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Abstract: The problem of suppressing the slugging phenomenon is investigated. Industrial
oil facilities such as gas-lifted wells and offshore production oil-risers are examples of systems
where occurs such phenomenon. To study this problem, we consider that these systems are
written as a set of 3 × 3 hyperbolic partial differential equations of balance laws, where the
control variable appears at the boundary condition. By means of the characteristic coordinates
approach, we deduce the stabilizing control law. The exponential stability of the equilibrium is
proved by means of a Lyapunov stability analysis. Through simulation results, the method is
shown effective in stabilizing the slugging phenomenon.

Keywords: boundary control, distributed parameter systems, flow control, partial differential
equations, stabilization

1. INTRODUCTION

Slugging is a well-known two-phase flow regime which
occurs in industrial oil facilities such as gas-lifted wells
and offshore production oil-risers. This phenomenon is
characterized by intermittent axial distribution of gas and
liquid that leads to an oscillating flow pattern. Conse-
quently, sudden variations of oil production due to changes
in pressure and flow rates of liquid and gas may occur.
Mature oil-fields, the increasing of gas-to-oil ratio and
water fraction increases are probably the major cause of
these unstable flow regimes.

A typical slugging bifurcation diagram, considering the
outlet valve opening (production choke) as a bifurcation
parameter, is shown in Fig. 1. As can be seen, a super-
critical Hopf bifurcation takes place at the point HBsup,
giving rise to a stable limit cycle. As negative effects of
this type of phenomenon, it can be mentioned the oil
production detriment and several issues concerning safety
of operations on the surface equipment, which can provoke
several undesired effects as deteriorating the separation
quality and level overflow in the multiphase flow separator
(Stasiak et al., 2012; Di Meglio et al., 2012a).

The fluid flow regime stabilization in industrial oil fa-
cilities has the potential for immense economical ben-
efits (Storkaas and Skogestad, 2007), since the system
can operate with a larger outlet valve opening, and the
flow stabilization minimize the problems on the separator.
Many methodologies have been developed to avoid the un-
desirable slugging phenomenon, between them, the active
control of the outlet valve has been shown a promising
method to suppress these oscillations (Godhavn et al.,
2003).
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Fig. 1. Typical bifurcation diagram considering the outlet
valve opening as the bifurcation parameter. A stable
limit cycle undergoes from a supercritical Hopf Bifur-
cation (HBsup).

However, slug flow stabilization via active control is not
trivial. These systems are characterized by partial differen-
tial equations (PDEs), boundary actuator, nonlinearities
and uncertainties. Therefore, simple controllers cannot op-
erate effectively in the whole operating point due to the
complex dynamic involved in slug flow. Some advanced
control techniques reported in literature to deal with this
control problem can be found in Storkaas and Skoges-
tad (2007); Stasiak et al. (2012); Pagano et al. (2009);
Di Meglio et al. (2012b); Godhavn et al. (2003). These
controllers use mainly upstream pressure sensors (a sensor
located at the bottom of the pipe) in the feedback-loop to
stabilize the flow by outlet valve actuation. Even further,
all these results are based on simplified lumped parameter
models, and most of them are not based on a rigorous first
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principles dynamic model. The higher model complexity
is probably the main reason why model based controllers
are still scarce in literature.

In this paper, we propose a feedback controller to stabilize
the slugging oscillations in multiphase flow based on an
infinite dimensional 3× 3 linear system, where the control
variable appears at the boundary condition. Few results
in literature address this control problem from this point
of view. As far as we know, the slug flow stabilization
using boundary control theory has only been previously
investigated in Di Meglio et al. (2012c), where a full-
state feedback law based on a 3× 3 linearized quasilinear
hyperbolic model was proposed. This control system uses
a backstepping transformation to find new variables for
which a Lyapunov function can be constructed, achieving
exponential stability for the L 2(0, L)-norm.

Our proposal is based on the ideas of Diagne et al.
(2012); Bastin et al. (2008), where a proportional feedback
control law is presented and the closed-loop stability is
demonstrated using characteristic coordinates along with
an appropriate Lyapunov function. The control system is
based in a similar linearized PDE model of Di Meglio et al.
(2012a). However, in our model the friction against the
pipe walls is considered and a homogeneous model for the
two-phase flow is used. The proposed control strategy was
tested via numerical simulations on the nonlinear PDE
model to show its relevance.

The paper is organized as follows. In Section 2, we describe
the slugging model. In Section 3, the Lyapunov stability
analysis of the proposed controller is shown. The control
design is shown in Section 4. We illustrate the simulation
results in Section 5. Conclusions are given in Section 6.

2. THE SLUGGING MODEL

In this work, a PDE model is used to describe the slug-
ging phenomenon in industrial oil facilities. The model
is similar to that proposed by Di Meglio et al. (2012a),
but the friction against the pipe walls is considered and a
homogeneous model for the two-phase flow is used. More-
over, it is assumed constant temperature along the pipe,
incompressible oil, and no mass transfer between the gas
and liquid phase. In this context, the PDEs that describe
the system behavior are given by
∂αgρg
∂t

+
1

A

∂qg
∂z

= 0, (1)

∂αlρl
∂t

+
1

A

∂ql
∂z

= 0, (2)

∂ρmvm
∂t

+
∂P + ρmv

2
m

∂z
= − f

2d
ρmv

2
m − ρmgsinθ(z),

(3)

where, for k = g or l, αk denotes the volume fraction of
phase k, ρk its density and qk its flow rate. The pressure is
denoted by P , ρm is the density of the mixture, vm is the
velocity of the mixture, f accounts for the friction factor,
d is the pipe diameter and A its cross-section area, and
θ(z) is the inclination of the pipe. The time variable is
t ∈ [0,+∞) and z ∈ [0, L] is the space variable, where L
is the length of the pipe.

Besides the PDE model (1)-(3), the following algebraic
equations are used for system closure:

αg + αl = 1, (4)

ρm = αgρg + αlρl, (5)

P =
ρgRT

M
, (6)

x =
αgρg

αgρg + αlρl
, (7)

where R is the specific gas constant, M is the gas molar
weight, x is the gas mass fraction, and T is the tempera-
ture.

Regarding the boundary conditions, they are given at both
ends of the pipe. At the bottom, two boundary conditions
are given: one for the liquid flow rate, assuming that it is
linearly depend on the pressure drop between the pipe and
the oil reservoir, and other boundary condition for the gas
flow rate, assumed to be constant. They are expressed as

ql(t, 0) = PI[Pr − P (t, 0)], (8)

qg(t, 0) = qg, (9)

where ql is the liquid flow rate, qg is the gas flow rate, PI
is a constant coefficient called productivity index and Pr
is the pressure in the reservoir, assumed to be constant.

At the top, the total flow rate, qt = ql + qg, is assumed to
be governed by a valve equation of given by

qt(t, L) = CoutZ(t)
√
ρm(t, L)(P (t, L)− Ps), (10)

where Ps is the pressure in the separator, Cout is a valve
constant and Z(t) is the valve opening, which is the
manipulated variable.

2.1 Formulating the Slugging Model as a Quasilinear
System

Combining the equations (1)-(3), the static relations (4)-
(7), and considering the following state vector

u = [ u1 u2 u3 ]
T

=
[
P qt

αgρg
αgρg+αlρl

]T
,

it is possible to rewrite the system in quasilinear form

∂u

∂t
+ F (u, z)

∂u

∂z
= S(u, z). (11)

The expressions of the matrices F (u, z) and S(u, z) are
given in the Appendix A.

2.2 Steady-state and linearized system

The steady-state solution for system (11) is a constant
solution u(t, z) = u∗, ∀t ∈ [0,+∞), ∀z ∈ [0, L], satisfying
the boundary conditions (8)-(10) and the condition

fu23
(1−u∗

3)
(
(1−u∗

3)M
2u∗2

1 +2MRTρlu
∗
3u

∗
1

)
+R2T 2ρ2l u

∗2
3

2AMdρlu∗
1((1−u

∗
3)Mu∗

1+RTρlu
∗
3)

=

− AMρl
(1−u∗

3)Mu∗
1+RTρlu

∗
3
g sin θ(z). (12)

In order to linearize the system (11) and its boundary
conditions (8)-(10), we define the deviations of the states
u1(t, z), u2(t, z) and u3(t, z) with respect to the steady-
states u∗1, u∗2 and u∗3 by

δu1(t, z) , u1(t, z)− u∗1,
δu2(t, z) , u2(t, z)− u∗2,
δu3(t, z) , u3(t, z)− u∗3.
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Then, the linearized quasilinear model (11) around the
steady-state (see Bastin et al. (2008)) is described by

∂δu

∂t
+ F (u∗)

∂δu

∂z
+ S̃(u∗)δu = 0, (13)

where

δu , [ δu1 δu2 δu3 ]
T
,

u∗ , [ u∗1 u
∗
2 u

∗
3 ]
T
,

S̃(u∗) ,
[
∂S
∂u1

(u∗) ∂S
∂u2

(u∗) ∂S
∂u3

(u∗)
]
.

Let ql = (1 − u3)u2. Then, the linearized boundary
condition (8) results in the following expression:

PIδu1(t, 0) + (1− u∗3)δu2(t, 0)− u∗2δu3(t, 0) = 0. (14)

Similarly, consider qg = u3u2. Then, the linearized bound-
ary condition (9) is given by

u∗3δu2(t, 0) + u∗2δu3(t, 0) = 0. (15)

Finally, the linearized boundary condition (10) is ex-
pressed as

δu2(t, L) = Ku1
δu1(t, L) +Ku3

δu3(t, L) +Kzδz(t),
(16)

where δz(t) = Z(t) − Z∗, being Z∗ the choke opening
steady state value, and

Ku3
= − (ρLRT − u∗1)u∗2

2(ρLRTu∗3 + (1− u∗3)u∗1)
,

Ku1
=
ρLu

∗
1(2ρLRTu

∗
3 + (1− u∗3)u∗1)− Psρ2LRTu∗3

2(ρLRTu∗3 + (1− u∗3)u∗1)
×

u∗2
ρLu∗1(u∗1 − Ps)

,

Kz = Cout

√
ρLu∗1

ρLRTu∗3 + (1− u∗3)u∗1
(u∗1 − Ps).

2.3 Model in terms of characteristic coordinates

In this section, we transform the system (13) into the
so-called characteristic form by using the characteristic
coordinates (Bastin et al., 2008).

To this aim, let us consider the following change of
coordinates:

R1(t, z) = δu2(t, z) + aδu3(t, z) + bδu1(t, z), (17)

R2(t, z) = δu2(t, z) + aδu3(t, z)− bδu1(t, z), (18)

R3(t, z) = δu3(t, z), (19)

where

a = RTρlu2−Mu1u2

(1−u3)Mu1+RTρlu3
,

b = ρl
Au1

√
M3RTu3−MRTu3u2

Mu1((1−u3)Mu1RTρlu3)
.

With these new coordinates, the system (13) is rewritten
in the following form:

∂R

∂t
+ Λ

∂R

∂z
+ ΣR = 0 (20)

with

R , [R1(t, z) R2(t, z) R3(t, z) ]
T
,

and Λ is the matrix with the transport speeds, given by

Λ =

[
λ1 0 0
0 −|λ2| 0
0 0 λ3

]
(21)

The expressions of the transport speeds are shown in Eq.
(A.3), and they satisfy the following inequalities:

λ2 < 0 < λ3 < λ1

The expression for Σ is complicated to be written in
details. Then, to save space, we express its structure as

Σ =

[
σ1,1 σ1,2 σ1,3
σ2,1 σ2,2 σ2,3

0 0 0

]
(22)

Note that the last line of Σ is filled with 0. This occurs
because the state variable u3(t, z) is a Riemann invariant
(Di Meglio et al., 2012c). This structure is also preserved
by the transformation shown in this section.

Several numerical tests performed for the system consid-
ered in this work (see Section 5 for details about the system
geometry) have shown that the following inequalities hold:

σ1,3 ≡ σ2,3 < 0 < σ1,1 ≡ σ2,1 < σ1,2 ≡ σ2,2

Typical values are σ1,3 ≡ σ2,3 ≈ −425, σ1,2 ≡ σ2,2 ≈
15224, and σ1,3 ≡ σ2,3 ≈ 0.4.

Finally, the boundary conditions (14)-(16), in characteris-
tic coordinates, are expressed as

R1(t, 0)− ψR2(t, 0) = 0, (23)

R2(t, L) + k1R1(t, L) + k2R2(t, 0) + k3R3(t, L) = 0, (24)

R3(t, 0)− ϕR2(t, 0) = 0, (25)

or in matrix form[
R1(t, 0)
R2(t, L)
R3(t, 0)

]
=

[
0 ψ 0
−k1 −k2 −k3

0 ϕ 0

]
︸ ︷︷ ︸

K

[
R1(t, L)
R2(t, 0)
R3(t, L)

]
, (26)

where

ϕ =
PIu∗3

PIau∗3 − 2u∗3u
∗
2 − PIbu∗2

,

ψ =
u∗3 + 2bu∗2
u∗3 − 2bu∗2

,

and ki, i = 1, ..., 3 are constant design parameters that
have to be tuned to guarantee the stability of the linear
system (13), as will be shown in the next section.

The change of coordinates (17)-(19) is inverted as follows:

δu1(t, z) =
R1(t, z) +R2(t, z)− 2aR3(t, z)

2
, (27)

δu2(t, z) =
R1(t, z)−R2(t, z)

2b
. (28)

δu3(t, z) = R3(t, z). (29)

3. STABILITY ANALYSIS

In characteristic coordinates, the control problem can
be restated as the problem of determining the control
action in such a way that the solution R1(t, z), R2(t, z),
R3(t, z) converge towards zero (Coron et al., 2007). We
now investigate the stabilization of the linearized system
(13) imposing the boundary control (24).

We introduce the following candidate Lyapunov function
(Bastin et al., 2008):
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V (t) =

∫ L

0

R2
1(t, z)p1 exp(−µz)dz+∫ L

0

R2
2(t, z)p2 exp(µz)dz +

∫ L

0

R2
3(t, z)p3 exp(−µz)dz

(30)

with µ > 0, pi > 0, i = 1, ..., 3 yet to be defined. Also, we
define the following notations:

R1(0) , R1(t, 0) R1(L) , R1(t, L)

R2(0) , R2(t, 0) R2(L) , R2(t, L)

R3(0) , R3(t, 0) R3(L) , R3(t, L)

Differentiating V (t) and integrating by parts one obtains

V̇ = V̇1 + V̇2, (31)

where

V̇1 , −
[(
R2

1(t, z)p1λ1 +R2
3(t, z)p3λ2

)
exp(−µz)

]L
0

+[
R2

2(t, z)p2|λ2| exp(µz)
]L
0
, (32)

and the expression for V̇2 is shown in Eq. (33).

If the function V̇ is negative definite, then the system (20)
is exponentially stable (Khalil, 2002). We now investigate
the two terms of (31) successively in order to prove
stability.

The analysis of (32) (using the boundary conditions (23)-
(25)) gives

V̇1 = −
(
R2(0)2p2|λ2|+R1(L)2λ1p1 exp(−µL)+

R3(L)2λ3p3 exp(−µL)
)

+ ϕ2R2
2(0)p1λ1 + ψ2R2

2(0)p2λ2+

(k3R3(0) + k1R1(L) + k2R2(L))
2
p3|λ3| exp(µL). (34)

As shown in Diagne et al. (2012), V̇1(t) is a negative
definite quadratic form with respect to R ∀t ≥ 0 along
the solutions of the linearized system (20) if the norm for
the matrix K

ρ(K) ,
{
||∆K∆−1||,∆ ∈ S

}
, (35)

where || · || denotes the matrix 2-norm, and the set S is
defined as

S ,
{

∆ = diag{
√
p1λ1,

√
p2|λ2|,

√
p3λ3}

}
, (36)

satisfies

ρ(K) < 1. (37)

Therefore, using (26) and the inequality (37) we obtain∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



0 ψ

√
λ1p1
|λ2|p2

0

−k1

√
|λ2|p2
λ1p1

−k2 −k3

√
|λ2|p2
p3λ3

0 ϕ

√
λ3p3
|λ2|p2

0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
< 1, (38)

it follows that V̇1 is negative definite.

A sufficient condition for V̇2 be negative definite is that
the principal minors of Q are strictly positive. Evaluating
such operation we obtain the following inequalities:

µλ1 + 2σ11 > 0 (39)

µ|λ2|+ 2σ22 > 0 (40)

(µλ1 + 2σ11)(µ|λ2|+ 2σ22)p1p2−
(σ21p2 exp(µz) + σ12p1 exp(−µz))2 > 0 (41)

µλ3p3 exp(−µz) [(µλ1 + 2σ11)(µ|λ2|+ 2σ22)p1p2−
(σ21p2 exp(µz) + σ12p1 exp(µz))2

]
− σ23 exp(µz)×

[(µλ1 + 2σ11)σ32p1p2 − (σ21p2 exp(µz)+

σ12p1 exp(−µz))σ13p1 exp(−µz) + σ13p1 exp(−µz)] +

σ13p1 exp(−µz) [(σ21p2 exp(µz) + σ12p1 exp(−µz))×
σ23p2 exp(µz)− (µ|λ2|+ 2σ22)p1p2] > 0 (42)

Conditions (39)-(40) are satisfied for any µ ≥ 0. Condition
(41) is satisfied for sufficiently small µ > 0 if the parame-
ters p1, p2 are selected such that σ12p1 = σ21p2, as shown
in Bastin et al. (2008). Under this condition, the term
(σ21p2 exp(−µx) + σ12p1 exp(µx))2 is maximum either at
x = 0 or at x = L. For x = 0, we have

(µλ1 + σ11)(µ|λ2|+ 2σ22)p1p2 − (σ21p2 + σ32p3)2 > 0

= µ2λ1|λ2|p1p2 + µp1p2 [2σ22 + 2σ11|λ2|] > 0

for any µ > 0. On the other hand, for x = L we have

(µλ1 + σ11)(µ|λ2|+ 2σ22)p1p2 − (σ21p2 exp(µL)+

σ32p3 exp(µL))2 > 0

= µ2λ1|λ2|p1p2 + µp1p2 [2σ22 + 2σ11|λ2|]−
(σ11p2 exp(−µL)− σ22p3 exp(µL))2 > 0

for µ > 0 sufficiently small.

Finally, inequality (42) is satisfied for a sufficiently large
p3. It follows that there exist α > 0 such that

V̇2 < −αV =⇒ V̇ = V̇1 + V̇2 ≤ −αV ∀R 6= 0. (43)

Hence, V is a Lyapunov function along the solutions of the
linearized slugging model and its solutions exponentially
converge to 0 in L 2(0, L)-norm.

We have to stress that the Lyapunov function used in this
section to show the stability of the linear system cannot
be used to analyze the local stability of the nonlinear case.
To this aim, an augmented Lyapunov function must be
used to prove convergence in H2(0, L)-norm. This proof is
much more complicated than the linear case shown in this
section and it is out of scope of this paper. The interested
reader can see Coron et al. (2007); Bastin et al. (2008) for
more details.

4. DESIGN OF THE CONTROL LAW

In the previous section, we have seen that the system
stability is guaranteed if the feedback control law (24)
holds. Therefore, in this section we shall present how the
explicit expression of the control law can be obtained using
the boundary condition (16).

We introduce the following notations:

δu1(L) , δu1(t, L) δu1(0) , δu1(t, 0)

δu2(L) , δu2(t, L) δu2(0) , δu2(t, 0)

δu3(L) , δu3(t, L) δu3(0) , δu3(t, 0)

Using the definition of the Riemann coordinates (17)-(19)
the boundary condition (24) is rewritten as
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V̇2 , −
∫ L

0

RT

[
(µλ1 + 2σ11)p1 exp(−µz) σ21p2 exp(µz) + σ12p1 exp(−µz) σ13p1 exp(−µz)

σ21p2 exp(µz) + σ12p1 exp(−µz) (µ|λ2|+ 2σ22)p2 exp(µz) σ23p2 exp(µz)
σ13p1 exp(−µz) σ23p2 exp(µz) µλ3p3 exp(−µz)

]
︸ ︷︷ ︸

Q

R (33)

δu3(L)(a+ k1a+ k3)− δu1(k1b− b) + δu3(L)(1 + k1)+

k2(δu2(0) + aδu3(0)− bδu1(0)) = 0. (44)

Then, by eliminating δu3(L) between (16) and (44), and
eliminating δu2(0) and δu3(0) between (14), (15) and (44),
we get the following expression for the control law

Z(t) = Z∗ +Kpu2
δu2(L) +Kpu1

δu1(L) +Kp0δu1(0),

(45)

where

Kpu2
=
k3 +Ku3 + a+ k1a+ k1Ku3

Kz (a+ k1a+ k3)
,

Kpu1
= Ku3

Kz(a+k1a+k3)

(
k1b− b−

Ku1

Ku3

(a+ k1a+ k3)

)
,

Kp0 =
Ku3

k2 (PI(au∗3/u
∗
2 − 1)− b)

Kz (a+ k1a+ k3)
.

It must be noted that the feedback control law (45) need
measurements of pressure at the outlet valve, the bottom
pressure and total flow-rate measurement through the
outlet valve. For the simulations results shown Section 5,
we consider that all these variables are being measured.
In some real cases this is not true. Therefore, the use of
a state observer together with the control law is probably
the best option in these cases.

5. SIMULATION RESULTS

This section shows the simulation results obtained when
using the proposed controller to stabilize the quasilinear
model (11). We consider a 2500 meter long vertical well
with reservoir pressure Pr = 180 bar and separator
pressure Ps = 10 bar. The space was divided in N
sections and the space derivatives were written using a
finite difference scheme. An ODE solver was used to obtain
the solution.

In Fig. 2 is shown an open loop simulation of the quasilin-
ear system (11). The simulation starts with the production
choke opened to Z = 100% and then after t = 8 h the
production choke is closed to Z = 50% and to Z = 20%
after more 8 hours. The oscillations have a period around
of 50 minutes. For this case study, the supercritical Hopf
bifurcation point, HBsup take place at a valve opening
Z(t) = 22% (this value was found by performing several
simulations for different valve openings). The correspond-
ing open-loop bifurcation diagram for the valve opening is
shown in Fig. 1.

In Fig. 3 the results obtained with the control technique
proposed in this paper are shown. The operating point was
chosen to be Z∗ = 48%. The steady-state values of u∗2(0),
u∗2(L) and u∗3(L), necessary for the control law, can be
obtained by computing the steady-state model (11) in such
operating point. The controller gains were chosen to be
k1 = −0.5, k2 = 2.3 and k3 = 300. These parameters were
found after several simulations. At t = 3.3 h the control
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Fig. 2. Botton and top pressure for different choke opening
values.

was switched on. It can be noted that the oscillations
are suppressed and the system remains in the desired
operating point. At t = 15 h the control was switched off
and as expected, the system comes back to the oscillatory
regime.
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Fig. 3. Bottom and top pressure, and choke opening with
the proposed control law. At t = 3.3 h the control was
switched on and at t = 15 h the control was again
switched off.

6. CONCLUSION

In this paper, we have proposed a boundary control to
stabilize slugging flow. The control law has a simple
structure and is needed measurements only at both system
boundaries. Moreover, as shown in Section 3, the linearized
system has exponential stability of the origin in L 2(0, L)-
norm with the proposed controller.

Although the exponential stability of the proposed control
law in the nonlinear system has not been shown, the
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simulations results are showing to be promising. The
extension to the nonlinear case can be a direction of future
work.

The simulations results shown in this paper consider the
inlet of gas constant. From a practical point of view, it
should be considered influxes of gas. The control perfor-
mance for this case is under investigation.

Moreover, we have to stress that in our simulations it was
considered that the pressure is measured at the bottom of
the pipe, which in some cases it is not a realistic scenario.
The use of a state observer together with the control law
is probably the best option in these cases. The recent work
of Castillo et al. (2013) may be a good approach to address
this issue. This is another direction for further research.
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Appendix A

The matrices F (u, z) and S(u, z) corresponding to the
quasilinear system (11), and the eigenvalues of F (u, z) are
given by the following expressions:

F (u, z) =


0 ((1−u3)Mu1+RTρlu3)

2

AMRTρ2
l
u3

−u2(Mu1−RTρl)((1−u3)Mu1+RTρlu3)
AMRTρ2

l
u3

A− RTu3u
2
2

AMu2
1

2 (1−u3)Mu1u2+RTρlu3u2

AMρlu1

RTρlu
2
2−Mu1u2

AMρlu1

0 0 u2
(1−u3)Mu1+RTρlu3

AMρlu1

 (A.1)

S(u, z) =

 0
AMρl

(1−u3)Mu1+RTρlu3
g sin θ(z) + fu22

(1−u3)((1−u3)M
2u2

1+2MRTρlu3u1)+R2T 2ρ2l u
2
3

2AMdρlu1((1−u3)Mu1+RTρlu3)

0

 (A.2)

[
λ1
λ2
λ3

]
=


((1−u3)AMu2

1+ARTρlu3u1)
√
M3RTu3

AM2RTρlu3u1
+ u2(1−u3)

Aρl
+ Ru3u2

AMu1

− ((1−u3)AMu2
1+ARTρlu3u1)

√
M3RTu3

AM2RTρlu3u1
+ u2(1−u3)

Aρl
+ Ru3u2

AMu1

u2
(1−u3)Mu1+RTρlu3

AMρlu1

 (A.3)
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