix In ∈ Rn×n for i = 1, · · · ,m.
Multiplying Equation (14) by PT and assuming that the

matrix PTUf is nonsingular, we obtain

f(τ) ≈ Ψ c(τ) = Ψ (PTΨ)−1PT f(τ) (15)

As for the interpolation indices {℘1, · · · , ℘m}, they are
selected using greedy algorithm as given in Chaturantabut
and Sorensen (2010) to have a nonsingular matrix.

Although POD-DEIM will reduce the computational run-
time, for some problems a large number of basis and
interpolation points are required to reduce the error and
have a reliable approximation. To improve basis selection,
one can compute several local subspaces with similar dy-
namical features and find their corresponding basis. We
will elaborate more on this idea in the next section.

3.3 Localized POD

The main idea is to divide the snapshots into different
subgroups and apply POD to each domain to obtain local
POD basis. This will require less number of basis for each
region compared to global POD basis. Also, it will give us
a better approximation of the solution trajectory in each
subdomain, because more representative basis will be used.
Two main questions are how to cluster the snapshots into
subsets based on a feature and how to efficiently select the
proper set in the online phase.

There are different techniques to split the solution snap-
shots space into different regions. In most of these meth-
ods, the domain is split into subdomains recursively
(Drohmann et al., 2011), but this method might results
in a large number of subdomains in practice. Here, we
classify the snapshots into different clusters with machine
learning techniques and for each cluster a local reduced-
order model is constructed as suggested in (Peherstorfer
et al., 2014). A local reduced-order model is then selected
with respect to the current state of the system.

This localization approach was introduced for POD
method in (Amsallem et al., 2012). However, they pro-
posed unsupervised learning methods that can results in
unstable clustering behavior if the clustering method and
its parameters are not carefully chosen (Von Luxburg,
2007). Furthermore, the given procedure in Amsallem
et al. (2012) requires precomputing auxiliary quantities
to ensure an online selection procedure is independent of
the large scale system; however, the number of auxiliary
quantities scales cubically with the number of clusters.
This can be an issue especially in optimization workflows,
where one updates basis of reduced model periodically to
obtain more stable and accurate solution. Thus, in this
work we propose a modified algorithm for localized POD
that only uses few number of indexes for classification in
the offline phase and also using these few indexes in the
online phase to find the corresponding cluster. This also
reduces the storage required for the auxiliary parameters.

In the offline (preprocessing) phase of this approach,
Algorithm 1 is applied to cluster the snapshot matrix. Here
LPOD is used only in saturation equation but it will be
extended to pressure equation in future work. The number
of clusters k and the number of POD basis in each cluster r
are also provided for this algorithm. The subscript s refers
to saturation.

In the first step of this algorithm deim function is used in
order to select grid points that are most representative in
the solution space based on the greedy algorithm. At Line
2 and 3 of this algorithm, a small sets of indices, instead
of fine scale dimension, will be used for clustering in the
k-means algorithm. This not only accelerates clustering,
but also helps finding the proper set of basis in the online
phase to become independent of fine scale solution. Also,
the auxiliary variables are smaller and need less storage.
It should be clear that this will not introduce any extra
error in the LPOD, if enough indices are selected based on
the greedy algorithm, because the selected grid points are
only used for clustering and classification.

The output of the k-means algorithm is the centroid of
each cluster and the corresponding index. These centroids
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and the indecies are used to define a classifier function
as explained in Line 4. This classifier will be used in the
online phase to distinguish the proper index of a cluster
where the current state belongs to. After clustering all the
snapshots one can find the POD basis for each group as
explained in Lines 5-8. Note that in the Line 7 of this
algorithm again a few rows of these basis are selected to
be used in the classifier in the online phase. The POD basis
for each group, the classifier and the small subset of these
basis are return as the output of this algorithm.

Algorithm 1 Classification procedure of LPOD

1: procedure LPOD(Ss, r, k)
2: Pg = deim(Ss)
3: (centroids, {S1, · · · , Sk})← kmeans(STs Pg, k)
4: cs(x) = knnclassify(x, centroids, 1 : k)
5: for i = 1 : k do
6: Φi ← svd(Si, r)

7: wsi ← PTg Φi
8: end for
9: return cs(x),Φi, w

s
i i = 1, · · · , k

10: end procedure

If LPOD is applied to the saturation equation, in the online
phase at each Newton-Raphson iteration, the index of a
cluster that current state is most likely belongs to can be
found as follows,

i← cs(wsi sr) (16)

where cs(.) and ws are the output of the Algorithm 1,
and sr is the reduced saturation state. After obtaining the
cluster index, one can choose the corresponding POD basis
and solve the problem in proper reduced subspace.

3.4 Localized DEIM

In this section we discuss the general description of
LDEIM and an efficient method to select each sub-
space in the online phase without fine scale calcula-
tion. LDEIM constructs several local DEIM subspaces
as, (Ψ1, P1),...,(Ψk, Pk) in the offline phase and then
select the best one in the online phase. We follow the
approach suggested in Peherstorfer et al. (2014) regarding
clustering the snapshots and selecting the best basis in the
online phase as explained in Algorithm 2. The inputs are
a snapshots matrix of nonlinear functions Sf , the number
of clusters k, and the number of DEIM basis in each
cluster m. At the first step a subset of all snapshots, which
consists a few gridblocks is selected to be used in k-means
clusterings as shown in Line 2 and 3 of this algorithm.
These steps, similar to LPOD, accelerate the clustering
and also make the online classification independent of fine
scale calculations.

After clustering all the snapshots one can find the DEIM
basis for each group as explained in Lines 5-9. Note that
in the Line 8 of this algorithm a small subset of this basis
are selected to be used in the classifier in the online phase
Peherstorfer et al. (2014). The DEIM basis for each group,
the classifier and the small subset of these basis are return
from this algorithm.

If LDEIM is applied to the saturation equation, in the
online phase at each Newton-Raphson iteration, the index

Algorithm 2 LDEIM Procedure Peherstorfer et al. (2014)

1: procedure LDEIM(Sf ,m, k)
2: Pg = deim(Sf )
3: (centroids, {S1, · · · , Sk})← kmeans(STf Pg, k)

4: cf (x) = knnclassify(x, centroids, 1 : k)
5: for i = 1 : k do
6: Ψi ← svd(Si,m)
7: Pi ← deim(Ψi,m)

8: wfi ← PTg Ψi (PTi Ψi)
−1

9: end for
10: return cf (x),Ψi, w

f
i i = 1, · · · , k

11: end procedure

10 20 30 40

5

10

15

20

25

30

35

40

45

(a) mean of all snapshots (b) DEIM on all snapshots

Fig. 1. Illustration of global DEIM on all snapshots and
selected grid blocks in a homogeneous model

of a cluster that current state is most likely belongs to can
be found as follows,

i← cf (wfi f̃) (17)

where cf (.) and wf are the output of the Algorithm 2, and

f̃ is the approximated nonlinear function based on DEIM
approach. Here we select following point-based feature
extraction,

f̃ = f(PTi s) ∈ Rm (18)

After obtaining the cluster index, one can choose the
corresponding DEIM basis and solve the problem in the
reduced subspace.

Here we compare LDEIM and a regular DEIM on 100
snapshots of fractional flow that were obtained by run-
ning a 45 × 45 homogeneous model with 5-spot pattern.
Primarily, regular DEIM was applied to all the snapshots
to obtain 10 basis and select the corresponding grid blocks.
The mean of all the snapshots and the selected grid blocks
from regular DEIM in shown in Fig. 1(b).

These snapshots were also used in Algorithm 2 for classi-
fying 3 clusters and 10 basis for each cluster. The mean of
each cluster and the selected grid blocks of the reservoir
model based on are shown in Fig. 2. Comparing the global
selected grid blocks and the local ones in each cluster
reveals that the clustering allows LDEIM to concentrate
the interpolation points in only a certain parts of the
reservoir, i.e. close to the front of water saturation. This is
one of the reasons that LDEIM can give us better results
compared to regular DEIM, because the selected points
are more into dynamic part of the model.

One can do similar analysis for LPOD and compares the
resulted basis with regular POD. However, we skip it for
the sake of space limitation.

IFAC Oilfield 2015
May 27-29, 2015

Copyright © 2015, IFAC 251



10 20 30 40

5

10

15

20

25

30

35

40

45

(a) mean 1st cluster

10 20 30 40

5

10

15

20

25

30

35

40

45

(b) mean 2nd cluster

10 20 30 40

5

10

15

20

25

30

35

40

45

(c) mean 3rd cluster

(d) DEIM 1st cluster (e) DEIM 2st cluster (f) DEIM 3st cluster

Fig. 2. Illustration of localized DEIM on each cluster and
selected grid blocks in a homogeneous model

4. NUMERICAL EXAMPLE

In this example the localized model reduction is applied
to a two-phase flow (oil-water) reservoir model under the
water flooding recovery process with the structure of a
5-spot as shown in Fig. 3(a). The permeability of the
reservoir is taken from SPE10 comparative model (Christie
and Blunt, 2001) (layer 10th). The reservoir model is
discretized using Cartesian grid of size 20ft× 10ft× 2ft.
Overall the reservoir model has 60×220×1 = 13200 active
cells. The fluid viscosity ratio is µw/µo = 0.1. The relative
permeability curves is depicted in Fig. 3(b). We assumed
a constant porosity of 0.2 for entire model.

The producers are controlled by bottom hole pressure and
the injector by rate. The input schedule is changed every
200 days as shown in Figs. 4. This figure includes both the
training and the test schedule. Note that injection volume
is at least one pore volume throughout simulation time
(1000 days). The initial water saturation and pressure are
assumed to be 0.0 and 2500 psia, respectively.

In order to apply the POD-DEIM methods, the reservoir
is simulated with training schedule for 1000 days and
the snapshots of pressures, velocity, water saturations and
the nonlinear fractional function are saved every 10 days.
Thus, we have 100 snapshots for each variables. One
can find the basis and construct the reduced model as
explained in previous sections. Next, the reduced model
is verified with the test schedule.

Regular (global) POD is applied to velocity and pressure,
and POD/LPOD and DEIM/LDEIM to saturation equa-
tion as it is a nonlinear equation. The selection criteria for
pressure and velocity basis was to capture at least 99% of
the energy of snapshots. Throughout this example LPOD
and POD as well as DEIM and LDEIM are compared in
the saturation equation.

The number of basis is compared between different reduced
order models and the original fine scale one in Table 1.
The snapshots were classified into 4 clusters. The overall
speedup is around 5.5 because this is still relatively small
model. Also, even though localized method has more over-
head during the online phase, it does not have significantly
higher computational time compared to regular POD-
DEIM.

Table 1. Compare fine and reduced model.

Num # of Fine Scale POD/LPOD DEIM/LDEIM

pressure basis 13200 3 –

velocity basis 26120 12 –

saturation basis 13200 7/7 –

fractional basis 13200 – 9/9

iterations 712 260/281 320/335

Total elapsed time 108.7 (s) 19.6/20.2 (s) 18.7/19.2 (s)

 

Prod4

Prod2

Inj1

Prod3

Prod1

 

-1 0 1 2 3 4

log(md)

(a) permeability

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Sw

 

 

krw
kro

(b) relative perm

Fig. 3. Layer 10th of SPE10

day
0 200 400 600 800 1000

R
at

e 
(S

T
B

/D
)

150

155

160

165

170

175

180

185

(a) injection rate

day
0 200 400 600 800 1000

B
H

P
 (

p
si

a)

2100

2200

2300

2400

2500
Prod1
Prod2
Prod3
Prod4

(b) producers BHP

Fig. 4. Training schedule (solid line) and Test schedule
(dashed line) with ±5% variation

Note that, when we apply DEIM or LDEIM, the saturation
assumed to be projected to reduced subspace by regular
(global) POD basis. Combining LPOD-LDEIM will be
considered in future work.

The final water saturation and the water cut at all the
producers are shown in Figs. 5(a) and 5(b) for POD and
LPOD, respectively. Note that the water cut results from
high fidelity model is shown as dashed line in these figures.
As illustrated in these figures the LPOD approximates the
original fine scale model much better, with almost exact
water cut. Figs. 7(a) and 7(a) compare the same results
for DEIM and LDEIM, whereas LDEIM suppresses regular
DEIM. The final water saturation error is also compared
between POD and LPOD in Fig. 6 and between DEIM
and LDEIM in Fig. 8. The temporal saturation error is
compared for POD and LPOD in Fig. 9(a) and for DEIM
and LDEIM in Fig. 9(b).

All of these results confirm the superiority of local model
reduction over global one.

5. CONCLUSION

A localized POD and DEIM model reduction scheme has
been introduced for the solution of the two-phase flow in
heterogeneous porous media. It has been our experience
that performing localization with multiple snapshot yield
a more accurate and stable reduced order models than a
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Fig. 5. Final water saturation and water cut at producers
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Fig. 6. Final water saturation error
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Fig. 7. Final water saturation and water cut at producers
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Fig. 8. Final water saturation error
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Fig. 9. Temporal saturation error

single reduced subspace. More work still need to be done in
selecting the appropriate number of clusters and the spe-
cific clustering technique used. Moreover, applications of
the proposed method in reservoir production optimization
should be investigated.
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