
Handling risk of uncertainty in

model-based production optimization: a

robust hierarchical approach

M.Mohsin Siraj ∗, Paul M.J. Van den Hof ∗ and
Jan Dirk Jansen ∗∗

∗ Control Systems Group, Department of Electrical Engineering,
Eindhoven University of Technology (e-mails: m.m.siraj,

p.m.j.vandenhof@tue.nl).
∗∗ Department of Geoscience and Engineering, Delft University of

Technology (e-mail: j.d.Jansen@tudelft.nl)

Abstract: Model-based economic optimization of oil production suffers from high levels
of uncertainty. The limited knowledge of reservoir model parameters and varying economic
conditions are the main contributors of uncertainty. The negative impact of these uncertainties
on production strategy increases and becomes profound with time. In this work, a multi-objective
optimization problem is formulated which considers both economic and model uncertainties and
aims to mitigate the negative effects i.e., risk of these uncertainties on the production strategy.
The improved robustness is achieved without heavily compromising the primary objective of
economic life-cycle performance. An ensemble of varying oil price scenarios and geological model
realizations are used to characterize the economic and geological uncertainty space respectively.
The primary objective is an average NPV over these ensembles. As the risk of uncertainty
increases with time, the secondary objective is aimed at maximizing the speed of oil production
to mitigate risk. This multi-objective optimization is implemented separately with both forms
of uncertainty in a hierarchical or lexicographic way.

Keywords: Reservoir engineering, robust optimization, uncertainty handling, multi-objective
optimization, lexicographic optimization

1. INTRODUCTION

Risk is a broad concept with various perspectives orig-
inating from different fields e.g., health, safety, environ-
ment etc. From an economic viewpoint, risk in the model-
based optimization of water-flooding can be considered
as the unpredicted variability or a potential loss of the
expected economic objective. As the model-based opti-
mization suffers from high levels of uncertainty see e.g.,
Van den Hof et al. (2012), the risk of loosing expected
economic objective is also high. Risk management involves
various approaches to mitigate the negative consequences
of uncertainty e.g., Rockafellar (2007). In water-flooding
optimization, robustness to the negative impact of un-
certainties can be influenced by changing the production
or control strategies. However, this improvement should
be obtained without loosing sight of the main objective
of maximizing the economic life-cycle performance of the
water-flooding process.

Uncertainties are present in the reservoir models as well
as in economic conditions. The geological uncertainty is
profound because of the limited information contents from
the measurement and production data about the true
values of the model parameters. Furthermore, economic
variables such as oil prices, interest rate etc., that are
involved in different ways for quantifying the economic
value of oil and gas reserves, fluctuate with time and can
not be precisely predicted.

The negative consequences of uncertainties on the produc-
tion and control strategy increase with time and become
more profound with the length of the prediction horizon.
By increasing the rate of oil production hence improving
short-term gains mitigates risk of uncertainty on produc-
tion strategy. An indirect or ad-hoc way to increase the
speed of oil production by changing economic criteria is
proposed in Van Essen et al. (2009b), where a hierarchical
multi-objective optimization approach is introduced. NPV
with a high discount factor is maximized as a secondary
objective to improve short-term gains under the condi-
tion that the primary objective i.e., an un-discounted
NPV stays close to it’s optimal value. The optimality
of the primary objective in this hierarchical approach is
ensured by the availability of redundant degrees of free-
dom (DOF) with un-discounted NPV optimization. This
multi-objective optimization does not consider uncertainty
which is the core reason for the risk.

This work aims to address the question: can economic
and geological uncertainty be explicitly included in such
a hierarchical multi-objective optimization framework and
will it provide better risk handling? The main focus will
be to improve robustness without heavily compromising
the primary objective of maximizing economic perfor-
mance. An ensemble of varying oil price scenarios and
geological model realizations are considered as a discrete
approximation of economic and geological parametric un-
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certainty space respectively. The primary objective is to
improve economic performance by maximizing an average
un-discounted NPV over the ensemble of varying oil price
scenarios with single geological realization and later with
the ensemble of geological realizations with fixed economic
conditions. It is shown that in both cases, the optimal so-
lution is non-unique, thus leaving the freedom to optimize
a secondary objective without heavily comprising the pri-
mary objective in a hierarchical optimization framework.
As the negative impacts of uncertainty grow with the time-
horizon, the secondary objective function maximizes the
rate of oil production by using an identical NPV, as in
primary objective, but with a high discount factor. The
results for this hierarchical multi-objective optimization
are shown with both forms of uncertainties.

The paper is organized as follows: In Section 2, the model-
based optimization is explained in detail. Handling risk
of economic uncertainty is discussed in Section 3 with
subsections on optimization of primary objective function
and hierarchical optimization with simulation examples. A
similar discussion and simulation examples are presented
in Section 4 for handling risk of geological uncertainty.
Section 5 presents some conclusions of the work.

2. MODEL-BASED ECONOMIC OPTIMIZATION

A model-based economic optimization approach has shown
better economic life-cycle performance compared to the
traditional reactive control strategy e.g., see Brouwer and
Jansen (2004) and Jansen et al. (2008). The economic
objective i.e., Net Present Value (NPV) in these studies
can be mathematically represented as follows:

J =

K
∑

k=1

[

ro · qo,k − rw · qw,k − rinj · qinj,k

(1 + b)
t
k

τt

·∆tk

]

(1)

where ro, rw and rinj are the oil price, the water produc-
tion cost and the water injection cost in

[

$/m3
]

respec-
tively. K represents the production life-cycle i.e., the total
number of time steps k and ∆tk the time interval of time
step k in [days]. The term b is the discount rate for a
certain reference time τt. The terms qo,k, qw,k and qinj,k
represent the total flow rate of produced oil, produced
water and injected water at time step k in

[

m3/day
]

.

In this work, a gradient-based optimization approach is
used where the gradients are obtained by solving a system
of adjoint equations e.g., Jansen (2011). The gradient
information is then used in a steepest ascent algorithm
to iteratively converge to the (possible local) optimum.

3. HANDLING RISK WITH ECONOMIC
UNCERTAINTY

Economic uncertainty has a time-varying dynamic nature
and its negative effect on the production strategy increases
with the time horizon. Among other economic uncertain
variables in NPV, varying oil prices have the most dom-
inant effect. Hence only oil price scenarios are used to
characterize economic uncertainty.

3.1 Optimization of the primary objective function

In Van Essen et al. (2009a), a so-called robust optimization
(RO) approach is introduced. It uses an ensemble of pos-
sible geological realizations to determine an average NPV

over that set of realizations. In this work, RO approach is
extended to incorporate the economic uncertainty with a
single geological realization. The average NPV defined over
the ensemble of varying oil price ensemble can be written
as:

J1 =
1

Neco

Neco
∑

i=1

J i (2)

where Neco is the number of oil price realizations in an
ensemble. Similar to the case of RO with geological uncer-
tainty, from the formulation of the objective function in
(2), calculating the gradient of the average NPV involves a
linear operation. Hence, the gradient∇J1 can be computed
as:

∇J1 =
1

Nr

Nr
∑

i=1

∇J i. (3)

Here we consider J1 to represent the primary objective of
economic life-cycle performance optimization. One impor-
tant point to consider here is that due to the linearity of
the oil price in the NPV with the certainty of a geological
model, the average of individual objective functions from
each realization is equal to a single objective function with
the average value of all oil price realizations as shown
below:

1

Neco

Neco
∑

i=1

[J(uk, ηi)] = J(uk,
1

Neco

Neco
∑

i=1

[ηi]) (4)

where uk is the input sequence and ηi is the ith oil price
realization in the ensemble.

3.2 Simulation example

All simulation experiments are performed using MRST,
see Lie et al. (2012), which is a MATLAB based reservoir
simulator. The details of simulation example with objec-
tive function (2) are given below:

Reservoir model and economic data: As the purpose of
this simulation example is to show the effect of economic
uncertainty on the optimal strategy, a single model real-
ization of the Standard Egg model (Jansen et al. (2014))
is used. The standard egg model is a three-dimensional
realization of a channelized reservoir produced under water
flooding conditions with eight water injectors and four pro-
ducers. The life-cycle of this reservoir model is 3600[days].
The absolute-permeability field and well locations of the
model realization are shown in Fig. 1.

Fig. 1. Permeability field and well locations of the model
realization
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An un-discounted NPV i.e., with discount factor b = 0
is used. Other economic parameters e.g., water injection
cost rinj and production cost rw are chosen and kept fixed
at 6

[

$/m3
]

and 19
[

$/m3
]

respectively. There are various
ways to predict the future values of changing oil prices,
but for this example a simplified Autoregressive-moving-
average model (ARMA) model is used to generate oil price
time-series. The ARMA model is shown below:

rok = a0 +

6
∑

i=1

airok−i
(5)

where ai are randomly selected coefficients. A total of
10 scenarios i.e., Neco = 10 with the base oil price of
126

[

$/m3
]

are generated as shown with their average
value in Fig. 2.
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Fig. 2. Oil price scenarios with the mean oil price values

Control input and control strategies: The control input
uk reflects injection flow rate trajectories for each of the
eight injection wells. The minimum and maximum flow
rate constraints are 0.2

[

m3/day
]

and 79.5
[

m3/day
]

. The
production wells operate at a constant bottom-hole pres-
sure of 395[bar]. The control input uk is reparameterized in
time using a zero-order-hold scheme with input parameter
vector ϕ. The control input uk is reparamterized into ten
time periods of tϕ of 360[days] during which the injection
rate is held constant at value ϕi. Thus the input parameter
vector ϕ consists of 8× 10 = 80 elements.

The extended RO with economic uncertainty is compared
to the conventional reactive strategy. In the reactive strat-
egy, water is injected with maximum rate and each produc-
tion well is simply shut-in when the production is no longer
profitable. Here the profitability threshold corresponds to
a water-cut of 87%.

3.3 Results

The robust optimal control strategy is determined using
the same gradient-based optimization procedure as men-
tioned in Section. 2. A line search is used to find the
optimal step size α along the direction of the greatest
ascent. The optimal strategy is applied to the reservoir
model with all oil price realizations. The reactive strategy
is also applied to the model with the ensemble of oil
price scenarios. The time-evolution of NPV with both
strategies are compared in Fig. 3. The maximum and
minimum values of time-evolution of NPV will form a
tube. The first observation is the high width of these tubes
that reflects a dominant effect of economic uncertainty on

strategies. Intuitively, optimization should increase the oil
production when the oil prices are higher and vice versa.
Also considering the averaging property with economic
uncertainty given in (4), the NPV time build-up with RO
shows expected results. As the mean oil price as shown in
Fig. 2 tends to decrease in long-term from the initial value,
RO improves production in the early phase.
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Fig. 3. Max and min (tube) for time-evolution of NPV

To make this point clear, consider another oil price sce-
nario as shown in Fig. 4. Here in this case, the mean value
of oil price realizations is increasing. The results obtained
from this ensemble are also shown in Fig. 4. It can be
seen that as the oil price realizations have an increasing
mean value and it is highest at the end of life-cycle time,
RO focuses to improve production at the end of life-cycle.
The above two cases show a dominant effect of varying oil
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Fig. 4. Oil price scenario with resulting time-evolution of
NPV

prices on optimal strategy with the direct dependence of
NPV time build-up on chosen ensemble. Another impor-
tant observation is that though RO incorporates economic
uncertainty but it does not aim to reduce the sensitivity
of the optimal solution to uncertainty. The uncertainty in
the ensemble is mapped to the higher variance of the ob-
tained NPV, which reflects higher risk and hence poor risk
handling. As the negative effect of uncertainty grows with
time, an indirect way of mitigating risk is to improve short-
term gains by adapting the criterion. The main question
of incorporating economic uncertainty in the hierarchical
framework to handle risk without heavily compromising
the primary objective of life-cycle performance will be
discussed in the next section. A qualitative discussion on
the risk handling of this approach with both forms of
uncertainty will be presented at the end.

IFAC Oilfield 2015
May 27-29, 2015

Copyright © 2015, IFAC 256



3.4 Hierarchical multi-objective optimization

Multi-objective optimization involves the optimization of
more than one (possibly contradictive) objective functions
simultaneously. Haimes and Li (1988), describes a hier-
archical or lexicographic method that requires to priori-
tize the multiple objectives, such that optimization of a
secondary objective is constrained by the condition that
the primary objective should remain close to it’s optimal
value. The structure of hierarchical optimization can be
explained as follows:

max
uk

J2(uk),

s.t. g(uk,x) = 0, x̄0 = x0,

c(uk) ≤ 0,

J∗

1
− J1(uk) ≤ ǫ.

where g(uk,x) is the system model with states x and
initial condition x0, c(uk) are constraints, ǫ is a real-value
scalar, J1(uk) is the primary objective function defined
and used in Section 3.1, and J∗

1
its value in the optimum.

The secondary objective J2(uk) aims to address the risk
of uncertainty by maximizing the speed of oil production,
without heavily loosing or compromising J1(uk). J2(uk) is
defined as identical to the primary objective J1(uk) but
with the addition of a very high annual discount rate b of
0.25. This strategy has been introduced in the reservoir
domain by Van Essen et al. (2009b) using a single model
realization, and followed by Fonseca et al. (2014) who has
applied it in a robust hierarchical approach with geological
uncertainty and with an ensemble approach to approxi-
mate gradients. In this strategy the short-term production
is weighted more heavily than the future predictions. In
Van Essen et al. (2009b) it has been shown that if the
solution of the primary objective optimization is non-
unique, there exist degrees of freedom (DOF) such that
the multi-objective optimization can be performed with
ǫ = 0. The information about the DOF can be obtained
by the sensitivity relation i.e., the gradients ∂J1

∂uk

, but at

the optimal u∗

k the above sensitivity (gradients) from the
optimality condition is zero. Hence no information on the
possible DOF can be obtained. Second-order derivatives of
J1 with respect to uk are collected in the Hessian matrix

H = ∂2J1

∂u2

k

. If H is negative semi-definite the considered

optimal solution u∗

k contains redundant DOF.

Unfortunately, no reservoir simulator is currently equipped
with second-order derivatives. A forward-difference scheme
to approximate the Hessian H is implemented with pri-
mary objective function optimization. In total Nu + 1
simulations (function evaluations) are required to obtain
the approximate Hessian matrix H at a particular optimal
solution u∗

k, where Nu is the number of input elements.
If Hessian is negative semi-definite, it does not have full
rank. The zero singular values σi = 0 in a singular value
decomposition of H given as follows:

H = UΣV ⊤ (6)

determines the non-uniqueness of the solution. U and V
are matrices with orthogonal columns. In this example, as
a numerical model and an approximation of the Hessian is
used, the condition of redundant DOF as σi = 0 is relaxed
to σi/σ1 < 0.02. 67 out of 80 input elements Nu, are found
to be redundant.

As the computation of the Hessian is computationally a
very expensive operation, an alternate switching method
for hierarchical multi-objective optimization has been pro-
posed in Van Essen et al. (2009b) that does not require
an explicit knowledge of redundant DOF. This proposed
method and it’s implementation with the results are dis-
cussed in the next sub-sections.

3.5 Switching method for multi-objective optimization

An alternative method to solve the hierarchical optimiza-
tion problem without explicitly calculating the redundant
DOF is through the use of a balanced objective function
as follows:

Jbal = Ω1J1 +Ω2J2 (7)

where Ω1 and Ω2 are switching function of J1 and J∗
1
that

take on values of 1 and 0 as follows:

Ω1(J1) =

{

1 if J1 − J∗

1
> ǫ

0 if J1 − J∗

1
≤ ǫ

(8a)

Ω2(J1) =

{

0 if J1 − J∗

1
> ǫ

1 if J1 − J∗

1
≤ ǫ

(8b)

where ǫ shows the allowable decrease of J∗

1
. This switching

method is implemented with the economic uncertainty in
the next sub-section.

3.6 Simulation example

The reservoir model realization, the economic data and the
control inputs in this example are the same as used in the
previous simulation example in Section 3.1. The oil price
scenarios shown in Fig. 2 are used for this example.

Results The optimal solution of the primary objective
function optimization u∗

k serves as an initial input guess
for the switching multi-objective optimization, the values
of primary and secondary objective functions with opti-
mization iteration numbers are given in Fig. 5. The value
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Fig. 5. Primary J1 and secondary J2 objectives

of the primary function decreases as the value of secondary
function increases and vice versa. As this is a non-convex
optimization problem with (possible) many local maxima,
it can be observed that the primary objective function
obtains another (possibly) local maxima in the second
iteration. The selection of ǫ is a user’s choice and shows
how much deviation of J1 is allowed from the optimal value
J∗

1
. In this example chosen ǫ shows a decrease of 0.3% from

the optimal value of the primary objective function.
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The time-evolution of NPV with all the three strategies
i.e., RO, reactive and multi-objective optimization are
compared in Fig. 6. As the secondary objective is aimed at
maximizing the oil production rate, the short-term gains
are heavily weighted, which can be observed in the figure.
But this improving short-term gains are achieved with
compromising only 0.24% on the long-term NPV. At this
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Fig. 6. Max and min (tube) for time-evolution of NPV

stage, it is very difficult to give any convergence proof of
the multi-objective optimization. The optimization routine
is stopped when a sufficient increase i.e., 1.61% in the
secondary objective function is obtained.

4. HANDLING RISK WITH GEOLOGICAL
UNCERTAINTY

Reservoir models used in model-based optimization, do not
capture all the dynamics of the underlying system, and
are equipped with substantial geological uncertainty. In
Van Essen et al. (2009a) an averaging approach has been
presented with geological uncertainty. An average objec-
tive function with an ensemble of geological realizations
is considered as the primary objective. In this section we
reproduce the simulation example from Van Essen et al.
(2009a) to show that on average, RO performs better than
all nominal and reactive strategies.

The time-evolution of NPV with all three strategies i.e.,
nominal (NO), robust and reactive are compared in Fig.
7. The 100 NO strategies from each model is applied
to themselves, while the RO and reactive strategies are
applied to the set of 100 models. The maximum and
minimum values of time-evolution of NPV will form a tube
as shown in Fig. 7.
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Fig. 7. Time-evolution of NPV for RO with geological
uncertainty

The forward-difference scheme is implemented with the
primary objective function optimization. Similar to the ex-
ample of economic uncertainty, the condition of redundant
DOF as σi = 0 is relaxed to σi/σ1 < 0.02. In this example,
the total control input elements Nu are 160, where 121 out
of 160 input elements are found to be redundant.

The secondary objective J2(uk) is defined as identical to
the primary objective J1(uk) but with the addition of a
very high annual discount rate b of 0.25. The switching
method for hierarchical multi-objective optimization as
discussed in the previous section is implementated with
the case of geological uncertainty with the results given
in next sub-sections. The ensemble of reservoir models,
the economic data and the control inputs in this example
are the same as used in the previous simulation example,
a fixed oil price value, i.e., ro = 126

[

$/m3
]

is used.
The optimal solution of the primary objective function
optimization u∗

k serves as an initial input guess for the
switching multi-objective optimization, the values of pri-
mary and secondary objective functions with optimization
iteration numbers are given in Fig. 8. The value of the
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Fig. 8. Primary J1 and secondary J2 objectives

primary function decreases as the value of the secondary
function increases and vice versa. Similar to the economic
uncertainty case, it can be observed that the primary
function obtains another (possibly) local maxima in the
second iteration, which can be a pure co-incidence and is
not investigated further. In this example, chosen ǫ shows
a decrease of 0.3% from the optimal value of the primary
objective function.
The optimal input trajectories are applied to each member
of the set and the corresponding Probability distribution
function (PDF) of the resulting NPV are shown in Fig.
9. The PDF is compared with the PDF resulting from
applying RO and reactive strategies to the ensemble. It
can be observed that due to the availability of redundant
DOF, the average NPV which shows the economic life-
cycle performance of the water-flooding process is almost
the same with the multi-objective optimization.

The time-evolution of NPV with all the three strategies are
compared in Fig. 10. As the secondary objective is aimed
at maximizing the oil production rate, the short-term gains
are heavily weighted, which can be observed in the figure.
But this improving short-term gains are achieved with
almost no compromise on the long-term NPV.
Similar to the economic uncertainty case, the convergence
is difficult to prove. The optimization routine is stopped
when a sufficient increase i.e., 3.73% in the secondary
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Fig. 10. Time-evolution of NPV for RO hierarchical with
geological uncertainty

objective function is obtained.
Changing the economic criteria in such robust hierarchical
optimization is still an indirect way of handling risk in
model-based optimization. Like RO, the robust hierarchi-
cal optimization does incorporate economic and model un-
certainties but does not attempt to reduce the sensitivity
of the solution to these uncertainties. Better characteriza-
tion and quantification of risk with the reduction of the
sensitivity of solution to uncertainty will provide better
risk handling e.g., in Capolei and Jørgensen (2013), the
variance of NPV distribution is used to quantify risk and
it is reduced with the maximization of mean NPV for
the case of geological uncertainty. The economic criteria
should not change in the presence of uncertainty but the
solution should change to mitigate risk in optimization
framework, we addressed the issue and it is shown in
Siraj et al. (2015) that the rate of oil production nat-
urally increases hence better risk handling by explicitly
incorporating both forms of uncertainties with a sensitivity
reduction of solution to uncertainty.

5. CONCLUSION
A multi-objective optimization is presented that improves
robustness of the control strategy to the uncertainty
without compromising the primary objective of model-
based optimization i.e., improving life-cycle performance
of water-flooding process. The approach explicitly incorpo-
rates economic and geological uncertainties by considering
an average NPV over an ensemble of varying oil price and
model realizations. The rate of oil production is maximized
by a secondary objective to mitigate the negative impact
of uncertainties. The results with both forms of uncer-
tainty show that with such hierarchical multi-optimization

approach, the secondary objective is optimized without
heavily compromising the primary objective.
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