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Abstract: The past ten years have seen an increasing application of systems and control
theory to porous media flow. This involves in particular the use of optimization, parameter
identification, and model reduction techniques in attempts to increase the amount of oil or gas
that can be recovered from subsurface hydrocarbon reservoirs. Other applications involve the
control of ground water flow for drinking water or pollution control, and the subsurface storage of
CO2. The dynamic behavior of subsurface multi-phase porous media flow is typically simulated
with large-scale nonlinear numerical models, containing up to millions of state variables and
parameters. Moreover, a typical characteristic of these models is a very large uncertainty in the
parameter values, reflecting the very large geological uncertainty of the subsurface. Traditionally
they are primarily used for ’field development’, i.e. the engineering of well configurations and
production strategies, but an emerging use is in the ’real-time’ optimization and control of oil
production, known as ’closed-loop reservoir management (CLRM)’. In this paper we describe
some recent contributions of our group to the use of systems and control theory for CLRM. This
concerns sequential and multi-level production optimization, identifiability of model parameters,
and ’control-relevant’ upscaling.
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1. INTRODUCTION

The production of oil and gas from petroleum reservoirs is
highly dynamic process of which the operation classically
is driven by decisions based on operator experience and
supported by scenario studies. Because of economic needs,
and enabled by newly developed technology for drilling
wells and instrumenting wells with actuators and sensors,
there is an increasing opportunity for model-based control
and optimization to develop rational and model-based
decision support systems so as to optimize the economic
efficiency of the process, Jansen et al. [2008], Van den Hof
et al. [2009], Foss [2011]. However the size and complexity
of the underlying systems, as well as the uncertainties in
their models, raise additional challenges for the systems
and control tools that can be applied.

� The authors acknowledge financial support from the Recovery
Factory program which is sponsored by Shell, and the joint TU
Delft/TNO ISAPP 2 program, which is sponsored by ENI, Statoil
and Petrobras.

Oil and gas reside inside the pores of subsurface rock lay-
ers. The production life of a petroleum reservoir generally
lasts a number of decades and usually two or three produc-
tion phases can be identified. In the primary production
phase wells are drilled from the surface into the reservoir.
The over-pressurized reservoir provides the driving force to
push the oil to the surface. Although this process requires
no additional effort than drilling wells, unfortunately only
5%-15% of the total amount of oil can be recovered in
this manner. When the reservoir pressure decreases, the
production rates drop as well. To maintain a preferred
production level, the application of an external force is
required. This is generally done by either injecting fluids
(water or gas) into the reservoir or by installing pumps.
Somewhere between 20%-70% of the oil can be recovered
using secondary production methods. Tertiary production
methods are aimed at changing the properties of the fluids
(oil, gas or water) to improve recovery, as e.g. injecting
steam, adding polymers to injected water or by injecting
surfactants.
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Although a recovery factor approaching 100% can theoret-
ically be reached (c.f. the clean-up of hydrocarbon spills
with chemical pollution recovery measures), the econom-
ical threshold lays on average between 30 to 50%. This
is partly due to the relatively large costs associated with
secondary and tertiary methods, but it is also the result of
an inefficient deployment of these methods, due to a lack of
knowledge on how to operate these phases in a structured
and economically efficient way.

Reservoir simulation is traditionally applied during the
development phase of an oil field to determine e.g. the
optimal position of the wells, the optimal capacity of the
processing facilities, or the best recovery technique (e.g.
depletion drive in which case oil is produced through
depletion of the natural reservoir pressure, or reservoir
’flooding’ in which case oil is produced by injecting other
fluids such as water, gas or chemicals in the reservoir).
More recently it has been proposed to also use reservoir
simulation during the operational phase of oil production.
The underlying hypothesis is that it will be possible to
significantly increase life-cycle value by changing reservoir
management from a periodic to a near-continuous model-
based controlled activity; see Jansen et al. [2009].

In this paper we will give an overview of some recent
developments in model-based control and optimization of
oil production, in particular for the secondary production
method of waterflooding with the aim to improve economic
performance over the producing life of the reservoir. The
emphasis of the paper is on recent contributions, in par-
ticular obtained in the authors’ own research group, and
we do not intend to give a complete review. However, we
do mention other review papers and textbooks covering
the historic development of optimization and parameter
identification methods related to reservoir simulation.

The paper proceeds as follows. In Section 2 the process of
waterflooding is explained and a (general) reservoir model
is summarized. After presenting the recovery optimization
problem in Section 3, we address the principle limitations
and challenges in Section 4. In four subsequent sections
we then address several new developments, in terms of
parameter estimation, balancing long-term and short-term
optimization, time-scale separation and control-relevant
upscaling.

2. WATERFLOODING

2.1 Introduction

Waterflooding is the most popular secondary recovery
method. To get an idea, over 50% of USA oil production
is due to waterflooding. The goal of the method is to
maintain or increase reservoir pressure to boost production
and to displace oil from the pores of the reservoir rock and
replace it by water.

Oil is produced through production wells through which
the oil flows to the surface. For the injection of water
particular injection wells are drilled. Over the recent years,
increasingly more so-called smart or intelligent wells are
drilled. These smart wells are equipped with multiple
downhole variable control valves, each for a different
section of the well. Using these valves, the amount of water
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Fig. 1. 3D reservoir model with 4 production and 8 in-
jection wells (van Essen et al. [2009]). The geological
structure involves a network of meandering channels
in which the fluids flows experience less resistance,
due to higher permeability.

injected into and oil produced from a specific geological
layer can also be controlled. These smart wells vastly
expand the opportunities for control.

An example of an -academic- 3D reservoir model is de-
picted in Figure 1. Its geological structure involves a net-
work of fossilized meandering channels in which the flowing
fluids experience less resistance, due to higher permeabil-
ity. The reservoir model contains 8 injection wells that
inject water and 4 production wells.

The injected water travels through the reservoir, away
from the injection wells, but generally not in a uniform
manner. This is the result of the strong heterogeneous
nature of reservoir rock. The block diagram in Figure
2 shows (schematically) the multiple actuation inputs
and measurement outputs available to control the water
flooding process.

When in a particular region the oil-water front reaches a
production well, water is produced and when the water
fraction exceeds an economic limit the production well
is closed (shut in). Then the production capacity of this
well inlet is lost, and oil that is left in the reservoir
may have been by-passed. The challenge of control here
is to dynamically manipulate the spatially distributed
injector and producer valves so as to achieve maximum
oil production over the lifetime of the reservoir.

2.2 System equations

The waterflooding process is described by a reservoir
model based on conservation of mass and momentum
equations. We will limit attention to reservoirs with oil
and water as the only two components involved. For a
general introduction into reservoir modeling see Aziz and
Settari [1979]. The mass balance is then given by:

∇ · (ρiui) +
∂

∂t
(φρiSi) = 0, i = o, w, (1)

where t is time, ∇ the gradient operator ( ∂
∂x

∂
∂y

∂
∂z )

T , φ

is the porosity (volume fraction of void space), ρi is the
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Fig. 2. The inputs involve the pressures, or the total flow
rates (sum of oil and water rates), or the valve settings
of the wells. The outputs are the pressures, or the
phase flow rates ( individual oil and water rates) of
the wells. If a pressure in a well is used as input, the
rates become the output and vice versa. Note that in
an injector only water rates are relevant.

density of the phase i, ui the superficial velocity, Si the
saturation, defined as the proportion of the pore space
occupied by phase i, where o relates to the oil phase
and w to the water phase. The first term in equation (1)
represents the divergence of the vector field ρiui, while the
second term represents the storage due to rock and fluid
compression.

Conservation of momentum is described by the semi-
empirical Darcy’s equation (discarding gravity):

ui = −k
kri
μi

∇pi, i = o, w, (2)

where pi is the pressure of phase i, k is the absolute
permeability, kri is the relative permeability and μi is the
viscosity of phase i. The permeability k is an inverse mea-
sure of the resistance a fluid experiences flowing through
the porous medium. The relative permeability kri relates
to the additional resistance phase i experiences when
other phases are present. These relative permeabilities are
strongly non-linear functions of the water saturation Sw,
introducing nonlinear dynamics into the system.

Equations of state for oil and water relate the phase
densities to the pressures, while a similar relationship
relates the porosity to the pressure. In addition two closure
equations complete the model, i.e.:

So + Sw = 1, (3)

and secondly the capillary pressure equation:

pcow = po − pw = fcow(Sw). (4)

As a result a set of equations remains where typically
the oil pressure po and water saturation Sw are chosen
as primary state variables, , although other combinations
are possible. The resulting set of coupled nonlinear partial
differential equations has a dual character. The pressure
behaviour is essentially diffusive, i.e. the corresponding
equations are parabolic and become elliptic in the limit
of zero compressibility. The saturation behaviour is mixed
diffusive-convective, i.e. the corresponding equations are
mixed parabolic-hyperbolic and become completely hyper-
bolic in the case of zero capillary pressure. The saturations
can only be controlled indirectly through influencing the
spatial gradients of the pressures. From a systems and
control perspective the key consequence is that manipu-
lating the inputs (i.e. the well settings) results in near

instantaneous changes in the pressures away from the wells
but in (possibly very strongly) delayed changes in the
saturations in those locations.

After discretization in space, leading to a system built
up of a finite number of cells, referred to as grid blocks,
and discretization in time the following state space form
results:

gk(uk, xk, xk−1, θ) = 0, k = 1, ...,K, (5)

where subscripts refer to discrete instants k of time, with
K the total number of time steps. Vector function g
takes its values in R

n, xk ∈ N ⊂ R
n is a vector of

reservoir state variables, uk ∈ M ⊂ R
m is a vector

of control variables in the wells, and θ ∈ Θ ⊂ R
nθ

is a vector of model parameters. In isothermal reservoir
simulation the state variables are typically pressures and
phase saturations, or pressures and chemical component
accumulations in each cell of the simulator. The control
vector uk can represent a combination of prescribed well
flow rates, well bore pressures (either at surface or down
hole) or valve settings. The parameter vector θ typically
contains porosities, permeabilities (i.e. inverse resistances
to flow) in each simulator cell, but may also include other
parameters such as fluid properties or initial conditions).
Outputs y ∈ H ⊂ R

h typically consist of measured
pressures and flow rates in the wells, but may also be
more indirect measurements such as interpreted time-lapse
seismic data. For the model outputs we use a simple,
explicit, relationship between inputs, states, parameters
and outputs as

ŷk(θ) = hk(uk, xk, θ), k = 1, ...,K, (6)

The sets H, N , M and Θ are subsets of the set of real
numbers because their elements are constrained to stay
within physical limits; pressures and permeabilities, e.g.,
are always positive, and saturations and porosities have
values between zero and one. For a more detailed introduc-
tion to reservoir simulation concepts from a process control
perspective see Jansen et al. [2008]; for a classic textbook
on reservoir simulation see Aziz and Settari [1979]. This
text also describes more complex situations where e.g. an
additional (gas) phase, or multiple chemical components,
or a varying temperature is taken into account. Starting
from given initial conditions x0, the implicit recursive
Eq. (5) is typically solved with the aid of a time stepping
algorithm using Newton iteration to minimize the residual
at each time step to a preset tolerance.

In the following we will frequently use a second, even more
compact, notation to represent the simulator as

g(u,x, x0, θ) = 0, (7)

and an explicit output equation

ŷ(θ) = h(u,x, θ), (8)

where g,h,u,x,y and ŷ(θ) can be interpreted as concate-
nated time-sequenced vectors
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g= [gT1 , g
T
2 , ..., g

T
K ]T , (9)

h= [hT
1 , h

T
2 , ..., h

T
K ]T , (10)

u= [uT
1 , u

T
2 , ..., u

T
K ]T , u ∈ Q ⊂ R

q, (11)

x= [xT
1 , x

T
2 , ..., x

T
K ]T , x ∈ P ⊂ R

p, (12)

y= [yT1 , y
T
2 , ..., y

T
K ]T , (13)

ŷ(θ) = [ŷT1 (θ), ŷ
T
2 (θ), ..., ŷ

T
K(θ)]T . (14)

In these expressions p = n×K and q = m×K. Note that
for simplicity in notation we assume that control steps
coincide with simulator time steps although this is not
generally true.

3. RECOVERY OPTIMIZATION

3.1 General formulation

In recovery optimization, the typical problem to be solved
is to optimize for the economic performance over the life
cycle of the reservoir by dynamically manipulating the
valve settings of injector and producer wells.

If a model of the reservoir dynamics is available, the
recovery optimization problem can be expressed as:

max
u∈Q

JK(u, x0), (15)

subject to g(u,x) = 0, x0 = x̄0, (16)

and c(x,u) ≤ 0, d(x,u) = 0 (17)

where g represents the system model as described in (7)
and x̄0 is a vector containing the initial conditions of the
reservoir. The inequality constraints c(x,u) and equal-
ity constraints d(x,u) represent linear or nonlinear con-
straints on the inputs (bound constraints), states and/or
the outputs. Note that we dropped the dependence of g on
θ assuming the model parameters to be known and fixed.

Typical objective functions are the cumulative oil pro-
duced or the net present value (NPV), the latter one
representing cumulative cash flow. It is mathematically
represented by:

JK =

K∑
k=1[

ro · qo,k(yk)−rw · qw,k(yk)−rinj · qinj,k(uk)

(1 + b)
tk
τt

·Δtk

]
(18)

where ro is the oil revenue [ $
m3 ], rw the water production

costs [ $
m3 ] and rinj the water injection costs [ $

m3 ], which
are all assumed constant. K represents the total number of
time steps k of a fixed time span and Δtk the time interval
of time step k in [day]. The term b represents the discount
rate for a certain reference time τt. The terms qo,k, qw,k and
qinj,k represent the total flow rate of respectively produced
oil, produced water and injected water at time step k in

[m
3

day ].

A combination of reservoir simulation models and op-
timization algorithms has been applied to optimize the
(theoretical) recovery from subsurface oil reservoirs since
the 1980s; for recent review papers see Echeverŕıa Ciaurri

Fig. 3. Closed-loop approach to improved reservoir man-
agement, CLRM (Closed-Loop Reservoir Manage-
ment)

et al. [2011] and Jansen [2011], and for an early textbook
Ramirez [1987]. This form of model-based recovery opti-
mization is also referred to as flooding optimization, sweep
optimization, life-cycle optimization, or production opti-
mization. We note that the latter name may be confusing
because it is traditionally used for short-term optimization
of well rates (without large simulation models, and on a
time scale of days to months), rather than for recovery
optimization over the entire life of the field (simulation-
based, and on a time scale of years to decades). For these
large scale dynamic optimization problems, several ap-
proaches are available, however the properties of reservoir
models and the usually large number of control variables
seriously limit the number of applicable dynamic optimiza-
tion techniques. Sequential, gradient-based optimization
using an adjoint to calculate the gradients, is currently
the main candidate for solving the very large oil recovery
optimization problem, Jansen [2011], and the tools for
doing this are currently available in a number of corporate
and commercially available reservoir simulation packages.
Nevertheless also alternative methods are currently evalu-
ated, Wang et al. [2007], Chen et al. [2009], Heirung et al.
[2011].

3.2 Closed-Loop Reservoir Management (CLRM)

Similar to the framework for (Nonlinear) MPC (NMPC)
Allgöwer and Zheng [2000], the model-based optimization
as described in the previous section is generally imple-
mented in a closed-loop structure using a receding (or in
this case shrinking) horizon, and includes a model-based
observer to estimate the current state. However in order to
deal with the large uncertainty in the underlying dynamic
model, it has become common practice to extend the non-
linear observer with a parameter estimation functionality
as well, leading to a closed-loop set-up as indicated in
Figure 3.

The combination of large scale numerical ’reservoir sim-
ulation’ models and optimization algorithms for parame-
ter estimation (using historic production data as input)
has been developed in the oil industry since the 1970s.
Under the names ’computer-assisted history matching’,
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’automatic history matching’ or ’data assimilation’ a large
variety of techniques has been introduced; see e.g. the
recent review papers of Aanonsen et al. [2009] and Oliver
and Chen [2010] for overviews, and the textbooks of Datta-
Gupta and King [2007], Oliver et al. [2008] and Evensen
[2009] for detailed descriptions of different approaches. The
most common approach is to follow a Bayesian estimation
strategy where a nonlinear state observer, typically an
Ensemble Kalman Filter (EnKF), Evensen [1994, 2009], is
employed to estimate both the states and the parameters
on the basis of past input en output data. In the EnKF
the analytical propagation of the error covariance matrix is
replaced by a Monte Carlo approach, in which the covari-
ance matrix is computed from an ensemble of models. The
EnKF utilizes the availability of the reservoir simulation
model and does not require a linearization of this model.
At the same time it remains computationally feasible for
large scale models, up to millions of states, as has been
shown in several applications, both in reservoir engineering
problems and in different fields, see e.g. Naevdal et al.
[2005], Gu and Oliver [2007], Aanonsen et al. [2009].

The popularity of EnKF in this domain is also explained
by the relative ease with which not only states but also
parameters can be included in the estimation problem.
Following a Bayesian approach the unknown parameters
are added to the states, leading to an extended state vector
x̄ = [xT θT ]T . This extended state is then estimated
with an EnKF on the basis of an ensemble of x̄. This
implies that also an ensemble of prior parameter estimates
is added to the problem as a source of prior information.

In reservoir engineering problems the EnKF observer
(data-assimilation) algorithm is applied to models with
number of state variables up the order of 106. Since the
permeability in each grid block is usually considered to
be an unknown parameter, the dimension of θ amounts
to the number of grid blocks, being of the same order
as the number of states. As a result an extremely large
number of variables has to be estimated from the available
data. Although strong spatial correlations are present,
which strongly reduce the effective number of unknown
variables, the remaining number of unknowns is still very
large. Because the amount of information in typical oil field
production data is very limited, most of the parameter
identification problems in reservoir engineering are there-
fore very ill-posed. We note that there remain many issues
in the application of the EnKF, e.g., inconsistency between
state and parameters for highly nonlinear problems, in-
sufficient degrees of freedom to assimilate large data sets
and underestimation of uncertainty. Thus, although the
method has proved effective even in field cases, there are
still issues remaining.

The repeated procedure of parameter/state estimation
and subsequent model-based optimization is considered
to significantly increase life-cycle value of the reservoir
by providing the tools for a near-continuous model-based
controlled activity. This approach is known as ’closed-loop
reservoir management’ (CLRM) or ’closed-loop produc-
tion optimization’. We refer to Naevdal et al. [2006] and
Sarma et al. [2006] for early ’proof of concept’ applications
with the aid of simple reservoir models, and to Sarma
et al. [2008b], Chen et al. [2009], Jansen et al. [2009] and
Peters et al. [2010] for subsequent larger-scale examples.

Overviews from a process engineering perspective were
presented in Jansen et al. [2008] and Van den Hof et al.
[2009], and the current paper can be considered a follow-
up to these. The effect of increasing the frequency of com-
bined data assimilation and optimization was addressed
in Jansen et al. [2009], where it was shown that, for
the example considered, an increased frequency leads to
increased recovery. The effect of time delays in the model
update was addressed in Foss and Jensen [2010]. It was
concluded that delays may deteriorate the beneficial effects
of CLRM, although the paper is restricted to the (restric-
tive) situation of single-phase (reservoir pressure) control.
Specific optimization and data assimilation techniques in
an CLRM setting were addressed in e.g. Chen et al. [2009],
Peters et al. [2010] and Chen et al. [2010].

4. CURRENT LIMITATIONS AND CHALLENGES

The development over the last ten years has demonstrated
a considerable progress in the field of reservoir optimiza-
tion. CLRM in the strict sense, i.e. through combining
data assimilation and flooding optimization during the
operational phase of oil production, has not yet been
reported to be used in practice. The individual elements,
however, are being applied at increasing rates, and espe-
cially data assimilation is now regularly used during field
(re)development planning. In the overall approach there
are still serious limitations and challenges that are being
faced. We consider the most important ones here. They
will serve as a motivation for a selected set of developments
that are being highlighted in the next sections.

Uncertainty

Reservoirs consist of deeply buried layers of fossilized flu-
vial or marine deposits, possibly folded, faulted, fractured
or partially cemented. They often display very strong
heterogeneities in fluid flow properties, with correlation
lengths below the typical inter-well distance. Information
is scarce and consists of low-resolution field-wide infor-
mation on the reservoir structure, in combination with
detailed but sparse information from wells. The state-of-
the-art approach is therefore to use one or more ensembles
of reservoir models with stochastically distributed param-
eter values as prior information. Data assimilation of these
ensembles can give an estimate of the uncertainty in future
reservoir flow. To this end various techniques, such as
Markov chain Monte Carlo (McMC) in combination with
proxy-models, or EnKF are increasingly applied, although
it should be noted that all currently used implementations
of EnKF give a relatively poor estimation of uncertainty
when compared with a rigorous MCMC sampling; see for
example Emerick and Reynolds [2011].

Given the limited information content of production data,
the resulting models remain highly uncertain, which limits
the reliability and therefore the value of long-term predic-
tions and the subsequent optimization strategies. Explicit
quantification of the uncertainty is a challenge, see also
Caers [2011]. In the end the objective is to provide reliable
tools for (model-based) operations and decision-making
that take account of the model uncertainties present. From
an optimization perspective a multi-scenario (robust) ap-
proach has been evaluated in van Essen et al. [2009].
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Dynamic models and complexity.

Geological models are very complex. They typically have
billions of cells, and are too complex to be used for dy-
namic simulations. As a result they are “upscaled” to
relatively coarse dynamic reservoir flow models (containing
up to millions of variables). Data assimilation and param-
eter estimation is then typically performed on the basis of
these coarser models. However capturing and maintaining
geologically realistic models in this coarser domain is not
trivial. Parameter updates might make the models loose
their geological realism, e.g. channel structures may be
broken, or unrealistic localized features with low flow
resistance may show up. Finding model representations
that can focus on the essential geological properties of
the reservoirs, and that allow a parametrization that can
represent realistic variations in these properties is an im-
portant challenge.

At the same time it is very important to realize that not all
detailed phenomena that occur in the dynamic models will
have influence on the optimized trajectory of operation.
Whereas geologists (and many reservoir engineers) focus
on modeling of reservoir properties in the smallest possible
details, from a control perspective it is sufficient to focus
on those aspects that essentially contribute to the control
strategy. From observability and controllability studies it
has appeared that -in particular in situations of fixed well
configurations - the reservoir models are typically poorly
observable, poorly controllable and poorly identifiable,
Zandvliet et al. [2008a], Van Doren [2010]. This implies
that the essential dynamics in the process is represented
by reduced-order models. On top of that the control-
relevant dynamics might even be further simplified from
the original models. However the relation between geolog-
ical (”flow-relevant”) features and the resulting reservoir
response and optimal operation trajectory is not yet fully
understood.

Measurement data

One could say that the current reservoir optimization
problem is to a large extent a measurement problem.
The use of only spatially sparse well data (periodic ’pro-
duction data’, i.e. pressures and flow rates in the wells)
to determine the water-oil fluid front and a subsequent
optimized operational strategy, clearly limits the accuracy
of and induces considerable uncertainties in the models.
An additional problem is the limited quality of traditional
production data. The total amount of oil produced from
a field is very accurately measured, for obvious fiscal and
economic reasons, but the individual well production vol-
umes, in particular the volumes of injected and produced
water and gas, are usually only known with very limited
accuracy, and errors in the order of tens of percents are
no exceptions. An increasing use of data other than this
traditional well data is warranted. In particular ’time-
lapse’ seismics (i.e. the repetition of seismics of over time
to observe changes in reservoir pressures or fluid front posi-
tions) is an important source of field-wide information, but
also other geophysical measurements such as gravity mea-
surements, electromagnetic measurements, or subsidence
measurements (satellite- or ground-based) are increasingly
used. As an aside we note that the rapid development of
’smart wells’, often equipped with multiple pressure and

temperature sensors, and of the emerging geophysical mea-
surement techniques, leads to new challenges related to
transmission, storage, quality control, and interpretation
of vastly increasing amounts of data.

Besides these new measurement opportunities, there is
still room also for improving the information content of
the data that is used for current estimation and data
assimilation techniques, by moving from the use of normal
production data, to data that results from deliberate
well tests. The opportunities for adding excitation signals
to well inputs, as is typically done in handling system
identification problems, to make data more informative,
are still not fully explored. We will further expand on this
slightly in Section 7.

Nonlinearity

The reservoir model is essentially nonlinear, in particular
due to the nonlinear saturation dependence of the relative
permeabilities. Moreover, the nonlinear hyperbolic charac-
ter of the saturation equations results in a delayed response
of the saturation values in the reservoir to input changes
in the wells. Phrased differently: the linearized dynamics
between inputs and outputs will be essentially dependent
on the location of the oil-water front. As a result of this,
there is no steady state in the process, which classifies it
basically as a batch process. However, and in contrast to
many other batch processes, this process can only be run
once, and there is no opportunity for batch-to-batch learn-
ing. Therefore, both the modeling, the model adaptation,
and the optimization need to be done simultaneously. This
further stresses the need for the optimal use of information
that is present in the measurement data. Additionally, the
dynamical properties between inputs and outputs that are
observed during one phase of the reservoir depletion, will
become different in another phase. This severely limits the
opportunities to employ black box system identification
techniques, for building models that have predictive ca-
pabilities over a large horizon. However there are good
opportunities for, and a growing interest in, the estimation
of relatively simple data-driven models (black box models)
from well input-output measurements. They typically have
a shorter predictive horizon than full-physics models and
are therefore naturally suited for short-term optimization
problems.

Process configuration

Model-based recovery optimization is actually not just a
matter of optimizing valve settings. It increasingly involves
the optimization of well locations, well trajectories or even
well maintenance (’workover’) strategies. This often results
in mixed integer problems, and a wide variety of solution
methods is being pursued to address these problems using
increasingly complex models. For a simple strategy to
optimize well locations on the basis of an NPV economic
cost function, see Zandvliet et al. [2008b]. One of the
challenges here will be to involve investment decisions
(timing and location) concerning new wells to be drilled
during the operational phase of the reservoir.

In the next sections we will highlight a few of the devel-
opment that have been addressed recently, and that are
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motivated from the challenges and limitations identified
above.

5. PARAMETER ESTIMATION - WHAT CAN BE
RETRIEVED FROM DATA?

When focusing now on the parameter estimation problem,
we observe that generally grid block permeabilities are
used to parametrize our model structure. The number
of unknown parameters scales with the number of grid
blocks that is used in the discretization of the underlying
PDE. As a direct consequence the number of parameters
in the estimation problem becomes excessively large, and
a relevant question becomes whether these parameters can
be reliably estimated from measurement data.

If we consider the physics-based model structure

ŷ(θ) = h(u, θ;x0), (19)

the problem of assessing whether this model structure
is identifiable, comes down to evaluating whether two
different parameter values can lead to the same predictor.
A full global analysis of this property is very cumbersome,
but a local analysis is very well feasible. It is reflected
in the notion of local identifiability assessing the injective
properties of the mapping θ → ŷ(θ) in a localized value
θ = θm, see Grewal and Glover [1976].

In order to test local identifiability we consider a quadratic
identification criterion in a prediction error setting (Ljung
[1999]),

V (θ) :=
1

2
ε(θ)TP−1

v ε(θ), (20)

where the prediction error sequence ε is defined as

ε(θ) = y − ŷ(θ), (21)

and where Pv is a weighting matrix that could represent
(an estimate of) the covariance matrix of the noise se-
quence v that is supposed to act on the measured output.
The Hessian of the cost function now provides a measure
for the uniqueness of the parameter estimate, and thereby
also as a sufficient condition for local identifiability in the

parameter value θ̂ that is the minimizing argument of (20),
under the given experimental conditions.

After approximation of ŷ with a first-order Taylor expan-

sion around θ̂, the Hessian of V (θ) with respect to the
parameters is

∂2V (θ)

∂θ2
=

∂ŷ(θ)T

∂θ
P−1
v

(
∂ŷ(θ)T

∂θ

)T

, (22)

where the derivatives are evaluated in θ = θ̂, while

cov (θ̂) = J−1

with J representing the Fisher information matrix

J = E

[
∂2V (θ)

∂θ2

∣∣∣∣
θ̂

]
, (23)

and E denoting expectation.

Local identifiability at θ̂ can now be investigated by
evaluating the SVD of the Hessian that can be obtained
from:

∂ŷ(θ)T

∂θ
P

− 1
2

v = [U1 U2 ]

[
Σ1 0
0 Σ2

] [
V T
1

V T
2

]
. (24)

If in this SVD a Σ2 is found that satisfies Σ2 = 0,

then we have a lack of identifiability, and cov(θ̂) will
become unbounded. In the situations of the reservoirs
that we consider here, Σ2 will typically contain a very
large sequence of very small singular values, indicating
that there is practically lack of identifiability, and a very

large variance cov(θ̂). As a result the physical parameter
estimates are actually highly unreliable. This has been
shown in Van Doren et al. [2011].

In data assimilation methods, typically sequential estima-
tion algorithms are used for joint state and parameter
estimation, as the Extended Kalman Filter and the En-
semble Kalman Filter. They typically follow a Bayesian
approach, which comes down to considering the (Bayesian)
cost function

Vp(θ) := V (θ) +
1

2
(θ − θp)P

−1
θp

(θ − θp), (25)

where the last term represents the weighted mismatch
between the parameter vector and the prior parameter
vector θp with covariance Pθp .

When again the model output ŷ(θ) is approximated using
a first-order Taylor expansion around θp, the Hessian of
(25) becomes:

∂2Vp(θ)

∂θ2
=

∂ŷ(θ)T

∂θ
P−1
v

(
∂ŷ(θ)T

∂θ

)T

+ P−1
θp

. (26)

Since P−1
θp

is positive definite by construction and the first

term is positive semi-definite, the Hessian has full rank
and the parameter estimate

θ̂Bayes = argmin
θ

Vp(θ)

is unique. This uniqueness is guaranteed by the prior
information that has been added to the problem. Formally
there can still be lack of identifiability, however it is not
any more reflected in a non-unique parameter estimate.
A consequence of this approach is that the obtained pa-
rameter estimate may be highly influenced by the prior
information, and less by the measurement data. By analyz-
ing the Hessian of V (θ), also in the sequential estimation
case, it can however still be evaluated to which extent the
data has induced (particular directions in) the parameter
estimate, and to which extent the prior information.

The general observation is however, that when parametriz-
ing the reservoir with one (permeability) parameter per
grid block, the dimension of the parameter raises to levels
that makes the parametrization unidentifiable, and there-
fore highly unreliable. If this problem is circumvented by
the inclusion of prior information, it should be realized
that the majority of the information in the posterior origi-
nates from the prior rather than from the data, Van Doren
et al. [2011], Krymskaya et al. [2010].

In the literature several approaches have been suggested
to deal with the problem of overparametrization:

• Several authors have considered to keep the grid block
structure but to essentially reduce the number of grid
blocks, Durlofsky et al. [1996], Zhang et al. [2008];

• Alternatively, spatial patterns are chosen to act as
spatial basis functions, thereby considerably reducing
the number of parameters. An example of this is the
use of the discrete cosine transform, see Jafarpour and
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McLaughlin [2008, 2009]. Another example is the use
of (kernel) principal component analysis, see Sarma
et al. [2008a].

• In Van Doren et al. [2008] it is shown that the columns
of U1 in (24) actually serve as spatial basis functions
that span the identifiable space in the parameter do-
main. Since this is a local result, iteratively updating
the basis functions is an option, as is illustrated in
Van Doren et al. [2011]. In Tavakoli and Reynolds
[2010] a related reparameterization is used which is
claimed to be ideal in the sense that it keeps only
the parameters that will lead to a reduction in uncer-
tainty when data are actually history-matched.

• By simple capacitance resistor or channel parametriza-
tions between injector and producer wells, simplified
physical models can be represented by a limited num-
ber of parameters. This approach has been followed
in Weber et al. [2009], Lin et al. [2010], Van Doren
[2010]. Reducing the models even to black box linear
models to be identified from production data has been
addressed in Rowan and Clegg [1963], Chierici et al.
[1981] and more recently in Lee et al. [2009], van
Essen et al. [2010].

We note that reducing the number of parameters in
reservoir parameter estimation is a topic of debate within
the reservoir simulation community. In particular it is
argued that reducing the number of parameters poses
the risk of underestimating uncertainties and masking
the presence of essential physical or geological features,
see also Oliver and Chen [2010]. On the other hand, it
is the limited information content in the measurement
data that induces this poor identifiability (and therefore
considerable uncertainty), which can only be resolved by
providing additional (prior) information.

Computational issues

Due to the high computational cost of a reservoir model
simulation, the number of model simulations required for
the estimation of the physical parameters in the Bayesian
approach must be limited. In case of a large number
of parameters, the most efficient optimization method
is obtained when the gradient of the objective function
with respect to the model parameters is calculated by
solving the adjoint problem; see e.g. Oliver et al. [2008].
The adjoint method, however, does have one very serious
drawback: It requires the implementation of the adjoint
of the tangent linear reservoir model. The implementation
of the full adjoint equations for the parameter estimation
procedure is an immense programming effort. Moreover,
it also requires access to the simulation code. As a result
there is a need for efficient methods that can deal with this
complexity.

Clearly, the rapidly increasing popularity of the EnKF
is driven to a large extent by the desire to avoid exact
gradient-based optimization methods. It can be shown
that the EnKF can be interpreted as a single step of a
Gauss-Newton update (which is theoretically the optimal
exact gradient-based optimization method), see Reynolds
et al. [2006]. Indeed the EnKF can be interpreted as a
sequential version of a gradient-based optimization al-
gorithm where the gradient is approximated with the
aid of an ensemble. Similarly, an emerging technique for

gradient-based but adjoint-free flooding optimization is
ensemble optimization; see e.g. Chen et al. [2009]. An
alternative to ensemble optimization, both for parameter
estimation and flooding optimization, is to approximate
the original reservoir model with a simplified linear model,
for which the adjoint model is easier to implement. A
generic way to obtain an approximate linear model is
by the use of proper orthogonal decomposition (POD).
In Vermeulen and Heemink [2006] the POD method is
used to obtain an approximate low-dimensional version
of the tangent linear model. As a result its adjoint can
be implemented very easily and the minimization problem
can be solved efficiently in reduced space. Vermeulen and
Heemink [2006] applied this method to groundwater flow
problems where it was shown to be computationally very
efficient. In Kaleta et al. [2011] this methodology was
applied to reservoir model estimation problems.

6. BALANCING LONG-TERM AND SHORT-TERM
OPTIMIZATION

When performing a model-based optimization of the NPV
over the life-cycle of the reservoir, as indicated in (15)-
(18), an optimal input trajectory results ûk, k = 1, ...,K
in terms of time-varying well pressures and/or flow rates.
However from an industrial operational point of view sev-
eral questions can be raised with respect to this optimized
strategy:

(1) The optimized strategy is optimal provided that the
underlying model is correct. Because of serious model
uncertainties, both in the reservoir and in economic
parameters as e.g. the oil price, this is very hard to
justify. As a result the long-term predictions of the
model should be considered with care. It would be
hard to motivate reducing short-term production in
order to gain more production at a stage far ahead in
the future.

(2) In addition to this, economic objectives might be dif-
ferent from focusing on long-term NPV optimization
only. Short term objectives may need to be taken into
account (e.g. maximum instantaneous oil flow rates).
Reservoir models are typically much too coarse to
resolve small scale fluctuations (both in time and in
space) near the wells. In particular ’coning’ of water
or gas near a production well is usually not modeled
correctly.

(3) Operational requirements (e.g. well maintenance sched-
ules, or surface facility constraints) may be overriding
long-term strategies.

Model uncertainty can, to a certain extent, be addressed
by robust optimization in which an expected value of
the objective function is maximized based on one or
more ensembles of reservoir models; see van Essen et al.
[2009]. This requires however an accurate description and
bounding of the model uncertainties. The point listed
above actually suggest an extension of the optimization
framework, where the optimization of the long-term NPV
J (1) could be extended to also include short-term objective
in the optimization.

In van Essen et al. [2011] a constrained optimization ap-
proach is presented, where a secondary objective function

J
(2)
K is introduced that focuses on a short-term objective.
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In fact J
(2)
K follows the same structure as JK as presented

in (18), but with a discount factor b that is substantially
higher than in the long-term situation, thereby effectively
stressing short-time behavior. A new optimization objec-
tive can now be formulated as follows:

• Determine u∗
θ = argmaxu∈Q J

(1)
K (u, x0) according to

the setup and constraints of the original long-term
nominal optimization problem (15)-(18);

• Determine

max
u∈Q

J
(2)
K (u, x0), (27)

such that J
(1)
K (u, x0) ≥ J

(1)
K (u∗

θ, x0)− ε (28)

and under the regular constraints (16)-(17), where
ε > 0 is a real-valued margin on the long-term
revenues that is allowed to be compromized. This
optimal input trajectory is denoted as ũ∗

θ.

In this way, a short-time objective is optimized under the
constraint that there is a prespecified limited compromise
on the long-term revenues. It has been noted that even
with ε = 0, this problem has a feasible solution, due to
the redundancy of degrees of freedom in the original opti-
mization problem. In other words, after an optimal input

u∗
θ of J

(1)
K has been established, there are still considerable

degrees of freedom left to optimize a second objective. This
offers the opportunity to perform hierarchical or lexico-
graphic optimization in which the redundancy in the input
variables is used to maximize short term performance (e.g.
maximum instantaneous oil rate) without compromising
the long-term goal (e.g. maximum NPV). The redundancy
is primarily a result of the typical overparameterization of
flooding optimization problems. There are usually many
combinations of the control variables (i.e. the number
of well control parameters times number of control time
steps) that lead to (nearly) identical optimal values of the
objective function.

In van Essen et al. [2011] an example of this approach is
presented for a reservoir as indicated in Figure 1 with 4
production and 8 injection wells. Figure 4 shows the opti-
mized input trajectories u∗

θ and ũ∗
θ. The second trajectory

(in red) shows substantially higher injection rates in the
first phase of production. Figure 5 shows the time evolu-
tion of the NPV values of both strategies. Without any
compromise on the value of J (1) the short term objective
J (2) is drastically improved. The blue curve in Figure 5
shows the result if we would only optimize J (2) without
taking account of any long-term effects. In this case a cost
is incurred at the end of the life-cycle of the reservoir. See
van Essen et al. [2011] for further details.

7. TIME-SCALE SEPARATION - TWO-LEVEL
APPROACH

The discussion in the previous section has highlighted
the importance and opportunities to include short-term
production objectives into our reservoir optimization. This
might also affect the models that we use as a basis for this
optimization. The large scale reservoir models are typically
developed for long-term prediction horizons, while for
short-term predictions we could rely more and more on
production measurement data. This points to a separation
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Fig. 4. Optimized input trajectories for each of the eight
injection wells over time, for the optimal solution of
the long term optimization J1 (green), and the optimal
solution of the short term optimization under long
term constraints J2 (red), van Essen et al. [2011].
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Fig. 5. Time evolution of the NPV objective function for
different optimized input strategies: long-term opti-
mization (green), short-term optimization under long-
term constraints (red), and short-term optimization
(blue), van Essen et al. [2011].

of time-scales, both in the optimization strategy and in the
models used for this optimization.

The classical solution to this problem that is common in in-
dustrial process control in processing and refining industry
is to introduce a multi-level control framework where long
term effects (real-time optimization) are separated from
short term effects (advanced process control). Saputelli
et al. [2006] and Foss and Jensen [2010] have suggested
to use such a multi-level approach also for upstream oil
production. van Essen et al. [2010, 2012] have applied a
two level strategy in which they combined long-term re-
covery optimization (trajectory generation), using a ’high-
order’ reservoir simulation model, with short-term produc-
tion optimization (trajectory following) using a ’low-order’
black box identified model. Fig. 6 depicts a schematic of
this two-level CLRM process. The bottom half of the figure
(below the dotted line) represents the traditional CLRM
process which combines data assimilation with recovery
optimization. The optimization is aimed at finding the
optimal input ûk that maximizes the NPV as expressed
in equation (18). However, in this case we are primarily
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Fig. 6. Schematic representation of two-level CLRM.

interested in the optimal output ŷk that corresponds to
ûk. The top half of Fig. 6 represents a state observer and
an identified data-driven model that is used as the basis
for a Model Predictive Control (MPC) controller aimed at
tracking the optimal output ŷk.

In van Essen et al. [2010, 2012] this strategy is applied
to an the example reservoir model with 8 injectors and 4
producers. In order to assess the effect of model inaccu-
racies, a reference model is used to generate production
data, and an (approximate) reservoir model is used as a
basis for the optimization of input trajectories. In the first
75 days of the experiment excitation signals are added to
the inputs, on the basis of which an 8th order black model
has been identified. Next an MPC tracking controller is
designed on the basis of this linear model. The results
are depicted in Figure 7 showing that after the period
of identification there is accurate tracking of the required
reference trajectory. An open-loop implementation of the
optimal trajectory on the reference model shows serious
deviations, caused by the inaccuracies in the reservoir
model.

8. CONTROL-RELEVANT UPSCALING

Field development is increasingly based on very detailed
’static’ geological numerical models. These typically con-
tain up to billions of cells with lithologic properties and
display complex structural geologic features such as layer-
ing, faults and fractures. Dynamic simulation of subsurface
flow with these large numbers of cells is computationally
not feasible with current computing limitations, even with
the use of massive parallel computing. Relatively coarse
dynamic reservoir flow models (containing up to millions of
variables) are therefore constructed by ’upscaling’ very de-
tailed ’static’ geological models. However, from a system-
theoretical point of view, a more fundamental argument
for using upscaled models is that there is only a limited
amount of information that can be observed from produc-
tion data, while there is also a limited amount of control
that can be exercised by adjusting the well parameters; in
other words, the input-output behavior is usually of much
lower dynamical order than the number of grid blocks in
the model. Therefore, we developed an upscaling approach
to find a coarse model that optimally describes the input-
output behavior of a reservoir system. In this control-
relevant method, the coarse-scale model parameters are
calculated as the solution of an optimization problem that
minimizes the distance between the input-output behav-
iors of the fine- and coarse-scale models. This distance is
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Fig. 7. Output trajectory following for the four produc-
tion wells. Reference output based on the nonlinear
(approximate) reservoir model (blue), MPC tracking
result on the basis of the local linear identified model
(red), and open-loop implementation of optimized in-
put trajectory on the data-generating system (green),
van Essen et al. [2010].

measured with the aid of the Hankel- or energy norms,
in which we use Hankel singular values and Markov pa-
rameters as a measure of the combined controllability and
observability, and response of the system, respectively. The
method is particularly attractive to scale up simulation
models in flooding optimization and/or history matching
studies for a given configuration of wells. An advantage of
our upscaling method is that it relies most heavily on those
parameter values that directly influence the input-output
behavior. It is a global method, in the sense that it relies
on the system properties of the entire reservoir. It does
not, however, require any forward simulation, neither of
the full nor of the upscaled model. It also does not depend
on a particular control strategy, but instead uses the dy-
namical system equations directly. Its dependency on well
locations, however, implies that it should be (partially)
repeated when those locations are changed. We tested
the method on several examples and for nearly all cases
obtained coarse scale models with a superior input-output
behavior compared to common upscaling algorithms. For
more details see Vakili-Ghahani and Jansen [2010, 2012],
Zandvliet et al. [2008a].

9. CONCLUSIONS

In this paper an overview has been given of recent
trends and developments as well as challenges in model-
based production optimization from hydrocarbon reser-
voirs. Whereas a first step has been made towards using
a model-based approach to optimize production, several
important challenges are still ahead. The effective han-
dling of model uncertainties is one of the key issues. The
complexity of reservoir models is a serious handicap, and
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at the same time it is felt that for generating optimized
operational trajectories it might be possible to focus on
the control/optimization relevant dynamics only, thereby
limiting to relatively simple reduced complexity models.
It has been illustrated that the information content in
production data is too limited to validate models with
too many degrees of freedom (parameters). The combina-
tion of physical reservoir models for the larger prediction
horizon, and identified (black box) models for the shorter
prediction horizon, seems to be a promising approach.
Eventually also the objective functions have to be further
extended, incorporating the possibility to include decisions
on investments of to-be-installed wells, in terms of their
location and timing, during the production stage of a
reservoir.
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