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Abstract: Conventional recovery techniques enable recovery of 10−50% of the oil in an oil field.
Advances in smart well technology and enhanced oil recovery techniques enable significant larger
recovery. To realize this potential, feedback model-based optimal control technologies are needed
to manipulate the injections and oil production such that flow is uniform in a given geological
structure. Even in the case of conventional water flooding, feedback based optimal control
technologies may enable higher oil recovery than with conventional operational strategies. The
optimal control problems that must be solved are large-scale problems and require specialized
numerical algorithms. In this paper, we combine a single shooting optimization algorithm
based on sequential quadratic programming (SQP) with explicit singly diagonally implicit
Runge-Kutta (ESDIRK) integration methods and a continuous adjoint method for sensitivity
computation. We demonstrate the procedure on a water flooding example with conventional
injectors and producers.
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1. INTRODUCTION

The growing demand for oil and the decreasing number
of newly discovered significant oil fields require more
efficient management of the existing oil fields. Oil fields are
developed in two or three phases. In the primary phase,
the reservoir pressure is large enough to make the oil flow
to the production wells. In the secondary phase, water
must be injected to maintain pressure and move the oil
towards the producers. In some cases, a tertiary phase
known as enhanced oil recovery is considered. Enhanced oil
recovery includes technologies such as in situ combustion,
surfactant flooding, polymer flooding, and steam flooding
(Thomas, 2008). After the secondary phase, typically the
oil recovery is somewhere between 10% and 50% (Chen,
2007; Jansen, 2011).

Optimal control technology and Nonlinear Model Predic-
tive Control have been suggested for improving the oil
recovery of the secondary phase (Jansen et al., 2008). In
such applications, the controller adjusts the water injection
rates and the bottom hole well pressures to maximize
oil recovery or a financial measure such as net present
value. In the oil industry, this control concept is also
known as closed-loop reservoir management (Jansen et al.,
2009). The controller in closed-loop reservoir management
consists of a state estimator for history matching and
an optimizer that solves a constrained optimal control
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problem for the production optimization. The main dif-
ference of the closed-loop reservoir management system
from a traditional Nonlinear Model Predictive Controller
(Binder et al., 2001) is the large state dimension (106 is
not unusual) of an oil reservoir model. The size of the
problem dictates that the ensemble Kalman filter is used
for state estimation (history matching) and that single
shooting optimization algorithms compute gradient based
on adjoints (Jansen, 2011; Jørgensen, 2007; Sarma et al.,
2005; Suwartadi et al., 2011; Völcker et al., 2011).

In this paper, we propose a high order temporal integra-
tion method (Explicit Singly Diagonally Implicit Runge-
Kutta, ESDIRK) for forward computation of the initial
value problem and for backward solution of the associated
continuous-time adjoint. Conventional practice by com-
mercial reservoir simulators is limited to the use of first
order temporal implicit or semi-implicit integrators for
the initial value problem and the adjoints. Völcker et al.
(2010a,b, 2009) introduce high order ESDIRK methods
in two phase reservoir simulation. The high order scheme
allows larger steps and therefore faster solution of the
reservoir model equations. To compute the gradient of
the objective function in a single shooting optimization
method, Völcker et al. (2011) propose a method based on
adjoints for the discretized equations. Cao et al. (2002)
and Jansen (2011) provide an overview of gradient com-
putation using the adjoint. Brouwer and Jansen (2004)
and Sarma et al. (2005) explain and demonstrate gradient
computation by the adjoint equations based on the implicit
Euler discretization. Kourounis et al. (2010) suggest the
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continuous-time high order adjoint equations for gradient
computation in production optimization. Nadarajah and
Jameson (2007) compare gradients computed by discrete
and continuous adjoints for problems arising in aerody-
namics. They conclude that the gradients computed from
continuous adjoints is accurate enough to be used in
optimization algorithms. Since computation of gradients
based on continuous time adjoints is faster than gradients
based on discrete adjoints, this conclusion implies that
the gradient computations can be accelerated by using the
continuous time adjoint equations.

The novel contribution in this paper is an extension of the
adjoint based optimization method suggested by Völcker
et al. (2011) to include gradient computation based on the
continuous-time adjoint equation. Using a conventional oil
field as case study, we demonstrate the new single-shooting
optimization algorithm based on ESDIRK integration of
the initial value problem and ESDIRK integration of the
continuous-time adjoint equation. The case study illus-
trates the potential of optimal control for production opti-
mization of water flooded oil reservoirs by maximizing the
net present value. We do a parameter study to illustrate
the sensitivity of the optimal solution to the discount
factor.

The paper is organized as follows. Section 2 states the
general constrained optimal control problem using a novel
representation of the system dynamics. The ESDIRK al-
gorithm for solution of the differential equation systems is
described in Section 3, while Section 4 presents the con-
tinuous adjoint method. Section 5 describes the numerical
case study and discusses the sensitivity of the optimal
solution to the discount factor in the net present value.
Conclusions are presented in Section 6.

2. OPTIMAL CONTROL PROBLEM

In this section, we present the continuous-time constrained
optimal control problem and its transcription by the
single shooting method to a finite dimensional constrained
optimization problem. First we present the continuous-
time optimal control problem. Then we parameterize the
control function using piecewise constant basis functions,
and finally we convert the problem into a constrained
optimization problem using the single shooting method.

Consider the continuous-time constrained optimal control
problem in the Bolza form

min
x(t),u(t)

J = Φ̂(x(tb)) +

∫ tb

ta

Φ(x(t), u(t))dt (1a)

subject to

x(ta) = x0 (1b)

d

dt
g
(
x(t)

)
= f(x(t), u(t)), t ∈ [ta, tb], (1c)

u(t) ∈ U(t) (1d)

x(t) ∈ Rnx is the state vector and u(t) ∈ Rnu is the control
vector. The time interval I = [ta, tb] as well as the initial
state, x0, are assumed to be fixed. (1c) represents the
dynamic model and includes systems described by index-
1 differential algebraic equations (DAE). (1d) represents
constraints on the input values, e.g. umin ≤ u(t) ≤ umax,
c(u(t)) ≥ 0, and some constraints related to rate of move-
ment that are dependent on the input parametrization.

Path constraints

η(x(t), u(t)) ≥ 0 (2)

may render the optimization problem infeasible. For this
reason and due to computational efficiency considerations
when computing the sensitivities by the adjoint method
(Capolei and Jørgensen, 2012; Jørgensen, 2007), we in-
clude these constraints as soft constraints using the fol-
lowing smooth approximation

χi(x(t), u(t)) =
1

2

(√
ηi(x(t), u(t))

2
+ βi

2)− ηi(x(t), u(t)

)
(3)

to the exact penalty function max(0,−ηi(x(t))) for i ∈
{1, . . . , nη}.With this approximation of the path con-
straints, the resulting stage cost, Φ(x(t), u(t)), used in (1a)

consist of the inherent stage cost, Φ̃(x(t), u(t)), and terms
penalizing violation of the path constraints (2)

Φ(x, u) = Φ̃(x, u) + ‖χ(x, u)‖1,Q1 +
1

2
‖χ(x, u)‖22,Q2

(4)

2.1 Discretization

Control Parametrization Let Ts denote the sample time
such that an equidistant mesh can be defined as

ta = t0 < . . . < tS < . . . < tN = tb (5)

with tj = ta + jTs for j = 0, 1, . . . , N . We use a
piecewise constant representation of the control function
on this equidistant mesh, i.e. we approximate the control
vector on every subinterval [tj , tj+1] by the zero-order-hold
parametrization

u(t) = uj , uj ∈ Rnu , tj 6 t < tj+1, j ∈ 0, . . . , N − 1 (6)

Input Constraints The input constraints (1d) include
bound constraints umin ≤ uk ≤ umax. In the discrete
problem using the zero-order-hold parametrization, we
also include rate of movement constraints in the form
∆umin ≤ ∆uk ≤ ∆umax with ∆uk = uk − uk−1.

2.2 Single Shooting Optimization

For the single shooting approach (control vector parame-
trization), we introduce the function

ψ({uk}N−1k=0 , x0) ={
J =

∫ tb

ta

Φ(x(t), u(t))dt+ Φ̂(x(tb)) :

x(t0) = x0,

d

dt
g(x(t)) = f(x(t), u(t)), ta ≤ t ≤ tb,

u(t) = uk, tk ≤ t < tk+1, k = 0, 1, . . . , N − 1

}
(7)

such that (1) can be approximated with the finite dimen-
sional constrained optimization problem

min
{uk}N−1

k=0

ψ = ψ({uk}N−1k=0 , x0) (8a)

s.t. umin ≤ uk ≤ umax k ∈ N (8b)

∆umin ≤ ∆uk ≤ ∆umax k ∈ N (8c)

ck(uk) ≥ 0 k ∈ N (8d)

with N = {0, 1, . . . , N − 1}.
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3. ESDIRK METHODS

In this section, we describe our implementation of the
ESDIRK method for the computation of ψ({uk}N−1k=0 , x0)

in (7). Computation of ψ({uk}N−1k=0 , x0) consists of two
major operations: 1) For each integration step we first
compute the model states x(t) solving the initial value
problem (1c), 2) and then we compute, using the same
quadrature points, the value of the Lagrange term

ψ̄(t) :=

∫ t

ta

Φ(x(t), u(t))dt ta ≤ t ≤ tb. (9)

in the cost function (1a). Let t̃n denote the integration
times chosen by the step size controller in the integrator.
Each integration step size, hn, is chosen such that it is
smaller than or equal to the sample time, Ts. Therefore,
one sample interval contains many integration steps. The
numerical solution of the IVP (1c) by an s-stage, stiffly
accurate, Runge-Kutta ESDIRK method with an embed-
ded error estimator, may in each integration step [t̃n, t̃n+1]
be denoted (Capolei and Jørgensen, 2012; Völcker et al.,
2010a)

T1 = t̃n, Ti = t̃n + cihn (10a)

X1 = xn (10b)

φi({Xj}i−1j=1, u) = g(X1) + hn

i−1∑
j=1

aijf(Xj , u) (10c)

g(Xi) = φi({Xj}i−1j=1, u) + hnγf(Xi, u) (10d)

xn+1 = Xs (10e)

en+1 = hn

s∑
j=1

dif(Xj , u) (10f)

with i = 2, . . . , s. Xi denotes the numerical solution at
time Ti for i ∈ {1, . . . , s}. xn+1 is the numerical solution
at time t̃n+1 = t̃n + hn. en+1 is the estimated error of the
numerical solution, i.e. ‖en+1‖ ≈ ‖g(xn+1)− g(x(t̃n+1))‖.
Subsequent to solution of (10), we compute the numerical
solution of the cost function (9)

ψ̄(t̃n+1) = ψ̄(t̃n) + hn

s∑
i=1

biΦ(Xi, u) (11)

When t̃n+1 = tb, we add the Mayer term of (1a) such that

ψ({uk}N−1k=0 , x0) = ψ(tb) = ψ̄(tb) + Φ̂(x(tb)) (12)

The main computational effort in the ESDIRK method is
solution of the implicit equations (10d) using a Newton
based method. (10d) is solved by sequential solution of

Ri(Xi) := [g(Xi)− hnγf(Xi, u)]− φi({Xj}i−1j=1, u) = 0

(13)
for i = 2, . . . , s. (13) is solved using an inexact Newton
method. Each iteration in the inexact Newton method for
solution of (13) may be denoted

M∆X
[l]
i = −Ri(X [l]

i ) (14a)

X
[l+1]
i = X

[l]
i + ∆X

[l]
i (14b)

The iteration matrix, M , is an approximation

M ≈ J(X
[l]
i ) (15)

to the Jacobian of the residual function

Ji(Xi) =
∂Ri
∂Xi

(Xi) =
∂g

∂x
(Xi)− hnγ

∂f

∂x
(Xi, u) (16)

The iteration matrix, M , and its LU factorization is
updated adaptively by monitoring the convergence rate of
the inexact Newton iterations. Convergence of the inexact
Newton iteration is measured by

‖Ri(X [l]
i )‖ = max

j∈1,...,nx

|(Ri(X [l]
i )j |

max{atolj , rtoljgj(X
[l]
i )}

< τ (17)

where atol is the absolute tolerance and rtol is the relative
tolerance. Steps are accepted if this measure of the residual
is smaller than τ ≈ 0.1 In case of divergence or slow
convergence, the iterations are terminated, the step size,
hn, is decreased and the Jacobian of the iteration matrix
is re-evaluated and factorized. As explained in e.g. Völcker
et al. (2010b) and Capolei and Jørgensen (2012), the step
size controller adjust the temporal step sizes such that the
error estimate satisfies a norm similar to the norm used in
(17).

4. CONTINUOUS ADJOINT METHOD

Gradient based methods such as sequential quadratic
programming (SQP) methods for solution of (8) require
the gradient of the objective function (7) with respect
to the control vector parameters, i.e. ∂ψ/∂uk for k =
0, 1, . . . , N − 1. In this section, we describe a continuous-
time adjoint based method for computation of these gra-
dients.

Proposition 1. (Gradients based on Continuous Adjoint).

Consider the function ψ = ψ({uk}N−1k=0 ;x0) defined by (7).

The gradients, ∂ψ/∂uk, may be computed as

∂ψ

∂uk
=

∫ tk+1

tk

(
∂Φ

∂u
− λT ∂f

∂u

)
dt k = 0, 1, . . . , N − 1

(18)
in which x(t) is computed by solution of (1b)-(1c) and λ(t)
is computed by solution of the adjoint equations

dλT

dt

∂g

∂x
+ λT

∂f

∂x
− ∂Φ

∂x
= 0 (19a)

∂Φ̂

∂x
(x(tb)) + λT (tb)

∂g

∂x
(x(tb)) = 0 (19b)

Remark 2. (Computation using ESDIRK). x(t) is compu-
ted using the ESDIRK method applied to (1b)-(1c) and
integration forwards. This solution is stored. The same
ESDIRK method is applied for computation of λ(t) by
solving (19) integrating backwards in time.

Remark 3. (Gradients Computed by Continuous Adjoint).
The gradients computed using the continuous adjoints are
not the exact gradients, ∂ψ/∂uk, when the involved differ-
ential equations and integrals are computed by discretiza-
tion using the ESDIRK method. However, they can be
made sufficiently precise for the optimizer such that they
do not affect the convergence (Nadarajah and Jameson,
2007). The advantage of the continuous adjoint equations
(19) is that they can be solved faster than the adjoint
equations for the discretized system (10)-(12).

5. PRODUCTION OPTIMIZATION FOR A
CONVENTIONAL OIL FIELD

In this section, we apply our algorithm for constrained
optimal control problems to production optimization in a
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Fig. 1. The permeability field and the location of wells. A
circle indicates the location of an injector and a cross
indicates the location of a producer.

Table 1. Parameters for the two phase model
and the discounted state cost function (20).

Symbol Description Value Unit

φ Porosity 0.2 -
cr Rock compressibility 0 Pa−1

ρo Oil density (400 atm) 800 kg/m3

ρw Water density (400 atm) 1000 kg/m3

co Oil compressibility 10−5 1/atm
cw Water compressibility 10−5 1/atm
µo Dynamic oil viscosity 2 · 10−3 Pa · s
µw Dynamic water viscosity 1 · 10−3 Pa · s

Sor Residual oil saturation 0.1 -
Sow Connate water saturation 0.1 -
no Corey exponent for oil 1.5 -
nw Corey exponent for water 1.4 -

Pinit Initial reservoir pressure 400 atm
Sinit Initial water saturation 0.1 -

ro Oil price 100 USD/m3

rw Water production cost 20 USD/m3

conventional horizontal oil field that can be modeled as
two phase flow in a porous medium (Chen, 2007; Völcker
et al., 2009). The reservoir size is 450 m× 450 m× 10 m.
By spatial discretization this reservoir is divided into 25×
25×1 grid blocks. The configuration of injection wells and
producers as well as the permeability field is illustrated in
Fig. 1. As indicated in Fig. 1, the four injectors are located
in the corners of the field, while the single producer is
located in the center of the field. The specification of the
two phase oil model consists of the injector (i ∈ I) and the
producer (i ∈ P) location, the permeability parameters
indicated in Fig. 1, and the parameters listed in Table 1.
The initial reservoir pressure is 400 atm everywhere in the
reservoir. The initial water saturation is 0.1 everywhere in
the reservoir. This implies that initially the reservoir has
a uniform oil saturation of 0.9.

The inherent discounted stage cost function (see (4))

Φ̃(t) = Φ̃(x(t), u(t))

= − 1

(1 + b)t/365

∑
j∈P

(ro(1− fw)− fwrw) qj(t)
(20)

accounts for the value of the oil produced minus the pro-
cessing cost of the produced water. In this cost function, we
have neglected the processing cost of injected water as well
as the effect of pressure on injecting water. b is the discount
factor. The fractional flow of water, fw = λw/(λw + λo),
indicates the relative flow of water. λw = ρwkkrw/µw

and λo = ρokkro/µo are the water and oil mobilities,
respectively. In the problems considered, we do not have
any cost-to-go terms, i.e. Φ̂(tb) = 0. Neither do we have
any path constraints (2). Therefore, maximizing the net
present value of the oil field corresponds to minimization
of

J(tb) = −NPV(tb) =

∫ tb

ta

Φ(x(t), u(t))dt (21)

with Φ(x(t), u(t)) = Φ̃(x(t), u(t)). The optimizer maxi-
mizes the net present value by manipulating the injection
of water at the injectors and by manipulation of the
total fluid production (oil and water) at the producers.
Hence, the manipulated variable at time period k ∈ N
is uk = {{qw,i,k}i∈I , {qi,k}i∈P} with I being the set of
injectors and P being the set of producers. For i ∈ I,
qw,i,k is the injection rate (m3/day) of water in time period
k ∈ N at injector i. For i ∈ P, qi,k is the total flow rate
(m3/day) at producer i in time period k ∈ N . Therefore,
at producer i ∈ P, the water flow rate is qw,i,k = fwqi,k
and the oil flow rate is qo,i,k = (1− fw)qi,k.

The bound constraints (8b) appear in the production op-
timization problem because the water injected at injectors
and the production at the producers must both be positive
and because each production facility has a maximum flow
capacity. In the considered problem we have

|qi,k − qi,k−1| ≤ 5 i ∈ I ∪ P, k ∈ N (22a)

0 ≤ qi,k ≤ qmax i ∈ P, k ∈ N (22b)

The maximum flow capacity, qmax, is the same for all
injectors and producers in this case study. The rate of
change for all injectors and producers are |qi,k−qi,k−1| ≤ 5
for i ∈ I ∪ P and k ∈ N . Since the injection of oil is zero,
qo,i,k = 0 for i ∈ I, we get |qw,i,k − qw,i,k−1| ≤ 5 for i ∈ I
and k ∈ N . This leads to the rate of movement constraints
(8c). In addition we use a voidage replacement constraint
(Brouwer and Jansen, 2004; Jansen, 2011)∑

i∈I
qi,k =

∑
i∈I

qw,i,k =
∑
i∈P

qi,k k ∈ N (23)

and enforce a constant total injection,
∑
i∈I qw,i,k = qmax

for k ∈ N . This translates into constraints of the type
(8d). By the total injection constraint, the optimization
problem reduces to a problem of redistributing the flows
among the injectors.

The prediction and control horizon is tb = 4270 days and
the sampling period is Ts = 35. Hence the prediction and
control horizon corresponds to N = 122 periods. With a
total injection at each time period of qmax = 100 m3/day,
these specifications corresponds to injection of 1.05 pore
volume during operation of the reservoir. The prediction
horizon is optimal in the reference case for a total injection
of 100 m3/day.

The optimal water injection rates computed by solution of
the constrained optimal control problem (1) for different
discount factors, b, are illustrated in Fig. 2. In addition, a
base case with constant and equal water injection rates is
illustrated. It is evident that the optimal injection rates are
very sensitive to the discount factor, b. The corresponding
cumulative oil and water production are plotted in Fig. 3.
Independent of the discount factor value, the optimized
strategies produce more oil than the base case. For the high
discount factor case, b = 0.12, less oil is recovered than in
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(a) Discount factor b = 0.
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(b) Discount factor b = 0.06.
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(c) Discount factor b = 0.12.

Fig. 3. Cumulative oil and water productions for different discount factors, b.
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Fig. 4. The net present value (NPV), water cut (accumulated water production per produced fluid), and the water
fraction as function of time for the scenarios considered.

Table 2. Key indicators for the optimized cases. Improvements are compared to the base case.

b NPV ∆NPV Cum. Oil ∆Oil Cum. water ∆Water Oil Rec. factor ∆Oil Rec. factor
106 USD % 105 m3 % 105 m3 % % %-point

0 28.0 +8.7 3.05 +6.5 0.122 −13.2 83.7 +5.2
0.06 22.1 +5.6 3.01 +5.2 0.126 −10.5 82.6 +4.1
0.12 18.3 +4.8 2.98 +4.1 0.129 −8.2 81.7 +3.2
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Fig. 2. Optimal water injection rates for different discount
factors, b.

the low discount factor case, b = 0. However, the produced
oil is always above the reference case when b = 0.12. This
is not the case for b = 0 and b = 0.06. Fig. 4 illustrates the
net present value, the water cut and the water fraction for
the base case scenarios as well as the optimized scenarios.
The plot of NPV demonstrates that when b = 0, the NPV
is lower than the base case NPV at some time during the
production. At the end of the production the optimized

NPV is largest. In order to recover the maximum amount
of oil less oil must be produced at some times. This is
also confirmed by the water fraction curves. The results
are summarized in Table 2. Table 2 shows that most oil is
recovered in the case without discount (b = 0), while least
oil is recovered when the discount factor is high (b = 0.12).

Fig. 5 illustrates the evolution of the oil saturation for the
optimized case (b = 0) and the base case. The figures show
that initially, less oil is produced from the upper left corner
in the optimal case compared to the base case. This gives
a better sweep of the oil field and results ultimately in
higher oil recovery.

6. CONCLUSIONS

In this paper, we solve constrained optimal control prob-
lems using a single shooting method based on a quasi-
Newton implementation of Powell’s sequential quadratic
programming (SQP) algorithm. The system of differential
equations are formulated in a novel way to ensure mass
conservation and the resulting initial value problem (1c)
is solved with tailored ESDIRK integration methods. We
also introduce a high order continuous adjoint system for
efficient computation of the gradients. The algorithm is
implemented in Matlab.
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(a) Optimal solution (b = 0).
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(b) Reference solution.

Fig. 5. Oil saturations at different times for the optimal solution and the reference solution.

The resulting algorithm is tested on a production opti-
mization problem for an oil reservoir with two phase flow.
For all cases considered, the dynamic optimization increase
the net present value of the oil field and give increased oil
production. However, the optimal injection rates are very
sensitive to the discount factor.
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