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Abstract: Deploying industrial robots in harsh outdoor environments require additional
functionalities not currently provided. For instance, movement of standard industrial robots
are pre-programmed to avoid collision. In dynamic and less structured environments, however,
the need for online detection and avoidance of unmodelled objects arises. This paper focus on
online obstacle detection using a laser sensor by proposing three different approaches, namely
a CAD-based Expert System (ES) and two probabilistic methods based on a Hidden Markov
Model (HMM) which requires observation based training. In addition, this paper contributes
by providing a comparison between the CAD-based ES and the two versions of the HMM, one
trained with real sensor data, and one where virtual sensor data has been extracted from the
CAD-model and used during the training phase.
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1. INTRODUCTION

Industrial robots have been used since the 1960s for solving
repetitive, routine, heavy and dangerous tasks, such as
coating, painting, pick and place, welding, assembly and
inspection (Nof, 1999). The traditional industrial robot
works in structured, indoor environments and does not
stop its process unless its safety switch circuit is broken or
it’s stopped by the operator. Standard industrial robots
are pre-programmed such that the robot path avoids any
obstacles in its vicinity, and does therefore not need to
know or have any awareness of these objects’ locations.

Historically, the main driver for using robots within manu-
facturing industries has been to achieve better quality and
productivity by increased automation. In most industries,
this is still true today. Recently, however, the need for
deploying industrial robots in rather unstructured outdoor
environment has arisen. Within the oil and gas industry,
for instance, (Anisi et al., 2010, 2011) the applications
generally stand out from other industries as the main
driver has been to automate tasks that have been difficult
or even impossible for people to undertake based on Health
Safety and Environment (HSE) issues. Applying robotics
in this way has resulted in an improvement in HSE, but
often with an associated dip in production. Although this
is contradictory to the general goal of automation, work is
now being done towards maintaining focus on HSE and at
the same time improving the efficiency and profitability of
the facilities.
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Today, industrial robots are not able to work indepen-
dently in harsh and unstructured outdoor environments,
which involves detection and avoidance of unmodeled ob-
jects. The work presented in this paper takes a step in that
direction by focusing on online obstacle detection using
two different approaches. The first approach is a CAD-
based Expert System (ES). The ES has initial knowledge
about the environment, and therefore knows what objects
are allowed and at which positions they are allowed. The
second approach is using a Hidden Markov Model (HMM).
This is a probabilistic method which relies on training
of observation of the environment. Alternative methods
could, for example, be Bayesian decision networks and
support vector machines. The alternative methods are
however beyond the scope of this paper, hence, the focus
is on performance and limitations of the ES and HMM
methods.

Related work describing the combination of online obstacle
detection and a laser rangefinder in an industrial robotics
environment are hard to find. Most of the related research
has focused on mobile robots and different applications
such as localisation and mapping. In research described
by Wolf et al. (2005), the authors investigate a method
for mobile robots to detect the state of the terrain. The
robots are equipped with a laser range scanner and able to
produce a map in 3D when driving forward. To be able to
determine whether parts of the scanned area belong to one
of two states — flat terrain or rougher terrain — the authors
use an HMM approach. The state estimation is based
on comparison of successive scans. The approach in Wolf
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et al. (2005) differs from this paper in a few ways. The
approach in this paper focuses on obstacle detection and
not mapping. In addition, the presented method requires
only one scan to determine the state, a larger number of
states is used, and the probability of the observations of
many models are calculated and evaluated.

The Little Helper described by Hvilshgj et al. (2009) is an
industrial robot mounted on a mobile robot platform and
provides another point of reference. The project purpose is
to devise and develop an industrially usable mobile robot
concept. The robot operates in a semi-structured indoor
environment, where it picks up objects that are placed
at different positions and are located by vision sensors.
One of the outlined scenarios: A work station calls on the
robot, the robot moves to the workstation and performs
a manipulation task with the robot arm. When the task
is complete, the robot releases the task and moves away
from the work station. This approach is similar to the
approach described in this paper in the way of handling
environments that are not fully structured, and using a
industrial robotic arm for manipulation tasks. The work
presented in this paper goes beyond the one conducted for
the Little helper by focusing on online obstacle detection
and in particular comparing CAD-model-based ES with
HMM.

The work presented in this paper is an extension of the
work described in (Kaldestad et al., 2012). The main
extension is the inclusion of a CAD-file to define the ES.
The HMM is then trained on generated data from the
ES, which are indirectly generated from the CAD-file.
If accurate maps of the environment are available, the
presented method eliminates the need for measurement
based training of the HMM.

The remaining of this paper is organized as follows: Sec-
tion 2 presents the problem formulation, Section 3 ex-
plains the ES while Section 4 introduces the two HMM
approaches. Finally, Section 5 presents the experimental
results and Section 6 concludes the work.

2. PROBLEM FORMULATION

In industrial environments, the robot movement is typi-
cally restricted to its pre-programmed trajectories in com-
bination with static or temporary world zones preventing
the robot’s tool center point (TCP) to either leave or enter
the manually defined world zones. However, as the demand
for handling more dynamic environments increases, so does
the demand for planning trajectories dynamically. To this
end, this paper focuses on the problem of on-line detection
of unknown and unmodeled objects which constitutes the
initial part of dynamical trajectory planning.

The laboratory setup depicted in Fig. 1 gives a schematical
overview of the robot cell. The robot (C) is manipulating
objects on the work bench (I) with a tool located in the
tool holder (J). Objects (A) and (H) are static objects in
the robot cell and together with the wall (D) these are a
part of the CAD-file map. Furthermore, objects (F) and
(G) are objects that are allowed in the robot cell at these
positions and are part of the CAD-file map that includes
objects. The laser (B) continuously scans 0°—180° in the x-
y plane at a height z. While manipulating, robot movement
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Fig. 1. A schematic overview of the robot cell

will rotate and translate the laser which is mounted on the
robot’s first axis. The four black dots on the workbench
such as (E), are the positions where laser data have been
collected for the work described in this paper.

In the work described in this paper, two different ap-
proaches for on-line obstacle detection will be investigated,
where the Expert System will be described in the following
section.

3. EXPERT SYSTEM

The Expert System (ES) described in this paper relies
upon a description of the environment (map and objects)
in terms of a CAD-model. When a CAD-model of the
environment exists, the distances from the centre of the
laser sensor to any shape described by the model can be
calculated using geometrical relations as will be detailed
below. Then by comparing this to the distances mea-
sured on-line by the laser, it is possible to detect unmod-
eled obstacles entering the robot workspace. However, a
straightforward comparison between the measured and the
modeled distance would lead to an unacceptably high rate
of false object detection alarms. To remedy this behaviour,
systematic sensor measurement errors (30 mm), as well
as inaccuracies in the provided CAD-model will be taken
into account before triggering alarms.

More precisely, with an estimated CAD-model accuracy of
+10 mm, the laser measurements are allowed to deviate
within the threshold of € = +10 mm) before triggering the
alarm indicating obstacle detection. Despite this threshold,
the cases when the laser measurements deviate more than
€ is observed typically when the laser beam hits near
the edge of an object. In this paper, such measurements
are recognized by being considerably greater than that of
the modeled distance to the object. This non-predictable
behaviour of the laser measurements, was handled by
extending the functionality of the ES in accordance with
the bottom two boxes in Fig. 2, which shows the overall
program design.

As previously mentioned, the ES needs to calculate the
modeled distances from the laser centre to the environ-
ment described by the CAD-model. For this purpose, the
orientation of the robot’s first axis (upon which the laser
sensor is mounted) and the position and orientation of the
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Fig. 3. FARO laser tracker used to calibrate the position
R°tat|'“; ::rd dtarfans'ate of the laser scanner relative to the base of the robot.
¢ False robot tool need to be known. This data is readily available
on most industrial robot controllers of today. However,
the ES also requires knowledge about the position of the
Estimate laser data laser sensor relative to the robot base coordinate system.
In practice, this quantity is most often not known or
¢ measureable directly with sufficient accuracy. Therefore,
ol finding the position of the laser relative to the robot base
esf.:(;fﬁa\::f;ta ase is performed as follows.
hits corners To allow accurate calculation of the relative position
between the laser scanner and the robot base, a FARO
laser tracker was utilized. It measures points in 3D space
with a worst case accuracy of 18 pm + 3 pm/m. As an
example, the accuracy 5 m out from the device will be
_ 18 pum + 3 pm/mx5 m = 33 pum. The laser tracker was
Laser beam deviate more than

positioned in the front-right of the robot (see Fig. 3),
and a local coordinate system was created, with x-axis
and y-axis direction in accordance with Fig. 1, and z-axis
perpendicular to the x-y-plane to define a right-handed
coordinate system. Next, a laser tracker target which
reflects the laser beam was centrally aligned on top of the
laser sensor. Then, the first axis of the robot was rotated at
angles 61 and 0, degrees. Measurements were conducted by
. the FARO laser tracker at each of the points, enabling us
to extract the radius defining a circle centered at the origin
of the robot base coordinate system, and passing through
the measurement points. As shown in Fig. 1, this radius
equals the distance between the laser to the centre of the
robot. The angle offset from the centre of the robot to the
laser was found by maximizing the y-distance; this is when
the laser position will be 90° relative to the robot centre.
At the point where y was maximized, the angle rotation
of the robot’s first axis was read from the robot controller.
This equals the negative angle offset of the laser.

the error threshold, €

Laser beam(s) deviate more
than g, in corner transitions

Measured distance False

value is between expected
value n; at current angle 6; and
expected value
n; at angle ; for
j e {i-1, i+1}

Having calculated the exact position of the laser sensor
in the environment, the distance from the sensor to the
closest point in the environment is calculated as follows.

Fig. 2. The ES program design. . .
The CAD-model describing the environment (map and
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Fig. 4. Flowchart of the HMM training and scoring algo-
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Fig. 5. Illustration of the HMM transition matriz, A

obstacles) consists of a number of corner points associated
with each object. Each two consecutive points belonging
to the same object, are then used to define a line. Then, for
each ray centred at the laser position and defined by the
angle 6 € [0,180] degrees from the x-axis, the intersection
point between the ray and all these line segments are
calculated. To finally arrive at the distance to the closest
point in the environment, the intersection with the lowest
length value is recognized. The method is repeated until
a closest intersection for all angles in {0,0.5,--- ,180} are
extracted.

4. HIDDEN MARKOV MODEL

The following notation will be in accordance with Rabiner
(1989). The HMM approach provides a confidence value
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for laser length data matching the model A = (A, B, ).
Here, A is a 12 x 12 transition matrix (see Fig. 5), B is the
observation matrix consisting of the mean and variance —
both of size 12 x 61. Finally 7r is the 12 x 1 initial state
distribution vector. The observation matrix B contains
six sets of measured data, one for each 30° segment. The
arrows in Fig. 5 show the allowed state transitions.

Two different sensor tranining data sets are used to es-
timate the HMM, \; one uses measured laser data, the
other uses estimated (virtual) data extracted from the
CAD-model (cf. Fig. 2). The second approach will be an
advantage if real sensor data is not available before the
system is implemented. It would not only allow for smart
scheduling of the computation time in advance of system
deployment, but it will also allow the system to instantly
begin operating without making numerous measurement
of the normal situation where the robot is located. To be
able to represent laser measurements, noise that is similar
to the standard deviation of the laser sensor is applied to
the virtual data. Further, the signal mean and variance are
calculated for use in the B matrix.

5. EXPERIMENTAL RESULTS
5.1 Ezxpert system

The ES, being an extension of the one presented in
Kaldestad et al. (2012), has increased complexity by
adding a map of the environment where previously a filter
was used to filter out anything but the tool. If any unfil-
tered object entered the area, an error would be thrown. As
aresult of adding a map, the system is more error sensitive.
This sensitivity is especially evident when the laser beam
hits in a corner location of an object. This situation often
leads to a wrong distance measurement by the laser. There
is currently no known method of accurately correct for
these situations and as described earlier, beams in corner
regions are filtered out. In the experiments the filtering
angle 0 is 1°, and the systematic error of the system, 7,
is set to 40 mm. Fig. 6 shows the ES detecting an object
that is not a part of the map, and the system responds by
throwing an error.

Table 1 shows the results of the 12 test cases in the
experimental studies with the ES. It is notable that the ES
has classified all scenarios correctly in all four positions.
The “no object” and “objects” columns constitute the
normal scenarios, i.e., cases when no unexpected obstacle
is present. The objects in question are (G) and (F) from
Fig. 1. The “objects 4+ obstacle” column represents the
abnormal situation when an arbitrary obstacle is placed
in an arbitrary location in the robot cell.

Table 1. Ezpert system performed succesfully
in all four test positions, in total 12 test cases.

Test set No object | Objects | Objects + obstacle
Pos 1, \1 v v v
Pos 2, A2 v v v
Pos 3, A3 v v v
Pos 4, \q v v v
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Table 5. Scores —log[P(O; j|A\1)] with 12 test
setsi € {1,---,4} and j € {1,---,3}.

Test set | No object | Objects | Objects + obstacle
1 1865 1868 2672
2 1864 1869 2664
3 1865 1869 2678
4 1865 1868 2665

Fig. 6. The blue line is reflections from a laser measure-
ment, an object which is not a part of the CAD-model
is detected and is represented by red beams.

5.2 Hidden Markov Models

The HMM results can be found in Table 2-5 where
each table presents the scores based on twelve different
observations at one of the four positions marked (E)
in Fig. 1. From the tables, the log score for the “no
object” and “objects” scenarios, which constitute the
normal training cases, are quite similar in all the four
tables. As for the abnormal “objects + obstacle” case
goes, since the obstacle is not a part of the model A, it
is expected that a model score with lower probability is
expected. The results show that the score for “objects +
obstacle” is significantly higher than the trained models
(“no object” and “objects”).

For the virtual data to be able to function as a means for
training the HMM, the parameter systematic error must
be tuned. Fig. 7 shows that the laser measurements are not
spread uniformly across the systematic error of £30 mm.
The measurements are rather taking a normal distributive
shape. Table 6 shows the standard deviation of the four

different measurements presented in Fig. 7.
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Fig. 7. Systematic error of the laser, for four arbitrary
angles. Each histogram is created from 100 000 laser
measurements.

Table 2. Scores —1og[P(O; j|\1)] with 12 test
setsi € {l,---,4} and j € {1,---,3}.

Test set | No object | Objects | Objects + obstacle
1 1868 1862 2005
2 1867 1862 2005
3 1868 1863 2005
4 1868 1862 2006

Table 3. Scores —log[P(O; j|A2)] with 12 test
setsi € {1,---,4} and j € {1,---,3}.

Test set | No object | Objects | Objects + obstacle
1 1909 1912 2046
2 1909 1912 2048
3 1909 1912 2046
4 1909 1912 2047

Table 4. Scores —log[P(O; j|A3)] with 12 test
setsi € {1,--+,4} and j € {1,---,3}.

Test set | No object | Objects | Objects + obstacle
1 1870 1889 2066
2 1870 1890 2066
3 1870 1890 2069
4 1870 1889 2067
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Table 6. Standard deviations from Fig. 7.

Lower left
8.346

Upper left
7.527

Upper right
7.562

Lower right
9.4244

The algorithm for training the HMM creates random
normal distributed values for the estimated measurement.
The reason for the random variables is because the HMM
training must have a variety of observations to perform the
training on. The effect of changing the systematic error is
shown in Fig. 8. The top part of the figure show that by
increasing the systematic error the probability of a HMM
trained on virtual data increases for a laser observation
with object in the robot cell, while it is more or less
steady for a virtual data observation. The top part of
the figure also shows that the difference between a laser
observation with object and a laser observation with object
and obstacle gets smaller as the value of the systematic
error increases. This difference is clearer in the bottom part
of the figure, and is shown by the red line. It is important
to have this difference sufficiently high, as this difference
tells how well an accepted HMM score (no obstacle in the
robot cell) can be differentiated from an HMM score with
obstacle in the robot cell. The black vertical line shows the
chosen systematic error at 8.55 mm, which corresponds to
the mean of the standard deviation from Table 6.
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Fig. 8. Model score versus systematic error.

Table 7. Scores based on wvirtual
—1og[P(Oy;|\x)]  with 20  test
je{l,---,3 and k€ {1,--- ,4}.

data
sets

Test set | No object | Objects | Objects 4+ obstacle
A1 (VD) 1881 1880

A1 (LD) 11646 11930 12451

A2 (VD) 1883 1882

A2 (LD) 11472 12110 12530

X3 (VD) 1882 1883

A3z (LD) 11121 11689 12573

A4 (VD) 1885 1885

A4 (LD) 11751 12239 12427

Table 7 shows the probability scores for virtual data and
laser data for the models A\, that are trained from virtual
data. The result shows that it is possible to distinguish the
two allowed situations (“no object” and “objects”) from a
situation where an obstacle is present.

6. CONCLUSIONS AND FUTURE WORK

The ES algorithm is computationally efficient, and is suit-
able in real time applications. Furthermore, it could pro-
vide the system with coordinate location of the obstacle.

The ES is highly dependent on accurate input values (such
as a map and the position of the robot), and there are
many of these values that can be improved. First, the map
of the environment could be measured more accurately
by use of, e.g., the FARO laser tracker seen in Fig. 3.
Second, a small misalignment of the sensor could have
large impact on the measurements, in particular at long
distances. This might cause false classification, especially
in the CAD-based ES.

An improvement of the problem experienced when mea-
suring corners could be to incorporate a second laser,
positioned at another location on the robot.

The possibility of training the HMM directly from the
virtual data is an advantage; time can be saved and
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there is no need for acquiring large amounts of data after
deployment of the robot. It is possible to calculate the
HMMSs in advance, enabling the system to be up and

running at the time of deployment.
One limitation of the H 1s the computational require-

ments for the training and in the current version of the
algorithm, it could not provide information of the obstacle
location.

There are apparently some challenges with applying a
CAD-based map of an unstructured environment, one is
how to update a map of an environment that continuously
changes. The idea behind the approach presented in this
paper, is that large parts of the map will be static. Some
parts, however, will be dynamic, but the update frequency
of the environment will be so low that on-line updates of
the map would be feasible. Dynamic mapping is, however,
beyond the scope of this paper and would be a direction
of future research.
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