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Abstract: An attitude control system is presented here, where the attitude of a drilling tool is
represented by a unit vector and hence non-linearities of Euler angles are avoided. It is shown in
simulation that the control system has a stable orbit about the desired attitude in the presence of
drop and turn rate biases, and with a spatial delay due to the sensors. The attitude controller is
embedded into a way-point tracking control system where it is demonstrated that the controller
tracks the position and attitude of each way-point and minimizes the strain energy along the
path.
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1. INTRODUCTION

In the petroleum industry, the accuracy of the placement
of a borehole is important in order to maximize the
recovery of hydrocarbons from any reservoir. The process
of strategically placing a borehole involves steering a
drilling tool in a desired direction along a path defined
by a multidisciplinary team of: reservoir engineers, drilling
engineers, geosteerers and geologists amongst others. Most
wells drilled nowadays are horizontal wells, which consist
of a vertical part, a curved part known as a build section,
and a horizontal section which is steered with respect to
geological features in order to maximize oil recovery from
a reservoir (Williams, 2010; Jiang et al., 1999; Li et al.,
2009). Oil reservoirs are typically located by finding ’traps’
from seismic surveys, which are impermeable rocks under
which hydrocarbons have accumulated over many millions
of years. Gas, oil and water tend to be found together, with
gas being lighter than oil, and oil being lighter than water.
The horizontal section of a well is usually placed between
the oil-water interface and the oil-gas interface. It is hence
important that a drilling tool can stabilize the direction
in which it is penetrating in (the attitude) to the desired
attitude for better well placement and better control of
the steerability of the drilling tool.

The technology which enables the steering of the drill
allows for turn radii as low as 120 metres (15◦/100 ft), en-
abling complex three dimensional wells to be drilled. Direc-
tional drilling can be achieved by either Rotary Steerable
Systems (RSS) (Baker, 2000; Yonezawa et al., 2002) and
conventional slide directional drilling approaches (Baker,
2000; Kuwana et al., 1994). For the case of RSS directional
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drilling tools the Bottom Hole Assembly (BHA) lies inside
the borehole and is connected to the surface by a series
of steel tubular pipes collectively referred to as the drill
string.

In practice the Measurement-While-Drilling (MWD) sen-
sors used to determine the attitude are some distance
(sometimes several tens of feet) behind the steering unit
for which the attitude measurement is being made. This
introduces a significant measurement delay in the attitude
feedback measurement which any outer attitude control
loop should be robust enough to deal with in terms of
stability and performance. Additionally there can be a
significant dynamic response between the applied tool-face
from the actuator and the response tool-face of the steering
unit.

In this paper a feedback control law for stabilizing the
attitude of a general directional steering drilling system is
outlined. Although the controller was originally proposed
in Panchal et al. (2012), here we demonstrate by simula-
tion the performance of the proposed controller for follow-
ing paths, in particular paths generated using an optimal
geometric Hermite curve technique (Panchal et al., 2011).
Section 2 details the model used to represent the transient
behavior of the tools attitude based on an angle axis repre-
sentation. Section 3 describes a feedback control law used
to stabilize the tool towards its desired attitude, where the
stability is proved by Lyapunov’s Direct Method. Section
4, describes the coordinate transformations required to
move from the global reference frame of the earth to
the local reference frame of the tool through the use of
tri-axis accelerometer and tri-axis magnetometor signals.
Section 5 presents a summary of a way-point tracking
trajectory following controller in (Panchal et al., 2011),
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Fig. 1. Conventional attitude and steering parameters for
a Bottom Hole Assembly(BHA)

which determines a minimum strain energy path from the
tool to a desired position, where the tangents to the path at
the start and end points, are coincident with the attitude
of the tool and the desired attitude of the tool at the way-
point. Finally in Section 6, transient simulations of the
attitude control law and the attitude control law embedded
in the minimum strain energy way-point tracking control
law is presented with engineering constraints modeled.

The overall control architecture is shown in Figure 2 and
has the feature that the input demand signal and the
output signals are inclination and azimuth angles (Fig. 1),
consistent with standard practice of how drillers visualize
the direction which the tool is propagating with respect to
the gravitational and magnetic fields. When the attitude
controller is embedded into a trajectory following loop,
the coordinate transformations of moving from the Euler
angle representation to the vector based representation
are redundant, and it is sufficient to directly interface
vectors between the trajectory tracking outer loop and the
attitude tracking inner loop.

2. KINEMATIC MODEL OF THE DRILL

2.1 Attitude Response Model

The Bottom Hole Assembly (BHA) is modeled kinemat-
ically using an angle-axis representation to describe the
response of the tools attitude in time. Where the tool
attitude vector is rotated only, and this rotation rate
is small and the translational motion is neglected. Fur-
thermore, the motion of the BHA is constrained by the
well and hence momentum terms are redundant. Here the
kinematic system representing the time varying response
of the tools attitude (Wen and Kreutz-Delgado, 1991) can
be represented as

ẋ = Kω × x (1)

where x ∈ B is a unit vector representing the tools attitude
and ω ∈ B is the angular velocity vector parameter,
K ∈ R

+ is referred to here as the build rate, and the
direction of ω represents the axis which the attitude x(t)
rotates about to achieve the attitude x(t + δt). The set
B ⊂ R

3 is defined to be:

B := {x ∈ R
3|‖x‖2 = 1}. (2)

The set B can be interpreted to be the unit ball. The
direction of ẋ represents the direction perpendicular to

x where the bit propagates, and it is assumed that the
response in the axis is much greater than the response in
the tools attitude ‖ω(t)−ω(t+δt)‖2 ≫ ‖x(t)−x(t+δt)‖2.

Proposition 1. Given an initial attitude, x(0) = x0 ∈ B,
and a control ω ∈ B, such that ω ·x0 = 0 then the resulting
trajectory, x(t) ∈ B lies on the surface of the unit sphere.

Proof 1. The resultant attitude response from (1) is equiv-
alent to Rodrigues’ rotation formula

x(t) = x0 cosKt+ω× x0 sin (Kt) +ωω · x0(1− cos (Kt)).
(3)

Since ω,x0 ∈ B, it follows that ω×x0 ∈ B, and given that
ω · x0 = 0, it follows from evaluating the 2-norm of x(t)
gives ‖x(t)‖2 = 1. 2

The plane perpendicular to x spanned by ω and ẋ is known
as the tool-face plane.

2.2 Translational Response Model

The measured position vector of the drill is defined to be
pm along with the measured attitude xm, the way-point
position pwp and the way-point attitude xwp. The dynamic
relationship for the evolution of the measured position of
the drill is given by

dpm

dt
(t) = Vropx(t), (4)

where Vrop is the scalar rate of penetration of the tool,
and x(t) is the aforementioned attitude of the tool. This
attitude is an input signal for the path tracker and it is
assumed that the bandwidth of the attitude controller is
higher than that of the path tracker, where a desired space
curve can be produced from a sequence of demand attitude
signals where the attitude controller is closed loop stable.

3. ATTITUDE CONTROL LAW AND STABILITY

In this section an attitude control law from (Panchal et al.,
2012) is stated and its stability is proved by Lyapunov
direct method using a lemma that is derived directly from
the Lyapunov Theorem of Local Stability (Slotine and Li,
1991). The following definition (Slotine and Li, 1991) is
first required.

Definition 1. An equilibrium point x̃ is a state of the
system (1) such that when x(t) is equal to x̃, it remains
so for all subsequent times. That is ẋ = 0.

Lemma 1. For a dynamical system to be locally stable,
there exists a scalar valued function V (x) with continuous
first partial derivatives in a neighbourhood B about the
equilibrium point such that V (x) is positive definite and

V̇ (x) is negative semi-definite. In addition, if the deriva-

tive V̇ (x) is negative definite in B, then the stability is
asymptotic.

3.1 Constant build-rate controller

The choice of ω to drive the tools attitude x towards a
desired attitude xd is chosen such that ω is perpendicular
to both these vectors and is orientated such that ẋ·xd ≥ 0.
This gives us the following proposition:
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Fig. 2. System structure

Proposition 2. The dynamical system given by (1) with
the feedback control law

ω =







x× xd

‖x× xd‖
for x 6= xd

0 for x = xd,
(5)

is locally asymptotically stable at the equilibrium point
x = xd for x ∈ B where K is the constant build rate.

Proof 2. From (5) by definition x = xd is an equi-
librium point. We use the Lyapunov function V (x) =
1
2

[

1− (x · xd)
2
]

, which is positive definite and where the
first derivative is given by

V̇ (x) =







−K[1− (x.xd)
2]

‖x× xd‖
for x 6= xd

0 for x = xd,
(6)

which is negative definite and hence by Lemma 1 the
system (1) with control law (5) is locally asymptotically
stable. 2

Definition 2. A geodesic on a unit sphere B between two
points x1,x2 ∈ B is the shortest arc of great circle given
by the intersection of the sphere and a plane spanned by
x1,x2 passing through the origin of the sphere, where the
great circle lies on this plane (Pressley, 2001, p. 218).

Corollary 1. The control given by (5) solves the minimum
time optimal control problem defined as

min
ω

∫ tf

0

dt

subject to (1), x(0) = x0, ‖x0‖ = 1, x(tf ) = xd.

(7)

Proof 3. Let x̂(t) be the trajectory that is the solution to
the initial value problem for system (1) with the control
given by (5) and x(0) = x0 ∈ B. The tangent to the curve
x̂(t) is given by

ω × x = K
xd − x(x · xd)

‖x× xd‖
. (8)

Since the tangent vector is spanned by the vectors xd

and x which pass through the origin on the sphere,
the state trajectory x̂(t) is a geodesic by Definition 2.
Clearly, the path of minimum length is the path of the
minimal time trajectory if the speed along the path is
always maximal. From (5), the build rate is maximum
(except when the target is reached), hence the trajectory
is minimum time. 2

The control law given by (5) assumes that build rateK can
be made zero when x = xd. Since a drilling tool is always
steering at its maximum build rate, this assumption will
not work in practice. For drilling tools straight line holes

of constant attitude x are achieved through spinning ω
about the x-axis. Since we assume here for the analysis of
the feedback control law that the rate in which ω can be
changed is very fast, the ω = 0 in (5) can be interpreted as
an infinitely fast switching of the polarity of the ω−axis.

4. CONTROLLER IMPLEMENTATION

Several coordinate transformations are required in order
to implement the controller within the structure shown in
Figure 2. The attitude of the BHA has to be determined
from measurements of the accelerometers and magnetome-
ters, the desired attitude, xd, has to be calculated as
a unit vector from desired Euler angles, and finally the
tool face angle to enact the calculated control, ω, has to
be computed. In this section, the calculations for these
coordinate transformations are presented.

4.1 Determining the Attitude in the earth Frame from
Accelerometers and Magnetometers

The earth frame is the inertial frame which is fixed, and
corresponds locally to the geology in which a drilling op-
eration would take place. It is assumed that the variation
in the earth’s magnetic and gravitational field over the
region of an oil well is small. In this frame there are
two normalized reference vectors: the magnetic field rB,
and gravitational field rG. These are given relative to a
basis in the earth frame which is easily measured and
known. On the drill the accelerometers bG and magne-
tometers bB provide another basis where the magnetic
and gravitational field is related to the earth frame by the
transformation

x = Ry(θinc)Rx(θazi)r
G (9)

where

θazi = arctan

(

−bB
z

bB
y

)

, θinc = arccos
bG
x

‖bG‖
, (10)

and

Rx(·) :=

[

1 0 0
0 cos(·) sin(·)
0 − sin(·) cos(·)

]

, (11)

Ry(·) :=

[

cos(·) 0 − sin(·)
0 1 0

sin(·) 0 cos(·)

]

. (12)

4.2 Control Signal

Directional drills will generally have an internal tool face
control system. The tool face angle (see Figure 1) is the
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clockwise difference in angle between the projection of a in
the tool face plane and the steering direction in this plane.
The tool face angles are determined from the control, ω,
by

θatf =































3π

2
− arccos

(

ω · (a× x)

‖ω‖‖a× x‖

)

for ω · (a × x) > 0

π

2
− arccos

(

ω · (a× x)

‖ω‖‖a× x‖

)

for ω · (a× x) < 0

π for ω · (a × x) = 0 and a · ω − (a · x)(ω · x) > 0

0 for ω · (a× x) = 0 and a · ω − (a · x)(ω · x) < 0

(13)
where a is either −rG for the case of Gravity Tool Face
(GTF) or rB for Magnetic Tool Face (MTF).

The required tool-face angle to implement the control
laws proposed in Section 3 can be calculated from the
components of the gravitational vector rG, the magnetic
field vector rB and the demand attitude xd in the toolface
plane as follows:

θGtf = θG − θr, (14)

θBtf = θB − θr, (15)

where (14) and (15) represent θatf in GTF and MTF
respectively, with

θr = atan2
(

bd
z,b

d
y

)

, θG = atan2
(

bG
z ,b

G
y

)

,

θB = atan2
(

bB
z ,b

B
y

)

, bd = Ry(θy)Rx(θx)x
d,

and where Rx(·) and Ry(·) are defined by (11) and (12)
respectively.

5. PATH FOLLOWING USING OPTIMIZED
GEOMETRIC HERMITE CURVES

The path tracking problem considered here is to meet a
sequence of way-points where for a given way-point, and
attitude is also specified and it is desired for the tool to
meet this too as presented in (Panchal et al., 2011). Since
for any drilled path would do work on the drill string, it
is also desired to minimize the geometric strain energy for
the path to the way-point. Using Euler-Bernoulli beam
theory, assume an axisymmetric beam with a constant
cross-sectional area and uniform mass distribution, as a
general model for the drill-pipe and section of casing.

The relationship between the local curvature κ to the
bending moment M is given by (Farouki, 2008, p325)κ =
M
EI

, where I is the second area moment and E is the
modulus of elasticity of a section of casing or drill-pipe
and are both assumed constant.

When deflected into a space curve ξ(t), the work done on
an element ξ(t + δt) − ξ(t) (Farouki, 2008, p325) is given
by 1

2Mdθ, where t ∈ [0, 1] parameterizes the curve ξ(t)
from the start position to the end position, and M is the
moment acting on the element dt deflecting it by an angle
dθ where θ = dξ

dt
(t). The curvature κ at ξ(t) is given by

κ = dθ
dt

= d2ξ
dt2

(t).

The total strain energy over the length of the curve which
we wish to minimize is given by

Φ(ξ(t)) =
1

2
EI

∫

t

[

d2ξ

dt2
(t)

]2

dt =
1

2
EI

∫

t

κ2(t)dt. (16)

The path tracking problem is thus

min
p(t)

Φ(p(t)) =
1

2
EI

∫

t

κ2(t)dt (17)

subject to the constraints

p(0) = pm, x(0) = xm,

p(1) = pwp, x(1) = xwp,

dpm

dt
(t) = Vropx(t).

5.1 Solution Method

From the tools measured position pm and attitude xm; the
way-point position pwp and attitude xwp; a cubic hermite
interplant spline p(t) is chosen

p(t) = b0pm+b1(pm+
1

3
a0xm)+b2(pwp−

1

3
a1xwp)+b3pwp.

(18)
The cubic Bernstein polynomial coefficients are given by

bi =

(

3
i

)

ti(1− t)(3−i). (19)

The values for constants a0 and a1 that provide the OGH
curve are found from the following theorem (Yong and
Cheng, 2003).

Theorem 1. Given two endpoints pm and pwp, and two
endpoint tangent vectors xm and xwp, an OGH curve f(t),
t ∈ [0, 1] is obtained at a0 = a∗0 and a1 = a∗1 where

a∗0 =
6(pwp − pm) · xmx2

wp − 3(pwp − pm) · xwpxm · xwp

4p2
mp2

wp − (pm · pwp)
2

(20)
and

a∗1 =
3(pwp − pm) · xmxwp · xm − 6(pwp − pm) · xwpx

2
m

(pm · pwp)
2 − 4p2

mp2
wp

.

(21)

The curve p(t) now represents a feasible trajectory from
the tool to the way-point optimized for geometric strain
energy. The attitude of p(t) along the curve one drilling
cycle ahead is taken and used as a demand signal for
the attitude controller. A drilling cycle represents the
sampling time for the trajectory controller. The drilling
cycle distance is easily determined from the drilling cycle
time and Vrop, and since the path p(t) is parameterized for
t ∈ [0, 1], one needs to know the arclength L of the OGH
curve to determine the value for t used as the control input.
The arclength is found by (Chi et al., 2008)

L =
6(p1 − p0)

2

5
−

α∗

0(p1 − p0) · x0

5
−

α∗

1(p1 − p0) · x1

5

−
α∗

0α
∗

1x0 · x1

15
+

2(α∗

0)
2x2

0

15
+

2(α∗

1)
2x2

1

15
(22)

hence the attitude demand vector is given by

xd =
dP

dt
(t = ℓ/L) . (23)

For each subsequent drilling cycle, the path tracking
algorithm is iterated.

6. SIMULATION RESULTS

In this section, a transient simulation of the attitude
controller is performed for three cases where given the tool
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is at an initial attitude, a final attitude is specified where it
is to be shown that the tool stabilizes in the neighborhood
of this attitude. In the following simulation, the tool face
response is modeled as a second order servo actuator,
and also there is a modeled lag in the measurements
for an assumed constant Vrop corresponding to sensors
being spaced behind the bit. The parameters for these
three cases is shown in Table 1, where the drilling tool is
initially horizontal and with a 180◦azimuth for all three
cases. Cases 3 and 1 differ by their target inclination,
and case 2 differs to case 1 by having its sensors further
behind the BHA to investigate the effect this has on
the closed loop attitude holding capability. Secondly the
attitude controller is embedded in the way-point following
controller where initially a path is generated by steering
the tool open-loop with a series of tool-face commands,
and from this 16- way-point positions and associated
attitudes are generated.

6.1 Attitude Controller Simulation

The inclination and azimuth responses are shown in Figure
3 and Figure 4 respectively. It can be seen that in all three
cases that the tool reached its target attitude in about
600ft. In the reaching phase the drop rate disturbance has
the effect of dipping the inclination of the tool by about
3 ◦for all three cases. Furthermore the effect of having
the sensors further behind the BHA for case 2 is of an
oscillation of inclination and azimuth about the target
attitude. This effect is better illustrated in Figure 5 where
the state trajectory of the inclination error and azimuth
error is shown. Here for both cases there is a limit cycle
about 0 where the effect of a larger spatial lag on the
sensors for case 2 gives rise to a larger amplitude limit
cycle.

Table 1. Simulation Parameters

Case 1 2 3

Nominal ROP ft(hr)−1 100 100 100
Drilling Cycle s 50 50 50
Drop Rate Disturbance ◦(100ft)−1 1 1 1
Turn Rate Disturbance ◦(100ft)−1 0.5 0.5 0.5
Spatial Measurement Lag ft 10 40 10
Max Curvature Response of tool ◦(100ft)−1 15 15 15
Initial azimuth ◦ 180 180 180
Initial inclination ◦ 90 90 90
Target azimuth ◦ 270 270 270
Target inclination ◦ 90 90 70

6.2 Trajectory Following Simulation Results

The resultant trajectory from the way-point following
controller is shown in the visualization Figure 6, where
the triangle markers show the reference way-points. Here
when the drilling tool is within 20ft of its target way-point,
then the next way-point is subsequently assigned to be the
target. It can be seen here that the resultant trajectory
passes through the way-points, and furthermore Figure 8
shows the norm distance to the nearest way-point during
the simulation. It can be seen that the distance strictly
decreases. Since the way-point tracking controller solves
for a path to minimize the strain energy of the path solved
on-line to the target, this value is plotted in Figure 7 where
tracking is demonstrated since each time the strain energy
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Fig. 3. Inclination response verses measured depth for 3
test cases
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Fig. 4. Azimuth response verses measured depth for 3 test
cases

of the path to the target is determined it decreases. This
is also the case for the attitude error as shown in Figure
9 where the attitude error is defined to be the norm error
between the unit vector representing the target attitude
and the current measured tool attitude.

7. CONCLUSION

In this paper, a vector based attitude control law for
directional drilling tools is presented along with a sta-
bility analysis. This control law is also shown to be a
minimum time control law. Implementation of the atti-
tude controller with respect to calculating the attitude
from accelerometers and magnetometors is presented. The
attitude controller is used as an inner loop for way-point
tracking control system. In time domain simulations, the
attitude controller is demonstrated to reach and hold an
attitude with drop and turn rate disturbances and tool-
face actuator dynamics modeled, where the controller limit
cycles around the desired attitude. This limit cycle is
shown to increase in amplitude for larger spatial delays for
direction and inclination sensors. By means of simulations
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we show that the positive definite measures of the position
and attitude errors are decreasing along the trajectories of
the closed loop system. Furthermore the geometric strain
energy of the correction path from the tool to the way-
point is shown to decrease showing practical stability.
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