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Abstract: In this paper we consider problems of optimization and selection of development systems 

(technologies) of oil/gas fields, consisting of some disjoint oil/gas pools (in terms of hydrodynamics), 

tied by resource constraints or general oil/gas production plan. In order to solve these problems, 

formulated as MILP models,  we have developed approximate algorithm using Lagrangian relaxation 

(see Mikhalevich V.S. and Kouksa A.I., 1983). Initially we consider the problem for oil fields and then 

for gas fields. Contrary to another models and techniques, used for solving the similar problems, our 

models and algorithms allow us to coordinate allocation of production volumes and reserves among the 

pools with selection of optimal development system, as well as optimization of technological parameters 

for each pool. We have also examined the perspective approaches, using both multilevel decomposition 

of oil reservoirs, and hierarchical splitting, and parallel computing on supercomputer for developing 

effective problem-solving procedures. 
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1. INTRODUCTION 

In this paper we consider a pre-design stage of feasibility 

study of several oil (gas) pools development bounded by 

either scare resources or requirements on total production. 

The analysis and optimization of interrelated pools 

development is required when the pools belong to the same 

oil-and-gas producing company, for example. For this reason 

the company is interested to obtain the best results for not 

only a single pool but the whole group of pools. In that case 

one should choose the most effective field development 

system (reservoir engineering) for feasibility study, optimize 

process variables for each pool and allocate resources among 

several oil/gas pools. 

Different technologies with various process variables values 

in different environmental conditions require different 

resource costs and provide various production levels. 

Therefore on the one hand you will be able to choose rational 

technologies only if you know process variables values of 

each pool, on the other hand the selection of optimal process 

variables values of each pool is available only if we know 

resources allocation for each pool and reservoir engineering. 

This means that resources volume, process variables values 

and numbers of chosen reservoir engineering technologies, 

i.e. basic characteristics, defining options of fields’ 

development, should represent the components of a vector, 

which is a solution of the common optimization problem. 

At present, the used algorithms of generation and selection of 

oil/gas pools group development methods do not meet the 

abovementioned requirements. They are only used to define 

optimal process variables values for each oil/gas pool at the 

given technologies allocation or optimal technologies 

allocation at the given process variablesvalues for each pool. 

That results in selection of development options with low 

performance indicators.  

Hereafter we propose an approach based on mixed-integer 

programming models and methods, which is free of stated 

deficiencies. The approach’s possibilities are shown by 

solving two problems related to generation  of pre-design 

options of hydrocarbon accumulation development that 

allows proceeding to the stage of feasibility study for field 

development. 

2. OPTIMAL PRODUCTION OF GROUP OF OIL POOLS  

 The problem of optimization and selection of reservoirs 

engineering when a total production plan of the whole group 

of oil pools is given will be considered. In this context the 

common resource constraint means the total volume of 

cumulative oil production of all pools, where pools are oil-

bearing formation of multilayer field exploited separately. 

We review the strategy of oil pools development that 

corresponds to constant drainage from formation per unit 

time. For each pool the list of initial preliminary options of 

development is assumed to be defined. These options include 

partial sets of technological parameters and differ from each 

other by field and intake wells outputs, their number and 

relative positioning (arrangement of wells and flooding 

pattern), i.e. defined by oil-reservoir engineering. Therefore, 
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for the j-th oil pool, Jj ,1= , the i-th option (technology), 

Ii ,1= , is the set of },,,{ wo

ijijijij qqnm , where ijm  is the 

number of field wells, ijn  is the number of intake wells, o

ijq  

is the debit of a field well, w

ij
q  is the debit of an intake well. 

We assume that wells production rates, their amount, and 

position for each option have been chosen with regard to 

wells interference. We will consider the water drive of pool 

drainage, wherein the balance is realized: 

  w0

ijijijij qnqm =  .   (1) 

We will consider the situation that have been analyzed by 

Ermolaev (2001), when it should be taken into account that 

Backley-Leverett function – )(⋅f ,defining a part of oil in 

produced fluid, could depend not only on the cumulative oil 

production (Q(t)) in a period [0,t], but on the number and 

arrangement of the wells. Then the aggregated model of the j-

th oil pool development using the i-th option looks like 

,0)0( ,)(0 )),(()(/ =≤≤=
jijkjjij

l

jj
QQtQtQftqdtdQ  (2) 

where )(tq
l

j
 is the drainage per time unit from the j-th oil 

pool (total debit of all field wells equals to total chemical 

injection of all intake wells); Qj(t) is the cumulative oil 

production of the j-th oil pool in a period [0,t]; ijkQ  is the 

maximum possible oil production and fij(Qj(t)) is a part of oil 

in produced fluid on the j-th oil pool development when 

using the i-th option. 

We will use the minimum value of cumulative fluid 

production of all pools as a criterion of optimality. We chose 

this criterion as a criterion of efficiency because generally the 

minimum value of fluid production is equal to the minimum 

operation costs of oil production. Besides, the using of this 

method does not require recognizing of the economic 

standards, which are usually very difficult to obtain. As 

mentioned above the overall constraint, binding oil pools is 

the cumulative oil production of all wells. In consideration of 

these remarks we will formulate the task of optimization and 

selection of development systems as follows: to find such oil 

and fluid production volume, establish field development 

term and option for each accumulation of the group, which 

will provide minimum value of total fluid production from all 

pools provided that the total oil production requirements are 

fulfilled. 

In order to formulate the problem mathematically we will 

introduce the following symbols. Let Q be the cumulative oil 

production task order of all oil pools, moreover 

∑
=

≤
J

j
ijk

i
QQ

1

}{min . 

Let )(tQ
j

be cumulative oil production volume for a period 

[0,t] at j-th pool, 0)0( =jQ , and )( jij Qf – part of oil in 

produced fluid during development of j-th pool using i-th 

option. 

 

Let us introduce required variables: jT  is the term of the j-th 

oil pool development; jx  is the fluid withdrawal from the j-

th pool during a period of its development; )( jjj TQz =   is 

the cumulative oil production volume of the j-th pool during 

a period [0,Tj]. Besides these continuous variables 

),1( ,, JjTxz jjj = , let us introduce some Boolean variables: 

1,  if for the -th oil pool was set the - th option,

0,  if otherwise.                                                    
ij

j i
y


= 


 

Now, in consideration of the expansions given in (2) our task 

takes the form of: 

zyx

J

j
jx

,,1

min→∑
=

  (3) 

Qz
J

j
j ≥∑

=1

   (4) 

   ∑
=

===
I

i
jjijijjjj

JjQQfyTxdtdQ
1

,1 ,0)0( ),()/(/     (5) 

∑
=

==
I

i
ij Jjy

1

,1 ,1   (6) 

)( jjj TQz = , ∑
=

=≤
I

i
ijkijj JjQyz

1

,1 , ,  (7) 

.,1 ,,1 },1,0{ ,0 JjIiyx ijj ==∈≥  (8) 

Formulas (3)-(8) allow expressing variables jx  by other 

variables: 

∑ ∫∫ ∑
==

==
I

i

z

ijij

z
I

i
ijijj

jj

zfdzyzfydzx
1 00 1

)(/)(/ . (9) 

Let us set: 

∫≡ψ
jz

ijjij zfdzz
0

)(/)(  (10) 

Then taking into account (6), (8)-(10), and that 0)( ≥zf ij , if 

0≥z , the original task (3)-(8) takes the form of: 

∑∑
= =

→ψ
J

j

I

i zy
jijij zy

1 1 ,
min)(       (11) 

∑∑
= =

≥
J

j

I

i
jij Qzy

1 1

   (12) 

∑
=

==
I

i
ij Jjy

1

,1 ,1   (13) 

.,1 ,,1 },1,0{ ,0
1

JjIiyQyz ijijk

I

i
ijj ==∈≤≤ ∑

=

 (14) 

In order to find an approximate solution of the problem (11)-

(14)  the algorithm that was developed by Ermolaev (2001) 

could be used. The detailed description and argumentation of 

this algorithm is shown in Ermolaev’s  investigation (2001).  

So for a n-th iteration following manipulations should be 

done. 

1. For each pair of indexes «i,j» there is a need to solve the 

problem with strictly convex function (because )(⋅ijf  is the 

decreasing function) 
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min)()( →ξ−ψ≡ϕ jnjijjijn zzz      (15)  

and with the following constraint: 

ijkj Qz ≤≤0 .  (16) 

The function )( jij zψ  is expressed by (10), and 0≥ξn  is the 

value of penalty coefficient (Lagrangian multiplier) for the n-

th iteration (a selection of nξ  is stated later). The problem 

(15)-(16) should be solved for each index j, i.e. for each oil 

pool separately, and for each index i. Let ijns  be the optimal 

solution of (15)-(16). Then  

,

,0

,0

,

,

,0

o

o

o

o

Qz

Qz

z

Q

zs

ijkij

ijkij

ij

ijk

ijijn

>

≤≤

<









=  

where o

ijz  is a root of the equation 

0)(1 =ξ− o

ijijn zf . 

In the problem Lagrangian multiplier means a variable 

inversely related to part of oil in produced fluid. It follows 

from the last equation. As )(⋅ijf  is decreasing function if nξ  

increases, then 
o

ijz  increases, as well as ijns  increases. 

Therefore increasing of nξ  will result in (12) constraint 

satisfaction. 

2. The set of variables }{ ijny  is defined, where }{ ijny  is the 

n-th approximation of an optimal resolution in Boolean 

variables: 







=

=
=

≤≤

≤≤

},{min ,0

},{min ,1

1

1

ljn
Il

ijn

ljn
Il

ijn

ijn cc

cc
y  

where 

…… ,2,1 ,,1 },,,1{ ),( ==∈ϕ≡ nJjIlzc ljnljnljn  

If there are several ijnc  in the j-th column of the matrix 

JIljnc ×}{ , for which }{min
1

ljn
Il

ijn cc
≤≤

= , then one of them will be 

taken as a minimum element  of the j-th column of the matrix 

JIljnc ×}{ , e.g. conformable to the )( ijnij zψ  minimum. It is 

made to satisfy the (13). 

3.  Variables jnz  are defined, where jnz  is the n-th 

approximation in continuous variables: 

∑ ==
i

ijnijnjn Jjsyz ,1, . 

4. The constraint (4) satisfaction is verified for the set of 

}{ inz . If the constraint has been satisfied  it is necessary to 

proceed to the point 5 of the algorithm, otherwise  proceed to 

the point 6. 

5. The optimum condition satisfaction is verified for 

permissible solution },{ ijnijn yz : 

(dn - Q)ξn=0,  (17) 

where 

∑∑
= =

≡
I

i

J

j
ijnijnn zyd

1 1

. 

If equality (17) is valid, then, according to the Mikhalevich 

and Kuksa work, (1983) the  sets },{ ijnijn yz  appears to be the 

optimal resolution of (11)-(14). And all the computing 

operations should be finished. Otherwise it is needed to 

proceed to the point 6. 

6. The value of penalty coefficient 
1+n

ξ  is defined using the 

rule proposed by Mikhalevich (1983):  

)}(,0max{
11 nnnn

dQ −+=
++

θξξ , 

where 

0 ,0 ,lim →θ>θ∞=θ∑
∞→

nn
n

n
n

. 

Then put 1+≡ nn  and return to the point 1. Besides 

optimum condition satisfaction there is another rule of 

stopping the iteration procedure, i.e. satisfaction of inequality 

for admissible decision },{ jnjn yz : 

,0,
1

>≤−
−

εε
nn

FF  

where Fn and Fn-1  are the values of the target function (11) 

on the п-th and )1( −n -th iterations. 

Thus, let us assume that the optimal (or approximate) 

solution of (11)-(14) is found and identified by means of the 

}{ },{ ∗∗
ijj yz  sets. Then ∗

jm , ∗
jn , o

jq , w

jq  are defined from 

following formulas: 

∑
=

∗∗∗ =
I

i
ijijj mym

1

,  ∑
=

∗∗∗ =
I

i
ijijj nyn

1

,  

∑
=

∗=
I

i

o

ijij

o

j qyq
1

, ∑
=

∗=
I

i

w

ijij

w

j qyq
1

,   

where ∗
jm  is the number of field wells, ∗

jn  is the number of 

intake wells, o

jq  is the debit of a field well, w

jq  is the debit of 

an intake well for the j-th oil pool. 

The fluid production volume 
*

j
x  during the j-th oil pool 

development period is defined by (9): 

∑ ∫
=

∗∗

∗

=
I

i

z

ijijj

j

zfdzyx
1 0

)(/ . 

Then the j-th oil pool development period is defined by the 

formula (see (1)): 

w

jjj

o

jjjj qnxqmxT ∗∗∗∗∗ == // . 

Using obtained values Jjqm w

jj ,1 , , =∗  we can plot the 

correspondence ( )j
Q t , i.e. cumulative oil production versus 

time for each oil pool. Thus it is necessary to solve the 

differential equation similar to (2) using one of the known 

analytic or numerical approaches: 
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))(()(/ tQftqdtdQ jj

l

jj =  at 0, jt T ∈   , 

considering the following assumptions: 

jkjj QtQQ ≤= )( ,0)0( , 

where  

o

jj

l

j qmtq ∗=)( , 

∑
=

∗=
I

i
jijijjj tQfytQf

1

))(())(( , 

∑
=

∗=
I

i
ijkijjk QyQ

1

. 

Moreover we can plot the )(tq o

j , i.e. the total oil production 

of all field wells versus time that defined as (see (2)): 

))(()()( tQftqtq jj

l

j

o

j = . 

Thus the solution of (3)-(8) allows both to select an optimal 

development option for each oil pool, and to define rational 

values of oil and fluid production volumes over the whole 

period and each year of pool development period. It results in 

increasing of quantity of the initial design information and 

helps to make more well-grounded decisions while choosing 

the development systems of oil pools group. 

3. OPTIMAL PRODUCTION OF GROUP OF GAS POOLS 

We will  consider the applicability of proposed algorithms for 

solving problems of optimization and selection of gas pools 

development systems. We will use the total gas production 

volume of all pools over the planned period T as a criterion of 

optimality of development systems. And we will use the 

constraint on allowable total costs – b, required for all gas 

pools developing over the planned period, as a resource 

constraint tieing the pools with each other. 

As for the previous problem we will assume that for each gas 

pool the list of initial preliminary options of development 

(reservoir engineering) is defined. These options include 

partial sets of technological parameters, and differ from each 

other by a value of maximum permissible 

differential pressure drawdown (in absolute or relative 

terms), a minimum permissible well-head pressure, and a 

tubing size, i.e. they differ by used borehole equipment. 

There are no intake wells, what is typical for gas fields 

development. 

We will formulate the task as follows: to find such gas 

production volume, amount of wells and option of 

development for each gas pool, which will provide the 

maximum value of total gas production of all gas pools over 

a planned period provided that the constraint on admissible 

total costs is satisfied. 

Let us introduce the following notation. Let 
j

z  be the j-th 

pool ultimate gas recovery, 1,j J= , 
j

x  be the j-th pool 

number of wells,  
j

x  is constant (the momentary bringing in 

a well is considered); 

1,  if for the -th gas pool was set the - th option,

0,  if otherwise.                                                     
ij

j i
y


= 


 

Let us introduce the following initial parameters notation. Let 

j
V  be the j-th pool gas reserves; 

ijk
η is the j-th pool limit 

value of an ultimate gas recovery when the i-th option is 

chosen.  

We will assume that the j-th gas pool development cost when 

the i-th option is chosen is a linear dependence: 

ijj

o

ij

b

ijjij xTxg β+α+α≡ )()( , 

where b

ijα  is a well construction cost, o

ijα  is a well servicing 

cost in a unit time when for the j-th pool development the i-th 

option is chosen, ijβ  is fixed costs independent of number of 

wells. 

We will assume that 

∑
=

<β
J

j
ij

i
b

1

}{max . 

Put To

ij

b

ijij α+α≡α . We will suppose that wells interference 

could be neglected. Such assumption is quite reasonable  at 

the pre-design stage when there is wide well spacing in gas 

fields. As a gas pool development simulation model we can 

use the aggregated model, proposed by Ermolaev (2001) 

similar to (2): 

( )( ) ( ) ( ),   0 ,   0 0,
j

j ij j j ijk j
V x q t t

t

η
η η η η

∂
= ≤ ≤ =

∂
 

where ( )j
tη  is current value of a gas recovery of the j-th 

pool, ( )( )ij jq tη  is a well debit versus gas recovery when for 

the j-th pool development the i-th option is chosen (see 

Ermolaev’s paper (2001) for this function). 

If the number of wells possesses great values, we may omit 

the integrality condition for 
j

x  and replace it by the 

inequation 0
j

x ≥ . Then the mathematical formulation of the 

problem takes on the following form: 

zyx

J

j
jj zV

,,1

max→∑
=

  (18) 

∑∑
= =

≤β+α
J

j

I

i
ijijijij byx

1 1

)( ,  (19) 

∑
=

=ηη=η
I

i
jijjijjjj ytqxdtdV

1

0)0(,))((/ , (20) 

∑
=

==
I

i
ij ,Jjy

1

1 ,1 ,  (21) 

∑
=

=η≤≤η=
I

i
ijkijjjj JjyzTz

1

,1,0 ),(  (22) 

.,1 ,,1 },1,0{ ,0 JjIiyx ijj ==∈≥  (23) 

We will express 
j

x  through other decision variables using 

(20) and (21), (23): 
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010
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. (24) 

 Put the (24) into the (19): 

∑∑ ∑ ∫
= = =

≤












β+












η

η
α

J

j

I

i
ijij

I

m

z
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j

ij by
q

d
y

T

V j

1 1 1 0 )(
. (25) 

Modify the obtained formula: 

∑∑ ∑ ∫
= = =

≤












β+


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
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η
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j
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i
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d
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T

V j

1 1 1 0 )(
. 

From the (21) imposed on Boolean variables it follows 





≠

=
=

.   ,0

   ,1

im

im
yy mjij

 

Therefore the (25) may be modified as follows: 

∑∑ ∫
= =

≤











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
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i
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ij by
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1 1 0 )(
 (26) 

Put 

ij

z

ij

j

ijjij

j

q

d

T

V
z β+













η

η
α≡ψ ∫

0 )(
)( . (27) 

In view of (21), (23), (24), (26), (27) the original task (18)-

(23) takes the following form: 

∑∑
= =

→
I

i

J

j yz
jijij zVy

1 1 ,
min   (28) 

∑∑
= =

≤ψ
I

i

J

j
jijij bzy

1 1

)(   (29) 

∑
=

==
I

i
ij Jjy

1

,1 ,1 ,  (30) 

∑
=

=η≤≤
I

i
ijkijj Jjyz

1

,,1 ,0         (31) 

JjIiyij ,1 ,,1 },1,0{ ==∈ . (32) 

The abovementioned algorithm can be used in order to solve 

the obtained task (28)-(32). It should be slightly modified due 

to the fact that a maximum is to be found and there is a sign 

“≤” instead of “≥” in the binding constraint (29). It should be 

mentioned that implementation of the 1-st item leads to 

solving the problem for each pair of indexes «i,j» where a 

target function is strictly concave (since )(⋅ijq  is a decreasing 

function): 

max)()( →ψξ−≡ϕ jijnjjjijn zzVz  (33) 

ijkjz η≤≤0 ,    (34) 

where 0≥ξn is the penalty coefficient value (Lagrangian 

multiplier) for a n-th iteration. 

Let ijns  be an optimal solution of (33), (34). Then ijns  will be 

defined by the formula: 









η>ηη

η≤η≤η

<η

=

ijk

o

ijijk

ijk

o

ij

o

ij

o

ij

ijns

 ,

0 ,

          ,0   ,0

 

where o

ijη  is a root of the equation 

0)( =αξ−η ijn

o

ijijTq . 

Since )(⋅ijq  is a decreasing function, according to the last 

equation,  o

ijη  and ijns  decreases  as nξ  increases. Therefore 

increasing of nξ  in the result will lead to the (29) constraint 

satisfaction. Thus we may adjust the solution of (28)-(32) for 

the situation where bringing in well is not momentary. For 

example, let the number of wells of the j-th gas pool versus 

time ( )(tx j ) be described by the following functional 

relation: 





≤≤

≤≤
=

, ,

;0 ,/
)(

TtTx

TtTtx
tx

jj

jjj

j  

where jT  is time of putting of a well on production for the j-

th gas pool, 
j

x  is a project number of wells (to be 

determined). 

Then the (24) takes the form 

∑ ∫
= η

η

−
=

I

i

z

ij

ij

j

j

j

j

q

d
y

TT

V
x

1 0 )()5,0(
 (35) 

According to (35), in order to account the non-zero period of 

putting of well on production, the planned period T  should 

be replaced with jTT 5,0−  in all the previous formulas. 

Thus, let sets of }{ },{ ∗∗
ijj yz  be obtained as exact or 

approximate solution of (28)-(32) using the basic algorithm. 

Knowing these sets and using formula (24) we can determine 

the rational number of wells and corresponding development 

costs. Then we can determine the variation of basic 

development parameters in time using the dynamics analysis 

algorithms. 

Therefore, as well as the “oil” problem (3)-(8) solution, the 

solution of the “gas” problem allows choosing an optimal 

development option for each gas pool and completing the 

option by rational values of a gas production volume and 

development costs over the whole planned period and over 

every year. 

Thus we can make more reasoned decision of problems 

related to distribution of investments required for 

implementation of development systems of gas pools group, 

tied by costs. 
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4. CONCLUSION (PERSPECTIVES OF RESULTS 

GENERALIZATION) 

Suggested approach to solve the problem of selection of 

optimal strategies of oil and gas fields’ development 

supposes absence of hydrodynamic connection between 

oil/gas pools (reservoirs). Such assumption is not always 

possible, thus fundamentally different approaches, like 

methods proposed by Akhmetzyanov A.V. (2008a), (2008b), 

Akhmetzyanov A.V. and Ermolaev A.I. (2008a), (2008b), 

should be used to evaluate J-function, gas recovery and oil 

recovery functions for each option of development of fields 

with filtration flows between contiguous oil/gas pools 

(reservoirs). In particular, the proposed problem formulation 

could be used for the concerned kind of gas fields if the 

current gas recovery factor would be evaluated by using 

multilevel simulation techniques of the real gas filtration 

through a porous medium, see Akhmetzyanov A.V. and 

Ermolaev A.I. (2008b). In a few words, for this purpose at 

first we will separate and will number the contiguous pools 

tied by filtration flows. We will number them in accordance 

with two- or three- or more colour reservoir decomposition if 

the filtration process is two- or three- dimensional. Then we 

will form two or four or more independent pools subsets. 

These subsets together with initially untied gas pools will 

form the upper level of gas field decomposition. The gas 

recovery functions for each subset may be computed 

independently and concurrently. Then for every element of 

these subsets of pools we can build Dirichlet domains (super 

cells) around all the wells of its element. Super cells after the 

similar two- or four- or more colour decomposition will make 

independent subsets of the next level of hierarchy of 

paralleling of calculating process. The gas recovery for each 

super cell could be evaluated using conservative 

quasiuniform multigrid methods, e.g. Control Volume 

Method. 

When using this approach the problem of selection the 

strategy and its solution algorithms are naturally subjected to 

multilevel decomposition, which enable the decomposition 

and paralleling of calculations. 

The highest efficiency and universalism of the proposed 

generalized approach is achieved by  using the Perturbation 

Theory Methods for solving the nonlinear equations of real 

coercible gas filtration, taking into account its compressibility 

in the deformable porous medium of gas pools. In this case 

the initial nonlinear equation is replaced with sequence of 

linear equations among which are an unperturbed equation 

and a sequence of perturbed equations. 

For oil fields the same results are achieved by using the 

decomposition method on physical processes. This technique 

allows proceeding to solving the sequence of linear sets of 

finite-difference equations instead of solving the set of 

quasilinear filtration equations. 

In summary we have created all the necessary conditions to 

solve not only pre-project problems of the optimal strategy 

selection, but also problems of oil and gas reservoir 

engineering and management in general formulation. In 

particular, we could solve these problems taking into account 

the oil and gas reservoir geology and nonlinearity of filtration 

processes even in deformable porous medium. 

REFERENCES 

Akhmetzyanov A.V. (2008a). Computational aspects in 

controlling filtration of fluids and gases in porous media.  

Automation and Remote Control, Vol. 69, pp. 1-12. 

Akhmetzyanov A.V. (2008b). Large-Scale Nonlinear 

Multivariable Systems (Decomposition, Modeling and 

Control Problems). Proceeding 17
th

  IFAC World 

Congress. Seoul, Korea. July 6-11, 2008. ID: 2217. 

Akhmetzyanov A.V., Ermolaev A.I. (2008a). Problems of 

integrating of gathering facilities and production models 

in gas fields development control. Science & Technology 

in the Gas Industry. 2008. № 2. p. 67-75. 

Akhmetzyanov A.V. and Ermolaev A.I. (2008b). Simulation 

of Hydrocarbon Filtration Processes in Porous Media 

Using the Decomposition of Simulation Zone. 

Proceeding 11
th

 European Conference on the 

Mathematics of Oil Recovery (ECMOR XI), Bergen, 

Norway. 8-11 September 2008. ID: 4350. 

Andreyev O.P., Ermolaev A.I., Tsvirkun A.D. (1988). The 

Design of systems based on mixed-integer optimization 

models. Automation and Remote Control,  №10, pp. 

111-118. 

Ermolaev A.I. (2001). System Analysis and Models of 

Formation of Development Variants for a Group of Oil-

and-Gas Reservoirs, Doctoral Dissertation, Moscow: 

Gubkin University of Oil and Gas, 2001. – 284 p. 

Korotaev Yu.P. Senyukov R.V. (1976). Optimization 

methods with application in oil and gas industry.  59 p., 

Gubkin RSU of Oil and Gas, Moscow. 

Mikhalevich V.S. and Kouksa A.I. (1983).  The Serial 

Methods of Optimization.  207 p., Nauka, Moscow. 

Vilkov N.L., Krasnov B.S., Shagaev R.P. (1971). Economic 

and mathematical model of exploration and development 

of oil fields. Oil and gas in Tyumen, №10, pp. 57-61 

 

Copyright held by the International Federation of
Automatic Control

156


