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Abstract: The aim of this paper is to design a robust output-feedback controller to eliminate
torsional stick-slip vibrations. A multi-modal model of the torsional dynamics with a nonlinear
bit-rock interaction model is used. The controller design is based on skewed-µ DK-iteration and
the stability of the closed-loop nonlinear system is analyzed. The proposed controller design
strategy offers significant advantages compared to existing strategies. First, it requires only
surface measurements, second, it can effectively deal with multiple torsional flexibility modes,
third, it provides robustness with respect to uncertainties in the bit-rock interaction and finally,
control performance specifications can be taken into account. Simulation results confirm that
stick-slip vibrations are indeed eliminated using the designed controller.
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1. INTRODUCTION

Efficiency, reliability, and safety are important aspects
in the drilling of deep wells for the exploration and
production of oil, gas, mineral resources, and geo-thermal
energy. Drill-strings of several kilometers in length are used
to transmit the axial force and torque necessary to drill
the rock formations. These drill-string systems are known
to exhibit different types of self-excited vibrations, which
decrease the drilling efficiency, accelerate bit wear, and
may cause drill-string failure due to fatigue.

Modelling of the torsional dynamics of the drill-sting is
an important step towards the control of torsional vi-
brations. Most controller designs presented in literature
rely on one- or two degree-of-freedom (DOF) models for
the torsional dynamics only, see e.g. Jansen and Van den
Steen (1995); Tucker and Wang (1999); Serrarens et al.
(1998); De Bruin et al. (2009). The resisting torque-on-
bit (TOB) is typically modelled as a frictional contact
with a velocity weakening effect. Although experiments
using single cutters to identify the bit-rock interaction
law (Detournay and Defourny, 1992) do not reveal such a
velocity weakening effect, analysis of models that take the
coupled axial and torsional dynamics into account show
that such coupling effectively leads to a velocity weakening
effect in the TOB (Richard et al., 2007). This motivates
a modelling-for-control approach involving the torsional
dynamics only and a velocity weakening bit-rock interac-
tion law. In contrast to other studies, however, we use a
? This work is supported by Shell Global Solutions International.

multi-modal model of the torsional dynamics as field ob-
servations have revealed that multiple torsional resonance
modes play a role in the onset of stick-slip oscillations.

Controllers for drilling systems aim at drill-string rotation
at a constant velocity and the mitigation of stick-slip
vibrations. Moreover, the following control specifications
are important. First, only surface measurements can be
used for feedback. Second, the controller should be able to
cope with dynamics related to multiple torsional flexibility
modes. Third, robustness with respect to uncertainty in
the bit-rock interaction has to be guaranteed and, fourth,
control performance specifications, related to e.g. measure-
ment noise sensitivity and actuator constraints, need to be
taken into account in the control design.

A well-known control method, which aims at damping
the first torsional mode, is the Soft Torque Rotary system
(Halsey et al., 1988). The same objective is set in Jansen
and Van den Steen (1995), which uses a PI-controller based
on the top drive velocity. Other control methods including,
torsional rectification (Tucker and Wang, 1999), observer-
based output-feedback (De Bruin et al., 2009; Doris, 2013),
weight-on-bit control (Canudas-de Wit et al., 2008) and
robust control (Serrarens et al., 1998; Karkoub et al., 2010)
have been developed and are documented in literature.

Although important steps have been made, an approach
that satisfies all mentioned requirements has not yet been
developed. A robust control approach, as proposed in the
latter two works, is particularly suitable for this problem
since both robustness with respect to uncertainty of the
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Fig. 1. Frequency response function of the FEM model
and 4-DOF model from bit torque v to bit velocity
ω1, i.e. bit mobility.

system dynamics and control performance specifications
can be taken into account in the control design. In Ser-
rarens et al. (1998), an H∞ controller synthesis method
is applied to a 2-DOF drill-string model, using the twist
in the drill-string is used as measurement, i.e. knowledge
about the angular position of the bit is assumed to be
known. Karkoub et al. (2010) uses the µ-synthesis tech-
nique through DK-iteration procedure to obtain less con-
servative bounds on the uncertainty to obtain robustness
with respect to the nonlinear bit-rock interaction. The
used model is a similar 2-DOF model and also in this case
down-hole measurements (to asses the twist of the drill-
string) are used. Moreover, the employed 2-DOF models
only take the first flexibility mode into account.

The main contribution of this paper is the design of a ro-
bust output-feedback controller methodology to eliminate
stick-slip vibrations, with the following advantages over
existing controllers: 1) usage of surface measurements only,
2) application of the controller to multi-modal drill-string
models while guaranteeing local stability of the desired set-
point, 3) optimization of the robustness with respect to un-
certainty in the bit-rock interaction and, 4) integration of
control performance specifications in the design approach.

2. DRILL-STRING MODEL

A lumped-parameter model that represents a drilling sys-
tem is proposed as a basis for controller design. The
proposed model is based on a finite element method
(FEM) model representation of a realistic drilling system
(representing a discretization of a distributed parameter
(PDE) model of the drill-string dynamics), see Vromen
et al. (2014) for more details on the FEM model. The bit
mobility (see Fig. 1) gives an indication of the important
resonance modes in the onset of stick-slip vibrations, it
is clearly visible that the first three resonance modes are
dominant. Therefore, a 4-DOF model is developed, which
incorporates 4 rotating inertias, connected to each other
with springs and dampers to model the torsional flexibility
and damping characteristics of a drill-string (see Fig. 2).
The lower disc represents the drill bit in practice, the upper
disc the top drive inertia, and the other degrees of freedom
characterize additional flexibility modes. The inclusion of
these extra modes in the model is a key improvement with
respect to existing models used for controller design.

The driving input of the system is the motor torque Tm.
The available measurements are the top drive velocity ωtd
and the pipe torque Tpipe, which is defined as the torque
in the drill-string right below the top drive. The drill-
string-borehole interaction torques φi(ωi), i = 2, 3, 4, are
modelled as set-valued Coulomb friction laws (φ(q2) :=

[φ2(ω2) φ3(ω3) φ4(ω4)]
>

, with q2 := [ω2 ω3 ω4]
>

) and the
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Parameter settings:
T2 = 14360 Nm
T3 = 18990 Nm
T4 = 4140 Nm
Ts = 7700 Nm
Td = 1700 Nm

Fig. 2. 4-DOF model of the drill-string.

interaction torque ϕ(ω1) at the bit-rock interface is defined
by a set-valued Coulomb friction law with Stribeck effect,
see Fig. 2. The resulting equations of motion are written
in first-order state-space form:

ẋ = Ax+Gv +G2v2 +But
q = Hx
q2 = H2x
y = Cx
v ∈ −ϕ(q)
v2 ∈ −φ(q2).

(1)

Herein, x = [θ1 − θ2, ω1, ω2, θ2 − θ3, ω3, θ3 − θ4, ω4]
> ∈

R7 is the state, where θi, i = 1, 2, 3, 4, describes the
rotational displacement of the inertias, ωi := θ̇i, and the
bit velocity is defined as q := ω1. Moreover, the bit-
rock interaction torque is given by v ∈ R and the drill-
string-borehole interaction torques are given by v2 ∈ R3.
In addition, ut := Tm ∈ R is the control input and,

y := [ωtd Tpipe]
> ∈ R2 is the measured output.

3. CONTROL PROBLEM FORMULATION

The desired operation of the drill-string system is a con-
stant angular velocity ωeq for all four inertias. So, the
objective is to regulate this set-point of the nonlinear drill-
string system by means of an output-feedback controller.
The available measurements for the controller are the top
drive angular velocity ωtd and the pipe torque Tpipe. The
system can be controlled by the top drive torque Tm. As
briefly mentioned in the introduction, the controller should

(1) locally stabilize the desired velocity of the drill-string,
therewith eliminating torsional (stick-slip) vibrations;

(2) ensure robustness with respect to uncertainty in the
nonlinear bit-rock interaction ϕ;

(3) guarantee the satisfaction of closed-loop performance
specifications, in particular on measurement noise
sensitivity, i.e., limitation of the amplification of mea-
surement noise, and limitation of the control action
such that top drive limitations can be satisfied;

(4) guarantee robust stability and performance in the
presence of multiple flexibility modes dominating the
torsional dynamics.
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Fig. 3. Control configuration with uncertainty block ∆.

To facilitate controller synthesis, the drill-string dynamics
(1) are reformulated. The desired constant angular velocity
ωeq for all discs can be associated with a desired equilib-
rium xeq for the state of the system. To ensure that xeq
is an equilibrium of the closed-loop system, the control
input ut = uc+ ũ is decomposed in a constant feedforward
torque uc (inducing xeq) and the feedback torque ũ. For the
feedforward design, we assume that ωi > 0, for i = 2, 3, 4,
hence φ is constant (see Fig. 2) and can be compensated
for by uc and we determine xeq and uc using the equi-
librium equation of system (1), i.e. Axeq − Gϕ(Hxeq) −
G2φ(H2xeq) + Buc 3 0. Next, we define ξ := x − xeq and
apply a linear loop transformation such that the slope of a
transformed nonlinearity ϕ̃(q) (associated to ϕ(q) through
the loop transformation) is equal to zero at the equilibrium
velocity, i.e. ∂ϕ̃/∂q|q=ωeq

= 0. This results in a state-space

representation of the transformed drill-string dynamics in
perturbation coordinates:

ξ̇ = Atξ +Bũ+Gṽ (2a)

ỹ = Cξ (2b)

q̃ = Hξ (2c)

ṽ ∈ −ϕ̃ (q̃) (2d)

with At := A + δGH, δ = − ∂ϕ/∂q|q=ωeq
> 0, ỹ := y −

Cxeq, q̃ := q−Hxeq, ϕ̃ (q̃) := ϕ (q̃ +Hxeq)−ϕ (Hxeq)+δq̃
and ṽ := v − veq − δq̃. The dynamics in (2) represents a
Lur’e-type system, with the linear dynamics Gol ((2a) -
(2c)), having inputs ũ and ṽ and outputs ỹ and q̃, and
the nonlinearity ϕ̃ in the feedback loop. The open-loop
transfer function Gol(s) is defined as[

q̃(s)
ỹ(s)

]
:= Gol(s)

[
ṽ(s)
ũ(s)

]
=

[
g11(s) g12(s)
g21(s) g22(s)

] [
ṽ(s)
ũ(s)

]
. (3)

As a next step, we model the nonlinearity ϕ̃ by an
uncertainty ∆. This model formulation is used in the
controller design procedure, presented in Section 4.

4. DESIGN OF A ROBUST OUTPUT-FEEDBACK
CONTROLLER

In this section, we present a robust control design approach
based on skewed-µ DK-iteration. This technique combines
several concepts from robust control theory to design a
controller that achieves robust stability and performance
of a system with model uncertainties (Skogestad and
Postlethwaite, 2005).

The general robust control configuration for a (LTI) plant
P with an uncertainty ∆ and (LTI) controller K is shown
in Fig. 3, where y is the measured output, u the control
output and the exogenous inputs w and outputs z. The
system P , in Fig. 3, can be described by[

q̂
z
y

]
=

[
P11 P12 P13

P21 P22 P23

P31 P32 P33

][
v̂
w
u

]
. (4)

Gol

∆

ỹ

q̃v̄
d n

u
K

e

−
ũ

+

+

+

+

Fig. 4. Linear drill-string dynamics Gol in closed loop with
the controller K and including model uncertainty ∆.

The system N is defined as the lower linear fractional
transformation (LFT) of P with the controller K, that is

N:=Fl (P,K)=

[
P11 P12

P21 P22

]
+

[
P13

P23

]
K(I − P33K)

−1
[P31 P32].

4.1 Nominal stability and performance

As mentioned in Section 3, the controller design aims at
stability, performance, and robustness for the uncertainty
∆. In this section, the focus is on the first two aspects.
Robustness is considered in the next section. Hereto,
consider the system without uncertainty given by[

z
y

]
:= P

[
w
u

]
=

[
P22 P23

P32 P33

] [
w
u

]
(5)

and the lower LFT of P and K, that is, N22 := Fl (P ,K).

Based on the system representation in Fig. 3, the closed-
loop system of the linear drill-string dynamics Gol in feed-
back with the linear, dynamic controller K to be designed
is shown in Fig. 4. In this representation, additional inputs
n and d are introduced, representing measurement noise
and actuator noise, respectively. Define the unweighted

inputs w̄ := [n d]
>

and unweighted outputs z̄ := [e u]
>

such that the closed-loop transfer functions between w̄ and
z̄ equal the relevant sensitivity functions, as follows:[
e
u

]
= −

[
(I + g22K)

−1
(I + g22K)

−1
g22

K(I + g22K)
−1

K(I + g22K)
−1
g22

] [
n
d

]
, (6)

where g22 is the open-loop transfer function from input ũ
to output ỹ as defined in (3). Performance specifications
can now be introduced by the design of weighting functions
for these sensitivity functions. Performing so for multiple
sensitivity functions is often referred to as mixed sensitivity
(Kwakernaak, 1993). For example, consider the sensitivity

function S = (I +GK)
−1

(for a SISO plant G and
controller K) and the upper bound 1/ |wP (s)|, where
wP (s) is the weighting filter to be specified. Then

|S(jω)| < 1/ |wP (jω)| , ∀ω ⇔ |wP (jω)S(jω)| < 1, ∀ω.
The latter fact implies that the bound on the sensitivity
can be written as a norm-bound on the product of the
weighting filter and sensitivity function, i.e.‖wPS‖∞ < 1,
where we used the definition of the H∞-norm ‖H(s)‖∞ :=
supω∈R σ̄ (H (jω)). This is a key element in the design of
a controller that guarantees nominal performance.

The concept nominal performance is defined as follows: for
a system without uncertainty ∆ the closed-loop system
N22 = Fl(P ,K) is internally stable and the H∞-norm of
this system (from w to z) is smaller than 1, that is

‖N22‖∞ = sup
ω
σ̄ (Fl(P ,K)) < 1.

This means that nominal performance can be achieved
by solving the “standard” H∞ optimal control problem,
which aims to find the internally stabilizing controller K
to minimize ‖Fl(P ,K)‖∞. As proven in (Zhou et al., 1996,
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Sec. 5.3), internal stability of the closed-loop is guaranteed
by choosing w and z as the weighted version of w̄ and z̄.

4.2 Alternative robust performance

Robust performance means that the performance objective
in Section 4.1 is achieved for all possible models in the
uncertainty set (Skogestad and Postlethwaite, 2005).

Remark 1. Standard robust performance techniques aim
at optimizing the performance for all possible plants in the
uncertainty set. In contrast, we aim to optimize the robust-
ness with respect to the uncertainty while still guarantee-
ing internal stability and satisfaction of the performance
objectives. This is called alternative robust performance.

Consider the system P in Fig. 3, including the uncertainty
block ∆. The input-output pair v̂, q̂ is related to this
uncertainty block and the (weighted) closed-loop transfer
function N(s) = Fl (P,K) is given by[

q̂
w

]
= N

[
v̂
z

]
= Fl (P,K)

[
v̂
z

]
. (7)

Robust stability is obtained by designing a controller K
such that the system N is internally stable and the upper
LFT, F := Fu(N,∆), is stable for all ∆ ∈ ∆. Herein,
the uncertainty set is a norm-bounded subset of H∞, i.e.,
∆ = {∆ ∈ RH∞ |‖∆‖∞ < 1}. However, the aim is to find
a stabilizing controller that also meets certain performance
specifications. Therefore, we use a similar approach as in
(Skogestad and Postlethwaite, 2005, Sec. 8.10) and con-
sider the fictitious ‘uncertainty’ ∆P . The uncertainty ∆P

is a complex unstructured uncertainty block which repre-
sents the H∞ performance specifications. Moreover, note
that ∆P ∈ ∆P , with ∆P = {∆P ∈ RH∞ |‖∆P ‖∞ < 1}.
The result given in (Zhou et al., 1996, Thm. 11.8) states
that a robust performance problem is equivalent to a
robust stability problem with the augmented uncertainty

∆̂ =

[
∆ 0
0 ∆P

]
(8)

with ∆̂ a block-diagonal matrix. In other words, both
the performance specifications and uncertainty are taken
into account in a similar fashion. The robust performance
condition can now be formulated as follows:

µ∆̂ (N(jω)) < 1, ∀ω, (9)

where µ∆̂ is the structured singular value with respect to

the uncertainty set ∆̂ with the structure as given in (8)
and any ∆ ∈ ∆ and ∆P ∈ ∆P . The structured singular
value is defined as the real non-negative function

µ∆̂(N)=
1

k̄m
, k̄m=min

{
km

∣∣∣det
(
I − kmN∆̂

)
=0
}

(10)

with complex matrix N and block-diagonal uncertainty ∆̂.

To optimize the robustness with respect to the uncertainty
∆ (i.e. part of ∆̂ in (8)), the skewed structured singular
value µs can be used. The skewed structured singular value
is used if some uncertainty blocks in ∆̂ are kept fixed (∆P

in this case) to investigate how large another source of
uncertainty (∆ in this case) can be before robust stabil-
ity/performance cannot be guaranteed anymore. In this
case, we aim to obtain the largest possible uncertainty set
∆ (i.e. uncertainty w.r.t. the bit-rock interaction), given a
fixed ∆P (i.e. fixed performance specifications). Hereto, we

introduce the matrix Ks
m := diag (ksm, I) and the skewed

structured singular value µs
∆̂

(N) can then be defined

as µs
∆̂

(N) = 1
k̄sm
, k̄sm = min

{
ksm

∣∣∣det
(
I −Ks

mN∆̂
)

=0
}

.

Thus, the robust performance condition (9), with addi-
tional scaling (through Ks

m) in terms of the skewed struc-
tured singular value, can be written as

µs
∆̂

(N(jω)) < 1, ∀ω. (11)

To support controller design satisfying particular perfor-
mance specifications, weighting filters and scaling matrices
are introduced in the loop in Fig. 4, as shown in Fig. 5.
Those frequency-domain weighting filters allow us to spec-
ify the (inverse) maximum allowed magnitudes of the
closed-loop transfer functions (6). Moreover, the scaling
matrices are introduced to improve the numerical condi-
tioning of the problem and to tune the desired bandwidth.
The (weighted) generalized plant P with input weighting
filters Vi(s) and output weighting filters Wi(s), with i ∈
{1, 2, 3}, and scaling matrices Wsc and Vsc, is specified byq̂êû
e

=

W1 0 0 0
0 W2Wsc 0 0
0 0 W3V

−1
sc 0

0 0 0 I

P̄
V1 0 0 0

0 Wsc
−1V2 0 0

0 0 VscV3 0
0 0 0 I


︸ ︷︷ ︸

P

v̂n̂
d̂
u


Herein, P̄ (s) is the MIMO transfer function of the un-

weighted system P̄ with inputs [ṽ n d u]
>

and outputs

[q̃ e u e]
>

with its state-space realization given by

P̄
s
=


At G 0 B B
H 0 0 0 0
−C 0 −I 0 0
0 0 0 0 I
−C 0 −I 0 0

 . (12)

In this section, an alternative robust performance frame-
work is introduced. An efficient procedure to synthesize a
controller that minimizes the skewed structured singular
value µs

∆̂
, for the purpose of obtaining robust performance,

is known as the DK-iteration procedure. In DK-iterations,
a µ-analysis (D-step) and H∞-optimization (K-step) are
solved alternately (see Oomen et al. (2014) and Skogestad
and Postlethwaite (2005) for more details).

4.3 Closed-loop stability analysis

The main purpose of the controller is to stabilize the equi-
librium ξ = 0 of the nonlinear system (2). Let us assume a
controllerK has been designed that meets the performance
specifications and is robust with respect to the uncertainty
∆. Hence, the designed controller guarantees stability for
the linear closed-loop system N(s) and achieves robust-
ness with respect to the specified uncertainty ∆.

Stability of the equilibrium ξ = 0 of the closed-loop
nonlinear system can be investigated using the circle
criterion (Khalil, 2002, Thm. 7.1). Consider the closed-
loop transfer function Gcl, of system (2) with controller

K, that is Gcl := g11 − g12K(I + g22K)
−1
g21. Moreover,

consider a symmetric sector condition on the nonlinearity,
i.e. ϕ̃ ∈ [−γ, γ] for γ > 0. It can be shown that for the
system to be absolutely stable the condition ‖Gcl(jω)‖∞ <
1/γ should be satisfied. Hence, theH∞-norm of the closed-
loop bit mobility Gcl gives an upper bound on the sector
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Fig. 5. Closed-loop system with weighting filters and scaling matrices.

Table 1. Parameter settings for the weighting
filters and scaling matrices.

α = 1625
ω3 = 3.342
b1 = 0.1
ωb = 0.2π
ωro = 2π

β = 0.006

b2 = 1
M = 10
ζ = 1

that the nonlinearity ϕ̃ should comply with. Using the
proposed controller design strategy a controller K can be
designed such that ‖Gcl‖∞ is minimized. In other words,
the robustness with respect to uncertainty in the bit-rock
interaction is optimized.

5. CONTROLLER SYNTHESIS

Weighting filter design is key in satisfying the performance
specifications. Moreover, achieving specific design targets
such as the inclusion of integral action and high-frequency
roll-off can be achieved by absorbing these filters in the
loop, see Meinsma (1995).

The scalings matrices Vsc and Wsc are used to tune the
open-loop crossover frequency of Gol. The input scaling
Vsc = α is chosen such that the crossover frequency
is between the first anti-resonance and resonance of the
system (see Fig. 1). The output scaling Wsc = diag (1, β)
with β such that the crossover frequency is near the third
resonance mode. The weighting filters are mostly chosen
to be static gains for the nominal controller design, only
the filters V1(s) and V21(s) (where V2(s) = diag (V21, V22))
are chosen to be frequency dependent. The filter V1(s)
can be used to specify bounds on the closed-loop bit
mobility function (Gcl). Ideally, the bit mobility should be
damped as much as possible (as follows from Section 4.3).
However, this typically results in high control action. To
deal with this trade-off, the weighting filter V1(s) has a
notch filter near the third mode and is defined as V1(s) =
(1/ω2

3)s2+(2b1/ω3)s+1

(1/ω2
3)s2+(2b2/ω3)s+1

with ω3 the resonance frequency of the

third mode. The filter V21(s) is given by V21(s) = s+ωb

Ms and
enables us to tune the sensitivity function. The parameter
values used in the scaling matrices and the weighting filters
are given in Table 1. The remaining (static) weighting
filters are defined as V22 = 0.001, V3 = 0.01, W1 =
W21 = W22 = W3 = 1. The filters in the loop to obtain a
controller that includes integral action and high-frequency

roll-off are, respectively, given by fro =
ω2

ro

s2+2ζωros+ω2
ro

and

fint = 1
s .

Performing the DK-iteration procedure for the drill-string
system with the weighting filters as specified above, results
in the controller Kt(s) = [Kωtd

(s), KTpipe ], as shown in
Fig. 6. From this figure, the integral action in the con-
troller, Kωtd

(s), that uses the top drive angular velocity
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Fig. 6. Designed linear dynamic controller for the drill-
string system, upper plot is the controller which uses
the top drive angular velocity, the controller in the
lower plot is based on the pipe torque measurement.

can be clearly recognized. Moreover, the second-order roll-
off is present in both controllers. It can also be seen that
the designed controller is active in the frequency range of
the torsional resonance modes of the drill-string system
(see Fig. 1). In the same figure, an industrial controller,
which only uses top drive velocity measurements is shown.
This controller is a properly tuned active damping sys-
tem (i.e. PI-control of the angular velocity) which aims
at damping the first torsional mode of the drill-string
dynamics. A comparison with this controller by means of
a simulation is presented in Section 6.

6. SIMULATION RESULTS

In this section, the controller designed in Section 5 is ap-
plied to the drill-string model presented in Section 2. First,
we present a simulation result of the drill-string system in
closed-loop with an existing industrial controller (based on
Jansen and Van den Steen (1995)). For the simulations, we
introduce a so-called startup scenario, which is based on
practical startup procedures for drilling rigs. Herein, the
drill-string is first accelerated to a low constant rotational
velocity with the bit above the formation (off bottom)
and, subsequently, the angular velocity and weight-on-bit
(WOB) are gradually increased to the desired operating
conditions. The increase in WOB is modelled as a scaling
of the bit-rock interaction torque.

A simulation result of the drill-string model (1) in feedback
with the industrial controller, shown in Fig. 6, is shown in
Fig. 7. In the upper plot the top drive velocity (ωtd) is
shown along with the reference velocity ωref . From the
bit response, in the bottom plot, we can clearly recognize
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Fig. 7. Simulation result of the drill-string model with an
existing industrial controller.
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Fig. 8. Simulation result of the drill-string model with the
designed output-feedback controller.

stick-slip oscillations. The increasing amplitude of the
oscillations in the top drive velocity demonstrates that
these vibrations arise when the WOB is increased (20 ≤
t < 80s), i.e., when due to scaling of the TOB the velocity
weakening effect affects the dynamics. A simulation result
of the designed controller in Fig. 6 is shown in Fig. 8. The
same startup scenario and initial conditions, as in Fig. 7,
are used for this simulation. These simulation results show
that the top drive and bit angular velocity converge to
their set-point and stick-slip vibrations are avoided.

7. CONCLUSIONS

In this paper, a synthesis strategy for controllers aiming at
the mitigation of torsional stick-slip oscillations in drilling
systems is proposed. The controller design is based on
skewed-µ DK-iteration, and offers several benefits over
existing controllers. First, the designed controller is ap-
plicable to a multi-model drill-string model while guar-
anteeing (local) stability of the desired operating point.
Second, the controller is optimized to have robustness with
respect to uncertainty in the bit-rock interaction. Third,
performance specifications are integrated in the controller
design. Fourth, the controller uses only surface measure-
ments. Simulation results of the proposed controller ap-

plied to the 4-DOF drill-string model show that the stick-
slip oscillations are eliminated, while a simulation of an
existing industrial controller, under the same conditions,
shows stick-slip vibrations.
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