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Abstract: Monitoring the flow rate out of the well is critical for good control of the downhole
pressure in drilling operations. In this feasibility study, we explore the possibility of using a
Venturi flume to provide a cost-effective measurement of the flow rate, with improved accuracy
compared to conventional methods. A Venturi flume has been simulated both using CFD and
a simplified 1D model. By proper design of the Venturi flume, a jump in the fluid level in
the throat section of the flume can be injected. Four methods of using this jump information
are discussed, each with their own advantages and disadvantages, such as dependence on fluid
properties, length of the flume, computation time, etc. Further work is necessary to improve
sensor set-up and numeric methods, as well as testing out the concepts on a Venturi rig.

Keywords: Flow measurement, Models, Partial differential equations, Model approximation,
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1. INTRODUCTION

1.1 Background

Control of the downhole pressure is critical in drilling
operations. If the downhole pressure exceeds the strength
of the formation, the wellbore might be fractured, causing
a loss of drilling fluid to the formation and possibly
damaging the reservoir. In the worst case, such a damage
may cause an uncontrolled reduction in the downhole
pressure. If, on the other hand, the downhole pressure
reduces below the formation pore pressure, this may cause
an unwanted influx of formation fluid into the wellbore and
up the annulus, referred to as a kick, which in the worst
case could escalate to a blow-out of hydrocarbons on the
rig, e.g. the Deepwater Horizon incident, Hauge and Øien
(2012). For safe operation, the downhole pressure should
thus be kept within a window defined by the formation
fracture pressure and the formation pore pressure.

Early detection of loss of drilling fluid to the formation or
of a kick is the most effective measure that can be taken
to eliminate or limit the consequences of such incidents.
A prerequisite for detecting loss to the formation or
kick during drilling operations is monitoring of the mass
balance of the well, i.e. the flow of drilling fluid out of the
well compared to that pumped into the well.

In conventional drilling, the flow rate out of the well is typ-
ically measured by a paddle in the open channel running to
the mud pits on the rig. This is an inaccurate measurement
that limits the resolution of kick/loss detection. A possible
alternative is to use a Venturi flume: an open flume with
a constriction, and designed to give a jump in the fluid
level which holds information about the flow rate. Venturi

flumes are typically used to measure large flows of water,
and are rarely used in oil drilling. For drilling fluid flow,
particle settling is not desired; Venturi flumes have no dead
zone, and are thus suitable.

An important concept in fluid flow is that of critical flow.
Consider throwing a pebble in a running fluid flow, with
resulting ripples spreading in all directions at the wave
velocity of the fluid. If the fluid velocity equals the wave
velocity, the ripples spreading in the direction opposite to
the flow are stagnant wrt. to a frame fixed to the ground;
the flow is critical. If the fluid flow is larger than the wave
velocity, the flow is supercritical, while if the fluid flow is
smaller than the wave velocity, the flow is subcritical.

1.2 Previous work

The Venturi measurement principle is described in intro-
ductory books on fluid mechanics. The use of Venturi
flume for measurement in hydrology is described e.g. in
Gupta (2008). For use in oil rigs, it is necessary to consider
variations in viscosity, the presence of rock chips, etc. Thus
a more detailed study is called for.

A flume used for the transport and flow measurement
should be designed for so-called supercritical flow condi-
tions, Wilson (1991), Smith et al. (1981). A current flume
design based on ISO 4359 standard is applied to so-called
subcritical upstream conditions, ISO (2013). There has
been some research on the requirements for supercritical
flume design. A procedure for designing and using a su-
percritical flume where it is assumed that so-called critical
flow conditions occur at the entrance of the channel throat
is outlined in Smith et al. (1981). Little information is
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Fig. 1. Geometry of Venturi flume as seen from above:
all measures are in [m]. Note that the section lengths
are not to scale. Sections “I” and “III” have constant
width. g is gravity and θ is the slope angle.

available on flow with non-Newtonian fluids such as used
in drilling.

1.3 Structure of paper

In this work, we explore the possibility of using a Venturi
flume to provide a cost-effective measurement of the flow
rate out of the well, with improved accuracy compared to
the flow paddle. In order to compare simulation results
with those published in the literature, the experimental
set-up of Smith et al. (1981) is used.

In Section 2, the experimental set-up is discussed. In Sec-
tion 3, models for detailed 3D CFD analysis is discussed,
as well as for a simplified 1D approximation. In Section
4, simulation results are presented, and the results are
discussed. Some conclusions are drawn in Section 5.

The contributions of the paper are in comparing Venturi
flume models using Computational Fluid Dynamics (CFD)
for Newtonian fluids to published experimental results,
then use CFD for non-Newtonian fluids, comparing CFD
models with simplified 1D dynamic models and steady
state models. The question is thus: can a Venturi flume
be used to estimate relevant information for use in the
drilling operation, and how complex a model is needed?

2. EXPERIMENTAL SET-UP

Consider a Venturi flume as seen from above in Fig. 1,
with 5 sections numbered “I” through “V”.

The slope angle θ of the flume bed can be changed.

With slope angle θ = 0, this Venturi flume appears in the
literature 1 as a test case for CFD solvers, using water as
fluid and allowing a volumetric flow rate of [2, 250] [m3/h].
In this paper, this nominal flume is used for comparing 3D
simulation of water with the results from the literature,
as well as with results from a simplified 1D simulation.
Furthermore, we use the flume with slope angle θ = 4◦

and drilling fluid to study the flow with approximate 1D
simulations, and discuss modifications of the flume to make
it more suitable for flow measurements of drilling fluid.

3. MODELS OF VENTURI FLUME

3.1 CFD model

Navier Stokes equations For 3D simulations, CFD 2

relies on solving the Navier Stokes equations. These can
1 www.bamo.eu/international/ ftp/msa755-14.pdf
2 CFD = Computational Fluid Dynamics

be stated as (1) for conservation of mass and (2) for
conservation of momentum for a Newtonian fluid, Versteeg
and Malalasekera (2007)

∂ρ

∂t
+∇ · (ρv) = 0 (1)

∂

∂t
(ρvς) +∇ · (ρvςv) = −∂p

∂ς
+∇ · (µ∇ (vς)) + sς (2)

In (2), ρ is density and v ∈ R3 is the velocity vector with
components vς where ς ∈ {x, y, z}. p is pressure and s ∈ R3

with components sς is additional momentum source terms
such as gravity. Modelling non-Newtonian fluids require a
different closure to the shear stresses. For incompressible
flows (1) reduces to ∇ · (v) = 0.

Shear stress For Newtonian fluids, stress τ is propor-
tional to strain rate γϑς = ∂vϑ

∂ς , and the stress tensor is
τ = µγ where viscosity µ is very sensitive to tempera-
ture. For the Newtonian base case simulations, the fluid
is defined as water at 20◦ [C]. For the non-Newtonian
simulations, the Herschel-Bulkley model is used, ANSYS-
Inc (2011)

τ = τ0 +Kγ
1
ε (3)

where τ0 is the excess shear stress, K is the flow behavior
index, and 1

ε is the fluid consistency index. Here τ0, K and
ε are rheological fitting parameters that can be determined
by experiments.

Open channel description To track the interface in an
open channel problem, the volume of fluid method (VOF)
is commonly used, Hirt and Nichols (1981). In VOF an
additional variable χ is introduced to represent the volume
fraction of a phase in the discretized cell; χ = 1 implies a
cell completely filled with the fluid, χ = 0 implies a cell
void of the fluid, while χ ∈ (0, 1) implies that the cell
contains the fluid surface. χ is given by (4),

∂χ

∂t
+ v · ∇ (χ) = 0 (4)

There are different ways to solve this equation; the normal
finite volume schemes do not capture the discontinuous
nature of χ at the interface. The High Resolution Interface
Capture (HRIC) scheme, ANSYS-Inc (2011), is used in
this work, and is an implicit finite volume method (FVM)
designed to solve this type of interface equation while not
being overly diffusive.

Turbulence and discretization Turbulence is in principle
included in the above model, but requires infinitely fine
discretization in time and space to be accurate. In practice,
turbulence is instead introduced by doing time averaging
of (2), by introducing “turbulent viscosity”, and by in-
troducing turbulent kinetic energy and its diffusion and
relation to turbulent viscosity. In this work the common
Reynolds Averaged Navier Stokes (RANS) k − ε model is
used, Versteeg and Malalasekera (2007).

For discretization of (2) and the two extra turbulence
quantities, both the first order upwind and second order
upwind schemes are used. For pressure velocity coupling
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both the SIMPLE (Semi Implicit Method For Pressure
Linked Equations), ANSYS-Inc (2011), and PISO (Pres-
sure Implicit with Splitting of Operators), ANSYS-Inc
(2011), are used.

Boundary and initial conditions The inlet boundary
conditions are specified as a mass flow inlet (Section
“I”) with a specified free surface level and mass flows
of liquid and gas (air) specified individually. The lightest
phase (gas) is specified as the primary phase. The outlet
conditions are specified as a pressure outlet, with the
pressure profile set to “from neighboring cell” as the fluid
is expected to have supercritical flow ((11), etc.) at the
outlet. All walls are specified as no-slip walls, and the
default k−ε ANSYS-Fluent wall function is used, ANSYS-
Inc (2011). The top of the channel is specified as a pressure
outlet with atmospheric pressure. To save computational
time, the symmetry of the flume is exploited.

For initialization of the problem both patching the fluid
volume with a flat liquid level and running the simulations
starting with a “empty” channel is used.

Solver settings and meshing All simulations used the
staggered grid, finite volume CFD solver ANSYS-Fluent.
The simulations are run in transient using the first or-
der implicit formulation until a steady state solution is
obtained. Assessing convergence can be a challenge in
CFD, and the residuals may not provide the full picture,
Versteeg and Malalasekera (2007). Therefore in addition to
monitoring the residuals, multiple surface monitors moni-
toring the weighted average velocity perpendicular to the
flow direction are used to assess convergence. When the
simulations are deemed to be in steady state, the solver is
switched to steady state and all residuals are reduced to
10−4.

For all 3D drawing and meshing the CFD pre-processor
GAMBIT is used. A structured mesh is used, leading to
a cell count for the mesh (half geometry) of ca. 3 × 105.
Symmetry along the x axis is utilized.

3.2 Approximate 1D model

The Saint Venant Equations Under certain assumptions
including uniform flow in cross sectional area A in the x-
direction, the Navier Stokes equations can be simplified
to the Saint Venant Equations (SVE), Aldrighetti (2007),
(5)–(6)

∂A

∂t
= −∂V̇

∂x
(5)

∂V̇

∂t
= − ∂

∂x

(
V̇ 2

A

)
− gA∂h

∂x
cos θ

+ gA sin θ − F ′f
ρ

(6)

where V̇ is volumetric flow rate, g is gravity, h is fluid
surface level, and F ′f is the friction force per unit length.
Level h and cross sectional area A are related via the
geometry of the flume. For these types of equations, a
friction slope Sf is introduced, related to F ′f as

F ′f
ρ

, gASf .

For filled pipes, the friction slope would be

Sf =
f

2

V̇
A

∣∣∣ V̇A ∣∣∣℘
gA

(7)

where ℘ is the wetting perimeter and f is Fanning’s friction
factor Bird et al. (2002). For shallow water in open flumes,
the Gauckler–Manning–Strickler formula is often used,
Chow (1959)

Sf = k2
M

V̇
A

∣∣∣ V̇A ∣∣∣℘4/3

A4/3
, (8)

where kM is Manning’s friction coefficient.

In Jin and Fread (1997), an approximate friction slope for
the Herschel-Bulkley model in (3) is given as

Sf =
τ0

ρgA℘

1 +

 (ε+ 1) (ε+ 2)
∣∣∣ V̇A ∣∣∣

(0.74 + 0.656ε)
(
τ0
K

)ε A
℘


1

ε+0.15

. (9)

Wave velocities By linearizing the SVE around the
steady solution (subscript s), the model can be decom-
posed into two advection equations of form Martinson and
Barton (2002)

∂σj
∂t

= −λj
∂σj
∂x

+ φj

where the wave velocities λj are given by

λ =

(√
gAs cos θ

∂A
∂h

∣∣
s

· (NFr + 1) ,√
gAs cos θ

∂A
∂h

∣∣
s

· (NFr − 1)

)
, (10)

and the Froude number NFr is given as

NFr ,
V̇s

As√
gAs cos θ
∂A
∂h |s

. (11)

For high velocity flow, NFr > 1 (supercritical flow), both
wave velocities are positive, and both boundary conditions
(h, V̇ ) must be given at x = 0. For low velocity flow,
NFr < 1 (subcritical flow), one wave velocity is positive,
and the other is negative, and one boundary condition
must be given at x = 0 while the other must be given
at x = L.

Steady state analysis In this section, subindex “s” is
introduced to indicate steady operation. In steady state, V̇s

is constant, and the remaining equation can be rewritten
as

dhs

dx
=

V̇ 2
s

gA3
s

∆W
Lr

hs + (sin θ − Sfs)

cos θ (1−N2
Fr)

(12)

where it has been assumed that area A forms an isosceles
trapezoid with change of width ∆W over length Lr of the
flume reach. Comparing with Fig. 1, Lr = 0.99 for Section
“I”; ∆W = 0.3−0.2 = 0.1 for Section “II”, etc. The critical
condition occurs when NFr = 1, which leads to the critical
level hc

s given by

A3 (hc
s) =

V̇ 2
s

g cos θ

∂A

∂h

∣∣∣∣c
s

. (13)
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Fig. 2. Analytic solution hs (x) for Section “III” of Fig.
1 with specified critical point (xc, h

c
s) (black circle),

assuming Fanning friction with f = 0.002 (solid) and
assuming Manning friction with W � hs (dotted).

At the critical condition (level hc
s , at position xc), the

model in (12) breaks down.

With ∆W = 0 and rectangular A with flume width W ,
the critical level from (13) becomes

hc
s =

(
V̇ 2

s

gW 2 cos θ

) 1
3

(14)

For this case of ∆W = 0 and flume width W , supercritical
flow implies hs < hc

s , while subcritical flow implies hs > hc
s .

The uniform level is found as dhs

dx = 0 =⇒ Sfs = sin θ ≥ 0.
With ∆W = 0 and flume width W , the wetting perimeter
is ℘ = W + 2h. For Manning friction, the uniform level is
thus found by solving the implicit equation

k2
M

V̇s

hu
sW

∣∣∣ V̇s

hu
sW

∣∣∣ (W + 2hu
s )

4/3

(hu
sW )

4/3
= sin θ; (15)

we see that this expression breaks down when θ = 0.

With ∆W = 0, (12) is a separable differential equation,
and analytic solutions can be found in some cases, giving
implicit expressions for hs in the form x = F (hs). By
computing a number of values x for hs in a given range
while requiring that the solution goes through the critical
point denoted (xc, h

c
s), typical solutions are as in Fig. 2.

A key point here is that the steady model in (12) with θ =
0 does not admit a solution for x > xcwhen the solution
is required to go through the critical point. Obviously, the
system does have a level when x > xc; to find the complete
solution when the solution passes through the critical
point, it is necessary to keep the momentum balance in
integral form in order to properly conserve the continuity
of the momentum across the critical point,

hi+1 = hi +
1

cos θ

(
V̇ 2

g(Āi+ 1
2
· Āi− 1

2
)
− V̇ 2

gĀ2
i+ 1

2

+∆x (sin θ − Sf)i+ 1
2

)
. (16)

This implies that when going through the critical point,
we can not use a “marching” method (e.g. Runge Kutta);

Fig. 3. Flow level profile in the Venturi flume with subcrit-
ical upstream flow condition; solution of SVE (solid
red) overlaid over CFD solution. The location of Sec-
tions “I” – “IV” of the Venturi flume are indicated.

Table 1. Properties of Kaolin-based fluid
Haldenwang (2003).

Properties Fluid

Particle conc./vol. (%) 7.1
density, ρ [kg /m3] 1118.5
yield stress, τ0 [Pa] 10.551
fluid behavior index, K [Pa sn] 0.834

fluid consistency index, 1
ε

0.387

instead the discretized model must use information from
both downstream and upstream to the critical point.
On the other hand, if the solution does not go through
the critical point, the ODE formulation of (12) with a
“marching” discretization algorithm can be used.

4. SIMULATION RESULTS

4.1 Case: water

We consider the case of θ = 0, with water as fluid and
flow rate 100.9 m3 /h. CFD simulations are in excellent
agreement with the flow rate-level tables specified by
the flume manufacturer (maximum relative error of all
simulations of 2%). Figure 3 shows the result of solving
the SVE overlaid over the CFD solution in Malagalage
et al. (2013).

In solving the SVE of the form (5) and (6), only the
upstream boundary condition corresponding to the input
flow rate of 100.9m3 is specified. No downstream boundary
is imposed since the flow is a free flow, and since it is
revealed by CFD simulation that the flow passes through
a critical point. The applied Manning roughness coefficient
is 0.003. As can be seen, the result conforms to the CFD
simulation result.

4.2 Case: drilling fluid

We change the Venturi flume slope to θ = 4◦, and
consider a fluid characterized by the Herschel-Bulkley
friction model with properties as given in Table 1.

Non-Newtonian fluid flow is often associated with high
velocity to avoid fluid particle settling. This implies su-
percritical conditions and a corresponding level hs which
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Fig. 4. Supercritical flow level profile (solid; above flume
bed) in the Venturi flume with critical level (dashed);
W = 0.2 m.

Fig. 5. Supercritical flow level profile (solid; above flume
bed) in the Venturi flume with critical level (dashed);
W = 0.09 m.

is lower than the critical level; the solution is then found
by solving (12). Here, we have used steady flow rates
of {12.422, 22.668, 42.539} [L/s]. The boundary conditions
for the level is thus given upstream, at the inlet to Section
“I” of Fig. 1 according to Haldenwang (2003). Figure 4
shows the resulting steady solutions.

From Fig. 4, we see that the Venturi flume does not lead
to an increase in the level up to the critical level despite
the hydraulic jump in the throat section (Section “III”),
and it is not possible to find the flow rate from this design.

Next, we consider redesigning the Venturi flume by reduc-
ing the width of Section “III” to W = 0.09 [m]. The result
is shown in Fig. 5.

In Fig. 5, it is seen that a hydraulic jump occurs in the
channel throat section (Section “III”) towards its exit, and
this jump approaches the critical level.

4.3 Discussion

The results in the two cases indicate that the 1D steady
state Saint Venant equation can predict a flow in a Venturi
flume. Solving the SVE gives information about the flow
rate and level distribution in the flume.

In the water case where the level goes through the critical
point, the flume is divided into 50 discrete cells. Using a
dynamic SVE, steady state is reached within 30 [s] taking
some 1.5 [s] of computation time. In the drilling fluid case
where the level reaches critical level due to hydraulic jump,
the simulation of the steady SVE is executed with the
MATLAB ode23 solver, which uses 10768 discretization
points and takes 5.5 [s] to solve on a fairly standard PC.

CFD with results as in the backdrop of Fig. 3 gives much
more information than SVE. However, to find these results
takes in the order of 5 [h] of computer time. This time can
be reduced somewhat if the initial transient from empty
flume can be eliminated, but the computation time will
still be high.

It has been indicated that by measuring the highest level
in the throat section and assume this is the critical level,
we can compute the flow rate using (14). However, the
exact location where the critical level is reached, varies
with the flow rate. Furthermore, for measurements, it is
desirable with a steady, noise-free level. An alternative is
thus to instead measure the level at uniform conditions, hu

s ,

and compute V̇s by equating Sfs

(
hu

s , V̇s

)
= sin θ similar to

in (15), where we use the Herschel-Bulkley expression for
friction slope. Thus

V̇s =
(Whu

s )
2

W + 2hu
s

[(
Whu

s

W + 2hu
s

ρg

τ0
sin θ

)ε+0.15

− 1

]

× (0.74 + 0.656ε)

(ε+ 1) (ε+ 2)

( τ0
K

)ε
. (17)

Whether we use the Herschel-Bulkley model or some other
friction model, the velocity expression will depend on the
viscosity of the fluid.

Often, due to the short length of the flume, the uniform
level is not reached, and (17) does not apply. Based
on Bernoulli’s equation, ISO (2013) develops an implicit

expression for V̇s as

V̇s =

(
2

3

) 3
2
√
g

β

(
1− 0.006L

W

)(
1− 0.003L

hs

) 3
2

×

1 +
β
(
V̇s

W

)2

2gh3
s


3
2

Wh
3
2
s (18)

where L and W relates to the length and width of the
throat section, and β is a tuning factor to handle different
viscosities. Level hs is measured in the middle of the throat
section.

Another alternatively is to use the fully dynamic SVE, and
combine the model with multiple level measurements in a
state estimation scheme.
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5. CONCLUSIONS

In this paper, CFD simulations of water flow in a zero
slope Venturi flume have given excellent agreement with
experimental results in the literature. Next, a simplified
1D model based on the Saint Venant Equations (SVE) has
been analyzed, and found to give good agreement with the
CFD model; better agreement is expected with improved
tuning of boundary conditions for the SVE model. The
SVE model has been used to simulate the case of drilling
fluid flow in the same Venturi flume, with a 4◦ slope of the
flume. Because low flow rate may lead to particle settling
for drilling fluid, a high flow rate study is carried out. The
study indicates that little information about the flow rate
can be found using the nominal width of the Venturi flume.
However, by narrowing the throat section of the flume, a
significant jump in the level is achieved, and this level jump
holds information about the flow rate.

Four possible methods for deriving the flow rate from the
level jump are discussed in Section Discussion: (i) measur-
ing the maximal level gives the flow rate independently of
the fluid properties, (14), but the accurate level is compli-
cated to measure, (ii) measuring the uniform level, the flow
rate can be found if the fluid properties are known, (17) —
but depends on a sufficiently long flume to reach uniform
conditions, (iii) measuring some mid-way level can be used
to derive the flow rate (18), but this method also depends
on the fluid properties, and (iv) combining the transient
SVE model in (5), (6) with multiple level measurements
via state estimation is possible, but also depends on the
fluid properties.

Future work will involve testing the various methods on
a Venturi rig. Challenges for this future work include
sensor set-up, the numerics of solving the SVE model, and
efficient estimation algorithms.
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