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Abstract:  
The Ensemble Kalman Filter (EnKF) is a Monte-Carlo based technique for assisted history matching and 
real time updating of reservoir models. However, it often fails to detect facies boundaries and proportions 
as the facies distributions are non-Gaussian, while geologic data for reservoir modeling is usually 
insufficient. It is convenient to represent distinct facies with non-Gaussian categorical indicators; we 
implemented discrete cosine transform (DCT) to parameterize the facies indicators into coefficients of 
the retained cosine basis functions that are Gaussian. For highly complex and heterogeneous models, 
though observed data were matched, it failed to reproduce realistic facies distribution corresponding to 
reference variogram and facies proportion.  
In this paper we propose a new ensemble filtering method in-between of EnKF and PF, where EnKF as 
predictor combines the advantages of accurate large updates with small ensembles and corrector for non-
Gaussian distributions followed by EnKF again for analysis step. Correction is performed by 
regenerating new realizations using a new pilot point method. The ensemble members that are more 
consistent with the early production history and the available geological information are considered as 
high weight particles and used for the applications. 
Combination of DCT-EnKF and regenerating new realizations using the new pilot point method 
demonstrates reasonable improvement and reduction of uncertainty in facies detection. Incorporating the 
new step in the procedure assists the filter to honor the reference distribution and experimental variogram 
during the history matching process and presents an important potential in improved characterization of 
complex reservoirs.  
Keywords: Ensemble Kalman Filter, EnKF, Facies Detection, History Matching, Particle Filter, Predictor 
Corrector  

 

1. INTRODUCTION 

The Ensemble Kalman Filter (EnKF) is a Monte-Carlo based 
technique for data assimilation and has been introduced to the 
petroleum engineering industry by Lorentzen et al. (2001) as 
a promising approach for solving high-dimensional history 
matching problems (Aanonsen et al. 2009). The EnKF 
implements an ensemble of model states and approximates 
the covariance matrices sequentially in time as new 
observations become available. Each member of the 
ensemble is updated using an ensemble approximation to the 
Kalman gain, which is approximated from the mean and 
covariance of the prior joint probability density function 
(pdf). The updated ensemble provides an empirical estimate 
of the posterior joint probability distribution. Kalman filter 
performs well when there is a linear relationship between 
states variables, model parameters, and the data. The 
underlying assumption is that the prior joint pdf is Gaussian 
when computing the updates and EnKF will not converge to 
the correct distribution, identified by geological studies, if the 
prior joint pdf has non-Gaussian contributions. In other 

words the estimated posterior pdf is not consistent with the 
prior distribution (Zafari and Reynolds 2007). 

This assumption of Gaussianity implies that the conventional 
EnKF method must be modified such that it can be applied 
for models whose petrophysical properties are not 
characterized by multivariate Gaussian distributions (Evensen 
2007, Aanonsen et al. 2009). For instance, facies modelling is 
a crucial component of geostatistical reservoir 
characterization which facilitates construction of models for 
complex reservoirs. Facies are commonly represented by 
indicators, which are intrinsically non-Gaussian. Different 
approaches can be found in the literature to model non-
Gaussian parameters, namely, Truncated Pluri-Gaussian (Liu 
and Oliver 2005, Agbalaka and Oliver 2008), Level Set 
Method (Moreno and Aanonsen 2011, Lorentzen et al. 2011a, 
2011b), Gaussian Mixture Models (Dovera and Della Rossa 
2010) and Discrete Cosine Transform (Jafarpour et al. 2008).  

Though the aforementioned techniques have shown some 
success for facies detection in synthetic models, there are 
some common shortcomings in these techniques. Firstly 
except the truncated pluri-Gaussian and level set technique, 
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these methods have not been tested or are not applicable for 
reservoirs with more than two distinct facies. Secondly these 
methods may not capture the information regarding model 
parameters that is inferred from static geological data. It is 
important to condition models to reference geologic 
information and dynamic flow data in reservoir 
characterization. In many cases, static data (e.g. conceptual 
models, log, core, seismic interpretations, and statistics from 
similar fields) are available for reservoir modelling. 
Therefore, characterization of a robust description of 
geological features such as facies distributions (proportions 
and spatial patterns) and channel properties (e.g. orientation, 
widths and amplitudes) should incorporate all the static 
information and honor the reference statistics (e.g. histogram 
and semi-variogram or covariance) inferred from the 
reference geologic information. 

While predicting model parameters using EnKF, the initial 
ensemble is designed to account for all uncertainties in the 
reservoir model. Major portion of the ensemble uncertainty 
will be diminished after the few EnKF update steps 
(Jafarpour et al. 2011) and realizations with initial poor 
estimates, undertake major changes to match early production 
history. As a result of this early update, spatial relation of the 
properties is destructed and the model parameter variogram 
will not follow the geological properties of the formation, 
based on which the initial ensemble was generated. The 
calculated experimental variogram along different azimuths 
was not in accordance with reference benchmark variogram 
and the short scale variability was systematically larger for all 
the updated realizations. Furthermore, after even more update 
steps EnKF transforms the initials multimodal distribution to 
a more Gaussian distribution (Zafari and Reynolds 2007) and 
the first order statistical features of the data (e.g. histogram) 
will be missed as well.  

The motivation of this paper is to present a modified 
approach to honor the reference statistics within the 
conventional framework of EnKF using parameterization of 
DCT and incorporating a re-sampling step. After initial EnKF 
update steps, a re-sampling procedure is implemented to 
generate an “improved” ensemble of initial model 
parameters. This idea of re-generating new realizations stems 
from the particle filtering approach, also used in data 
assimilation, where particles or ensemble members that have 
negligible weights should be discarded and replaced by high-
weight particles. In our implementation, “best” realizations 
representing minimal root mean square error compared to the 
observations and minimum variogram mismatch are selected. 
These realizations are more consistent with the early 
production history and the available geological information. 
In particular, a new approach with the use of pilot points is 
implemented to regenerate a new ensemble of initial model 
parameters after a few initial assimilation steps. The new 
ensemble incorporates the model updating information of the 
initial steps and consists of realizations that are more 
consistent with both the dynamic and static data. The new 
ensemble is subsequently updated using EnKF from the 
beginning. In this paper we begin our discussion with first 
introducing our DCT-EnKF methodology for updating facies 
indicators, followed by the corrector procedure to re-generate 

new set of realizations using the new Pilot Point method. 
Then we presented the results of the application of the 
methodologies in a synthetic reservoir model. At the end, the 
conclusion and implication drawn from the case studies are 
presented. 

2. METHODOLOGY 

EnKF updates each particle (ensemble member) directly, 
without re-weighting or re-sampling. A Gaussian 
approximation and linear update in EnKF introduce 
systematic bias because the true distributions can be 
significantly non-Gaussian (such as the cases for multi-facies 
models) and the relation between the observation and state 
may be nonlinear. The Particle filter (PF) is a Monte Carlo 
based algorithm which approximates the posterior 
distribution with weighted samples. The analysis distribution 
and forecast distribution can be very different for EnKF than 
PF. 

In this paper, we propose a new ensemble filtering method in-
between of EnKF and PF, where EnKF as predictor combines 
the advantages of accurate large updates with relatively small 
ensembles and corrector for non-Gaussian distributions 
followed by EnKF again for analysis step. Conceptually, our 
approach is similar to predictor-corrector method where 
EnKF works as a predictor to move the ensemble members 
(state distribution) towards the correct region using 
measurement and observations, and then corrector adjust for 
non-Gaussian character of the distribution. However, in our 
approach we are not using weighted EnKF. Weights of 
ensembles are computed after predictor step (EnKF) using 
histogram and variogram mismatch. In corrector step, 
ensemble members with higher mismatch (lower weights) are 
discarded and ensembles with higher weights (lower 
mismatch) are subjected to a new pilot point scheme for 
generation of new members. It is important to note that the 
corrector step is performed after specific numbers of update 
steps, selected at the stage where the observations mismatch 
is low and stabilized. Furthermore, due to nonlinearity of 
reservoir simulation equations, the consistency between 
updated state vector and updated vector of model parameters 
occasionally breaks down. In such a case running the 
simulator from the beginning is necessary. Each ensemble 
member is advanced again by the model for analysis from the 
beginning using EnKF. 

In this section, various components of the implementation are 
discussed in detail. Specific modifications to the conventional 
EnKF procedure are highlighted. 

2.1 Predictor – Ensemble Kalman Filter 

Initially the forecast model is separately applied to each 
ensemble member using a reservoir simulator.  
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where superscript p and a denote the predicted and analyzed 
states, respectively, k denotes the time step in which data are 
assimilated and Ne is the number of realizations.  

Discrete Cosine Transform (DCT), a Fourier-based 
transform, is applied to decompose the spatial distribution of 
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model parameters (in this case facies indicators) into 
coefficients of the retained cosine basis functions. DCT is 
performed separately on each realization of the initial 
ensemble and certain number of basis functions and the 
corresponding coefficients are retained. It is noted that the 
total number of basis functions (r) can be much less than the 
total number of model parameters which is the number of 
grid blocks in the model. The DCT coefficients are 
incorporated into the state vector instead of the model 
parameters (m). This model state is represented by a weighted 
ensemble, where, here the weights are same for each 
realization (wi = 1/Ne, i=1, 2,..., Ne). EnKF procedure is used 
to update model parameters (m) and state variables (u). 

{ }T
kkkk dumy =              (2) 

where d denotes the observations.                  

After the EnKF update step, inverse DCT transform is used 
to convert back the updated DCT coefficients into facies 
indicator values. These updated indicators are further used in 
the subsequent forecast and update steps as new observations 
become available. 

2.2 Corrector – Ensemble Kalman Bias Correction using  
Re-sampling and Ensemble Regeneration 

The corrector step is applied after major change in the model 
in predictor step for bias correction. The role of corrector is 
to assign importance weights by mismatch calculation 
(RMSE) of observations. This does not change the ensemble 
or the weights. The members with larger weights are the only 
contributors of non-Gaussian nature. Therefore, similar to 
sequential importance re-sampling in PF, new ensemble 
members are generated to replace the members with low 
weights. Hence, the variance of the importance weights 
doesn’t increases inevitably (avoiding degeneracy 
phenomenon) and stability is maintained. The generations of 
new ensemble members are done using pilot point method. 
This newly constructed proposal ensemble has all weights 
equal and is again forwarded in time by EnKF from the 
beginning. It should be noted that information from the 
previous update steps are retained only at the pilot points, and 
propagated to other locations through conditional simulation. 
This scheme allows us to condition a new set of initial 
ensemble using the dynamic information, in a way similar to 
incorporating additional hard data observed at the well 
locations. i.e. dynamic data has become part of the initial data 
(d0) after each re-sampling step. Since the re-sampling 
algorithm is applied only at the re-sampling step (e.g., once in 
our case study) the dynamic information would not be used 
twice within a single update step, as in other weighted EnKF 
formulations, hence the prior and likelihood probabilities (Eq. 
3) remain independent during each update step. 

( ) ( ) ( )11, |,|| −− kkkkkobskk dmpdmdpdmp α          (3) 

2.3 Pilot Point 

The use of pilot points has been proposed by de Marsily et al. 
(1984) as a re-parameterization technique in traditional 

history matching to reduce the size of the parameter space 
during updating. The parameter estimations at selected 
locations in the reservoir named “pilot points” are updated in 
the history matching procedure. The objective function is 
constructed by comparing the data mismatch at the locations 
of the pilot point. Model parameters at pilot points are 
perturbed, and the changes made at the pilot points are 
propagated to other locations by performing stochastic 
simulation using model values at pilot points as part of the 
conditioning data, together with geostatistical parameters 
(e.g. histogram and semi-variogram models), to preserve the 
spatial correlation between estimation locations. Taking 
advantage of this concept, predicted facies values at pilot 
points were used for re-generating the new realizations. 
Facies values at the pilot points were derived from the 
selected updated realizations to be further implemented as the 
conditioning hard data for the stochastic simulation. 
Sequential Indicator Simulation (SIS) was used for stochastic 
simulation that included geostatistical parameters of the field. 

A practical consideration is the specification of the location 
and number of the pilot points. RamaRoa et al. (1995) 
proposed placing the pilot points in high sensitivity zones 
where they have the highest potential to reduce the objective 
function and correctly locate the heterogeneities. 
Unfortunately, the number of pilot points is inherently 
empirical. 

Number of pilot points: The number of pilot points should be 
selected depending on the nature of the problem. Factors such 
as reservoir model, well pattern, production mechanism, 
reservoir heterogeneity and other parameters should be taken 
into consideration to determine the number of pilot points. 
The number of pilot points may be optimized such that they 
are large enough to capture the adjustments made to model 
parameters during the previous updating steps in the re-
generated ensemble while being small enough to ensure that 
the entire model parameter space is sufficiently sampled. The 
numbers of pilot points in our case studies are 10 percent of 
the total number of grid blocks.  

Location of pilot points: In contrast with other applications of 
pilot point methods where their locations were specified a 
priori, we have selected the pilot point locations after 
updating the model parameters via EnKF. Members with 
larger weights were identified and used to calculate the 
probability density function (pdf) of facies indicators for all 
grid blocks. The pilot points were selected at grid blocks 
which have the highest probability of the occurrence of a 
specific facies. Probability of the occurrence of a specific 
facies at any grid block would be high (close to one), if the 
same facies type exists at that grid block in different 
realizations. The idea is to select/ identify locations where 
there is the least uncertainty in the model parameter (portions 
of the solution space that is more readily resolved by EnKF). 

3. IMPLEMENTATION OF PILOT POINT 

The proposed methodology has been implemented for history 
matching of a three facies synthetic model within EnKF 
framework. Facies distribution is the unknown model 
parameter. The objective is to update the facies indicators by 
means of integrating observed data while honoring 
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conditioning data at wells, maintaining spatial correlation of 
parameters and the reference probability distributions. 

       
Fig. 1. Facies distribution of Benchmark Case and the well 
locations (            Producer,  Injector, Pressure 
Observation). 
 

3.1 Model Description 

The model was in two dimensional (21×21 grid blocks in the 
x-y direction) and three distinct facies namely sand (S), fine 
sand (FS) and shale were present in the model. The reference 
facies proportions were 45% S, 37% FS, and 18% shale. 
Petrophysical properties for each facie is defined based on 
geologic information collected at all 9 well locations, which 
include facie classification, porosity, and permeability values. 
Permeability within each facies was assumed to be uniform 
with an average value and rock porosity of different facies 
were assumed to be constant (30 %) throughout the model. 

Facies distribution for the “benchmark case” was generated 
via unconditional SIS, as implemented in the GSLib (Deutsch 
and Journel 1997). Based on the geological properties of the 
reservoir obtained from regional studies, an experimental 
variogram is inferred as an exponential variogram model with 
maximum and minimum correlation lengths of 1800 ft and 
700 ft, respectively, along an azimuth angle of 135o.  

Table. 1. Synthetic reservoir model parameters 

Model Dimensions  21×21×1 grids in X, Y and Z  
Grid Dimensions 100 × 100 × 20 ft 
Reservoir Depth 3000 ft 
Porosity 30% constant 
Permeability Range 50, 500 and 2000 md 
Operating bottomhole 
Pressure 

Producer:         2300 psi 
Injectors:         2500 psi 

Initial Reservoir Pressure 2500 psi 
Total Generated 
Observed Data 

10 years history 
23 years prediction 

Eclipse black-oil simulator was used as the reservoir 
simulator. Production and injection wells were operated at 
constant bottomhole pressure. Synthetic field observed data 
set, which consists of oil production rate, gas oil ratio and 
water cut of the producer, water injection rates; and 
bottomhole pressure of the observation wells, was obtained 
by subjecting the benchmark case to reservoir simulator. 
These observed data were collected on a monthly basis for 30 
years.  

3.2 Base Case 

In this case it was intended to examine the DCT-EnKF 
method and its performance for updating multiple facies 

distributions. An initial ensemble of 60 facies distribution 
was generated via conditional SIS. The facies observations at 
the well locations, i.e. the producer, injectors and observation 
wells (9 hard data) were used as the conditioning data. The 
variogram parameters and the reference distribution were 
same as the benchmark case. Facies proportions of the 
simulated realizations were within the range of 5% of the 
benchmark case. History matching was performed for 10 
update steps. Updates were every year.  

    
Fig. 2. Mean of initial ensemble of facies indicators for Base 
Case 

In order to evaluate the overall quality of the history match, 
the commonly used R-square value (Chitralekha et al. 2010, 
Gul et al. 2011) was implemented to calculate the normalized 
measure of the fit: 
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In equation (4), 2
,PiR  is defined for ith realization and pth 

production variable. pobsd , is the time average of observed 
data over the t = t1 to tN interval. The overall quality of the 
match for each realization is calculated as: 

∑
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The calculated R-square values represent the mismatch in the 
predictions as a unit less number. R-square can be calculated 
for a specific observation (e.g. oil production rate of a 
specific well) using equation 4. In case the overall quality of 
the match for each realization is required, the weighted  
R-square value (derived from equation 5) can be 
implemented to account for different observed data having 
various units and importance level and unite them into a 
single value. After calculating the R-square value for each 
realization (either equation 4 or 5) the mean of R-square 
values for different realizations is used to investigate the 
quality of the match and compare results of different cases.  

Figure 3 depicts the average facies map of the ensemble after 
different update steps. The updated facies distributions are 
scattered containing short-scale variations which are not 
geologically realistic and will affect recovery performance. 
Noise reduction techniques from image processing are used 
to smooth these variations and match variogram parameters. 
It is important to note that smoothing techniques are not used 
to reproduce spatial continuity in model parameters; it is used 
only to remove some unphysical short-scale discontinuities. 

Sand           (2000 md) 

Fine Sand   (500  md) 

Shale           (5    md)

Sand 

Fine Sand 

Shale 
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Fig. 3. Average areal map of the facies indicators of all 
realizations at different update steps, for Base Case. 

Fig. 4. Oil production rate and water injection rates before 
(left column) and after (right column) history match for Base 
Case. 

3.3 Noise reduction using image processing algorithms 

Post-processing or smoothing facies realizations is a 
promising approach to remove geologically unrealistic short-
scale variations. However, the reference distribution should 
be honored while doing so. Different noise removal 
algorithms have been introduced in geostatistical modelling - 
such as Maximum a-posteriori selection method - and image 

processing literature. Low pass, Median and Out-range pixel 
smoothing are some of the linear and nonlinear techniques 
that are implemented to remove random noise. Using these 
approaches would not necessarily maintain facies proportions 
and for instance facies with relatively small proportions 
would be poorly preserved. 

Maximum a-posteriori selection (MAPS): This technique 
replaces the facies type at each location by the most probable 
facies type based on the local neighbourhood. The probability 
of each facies type, in the local neighbourhood, is based on 
closeness to the location, whether or not the value is a 
conditioning datum, and mismatch from the target proportion 
(Deutsch 1998). 

Median Filtering: It is a nonlinear technique which is being 
used in image processing. Median filtering smoothes the 
image and is thus useful in removing random noise such as 
salt and pepper or impulsive noise and meanwhile preserving 
edges (Lim 1990). It can also preserve discontinuities in a 
step function and can smooth a few pixels whose values 
differ significantly from their surroundings without affecting 
other pixels.  

Mode Filtering: This technique is similar to the Median 
filtering, however, mode of the data is assigned to the target 
pixel instead of the median value.   

We have implemented mode filtering algorithm to smooth the 
updated realizations, and median filtering for smoothing 
probability maps; however, other noise reduction techniques 
can be easily integrated into the proposed formulation. Figure 
5(a) shows the facies map of an updated realization with the 
lowest R-square value. Markedly the realization is noisy, has 
discontinuity and lots of short scale variations. The purpose 
of applying smoothing techniques is to remove these 
unrealistic scattered data and noise. Figure 5(b) shows the 
same map after applying the mode filter. Obviously this map 
seems to be more realistic.  

  

(a) (b) 
Fig. 5. Areal map of an updated realization with the lowest  
R-square value for Base Case before (a) and after (b) 
smoothing. 

Figures 6(a) and 6(b) compares the experimental variogram 
of the same realization before and after smoothing, and the 
Benchmark Case. Before removing smoothing the calculated 
experimental variogram for small separation distances is 
higher in both azimuths, which are close to the benchmark 
case after applying the filter. The smoothed experimental 
variogram data along the major direction of continuity (135° 
azimuth), although not perfect, at least are close to the 
Benchmark Case in the short ranges (i.e. up to 600 ft). 
However, the same plot along the minor direction of 
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continuity (45° azimuth) shows that the updated realization in 
Base Case is not acceptable. The slope of the curves is 
different and the semi-variogram of Base Case does not 
reveal the cyclic nature which is evident in Benchmark Case. 

 
(a) (b) 

Fig. 6. Experimental Variogram of an updated realization of 
Base Case along the horizontal azimuths of 45 (a) and 135 (b) 
degrees. 

3.4 Regenerated realizations using Base Case final results 
using Pilot Point method 

In this case study, the DCT-EnKF updated facies realizations 
obtained at the last update step (20th update) of Base Case 
are subjected to the proposed Pilot Point scheme. The top 
realizations with least amount of mismatch are identified as 
high-weight particles. These realizations are used to calculate 
the probability density function (pdf) of different facies at 
different locations. Noise reduction techniques are applied to 
the probability maps. The smoothed pdf data are further 
implemented to define facies types at pilot point locations. 
The detail procedure to generate new set of realizations is 
described below: 

1) The updated realizations are sorted based on the quality of 
the match (RMSE), as well as the variogram and facies 
proportions similarity to the geological data of the 
formation, and the top 20% of the realizations were 
selected. 

2) Using the selected realizations, probability of the 
existence of each facies at different grid block locations is 
calculated. 

3) The calculated pdf values contain short scale variations 
and are noisy. Median noise reduction technique was 
implemented to remove the short scale variations. Median 
filter removes the noise and smoothes the edges. 

4) After smoothing pdf values, summation of the probability 
of the facies at a specific grid block location is not 
necessarily equal to unity. A correction step has been 
implemented so that the sum of pdf values of different 
facies at each grid block location would be one. 

5) Grid block locations where probability of the occurrence 
of any facies is above 90% are specified. 

6) A total of 10 percent of the total grid block numbers was 
intended to be selected as pilot points. Number of pilot 
points in each facies was calculated based on the initial 
estimate of the facies proportions.  

7) The desired number of pilot points in each facies is 
randomly selected from specified locations in step (4). 

8) New set of realizations are generated via SIS using 
conditioning hard data of the wells and the pilot points. 

 
Fig. 7. Calculated pdf values for different facies. 

 
Fig. 8. Smoothed pdf maps. 

 
Fig. 9. Areal map of different set of realizations generated 
using Pilot Point method, compared to the Benchmark Case. 

The prescribed technique was used and the last two steps 
(steps 7 and 8) were repeated five times to generate five 
ensembles. These ensembles were combined (50 realizations) 
and were updated from the initial using DCT-EnKF (ten 
steps, one update per year). Figure 10 depicts the average 
facies map of the realizations after different update steps. The 
updated realizations of this case contain short scale variations 
as well. The results are far better than the Base Case 
however, implementing smoothing algorithms are helpful. 
Mode filtering algorithm was used to remove the unrealistic 
scattered data and noise. Figure 12(a) shows the facies map 
of an updated realization with the lowest R-square value. The 
realization is a bit noisy and has a few unrealistic short scale 
variations. Figure 12(b) shows the same map after applying 
the mode filter. Figure 13(a, b) depict the calculated 
experimental semi-variogram plot of the Pilot Point Case 
compared to the Benchmark. The plots show that before 
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smoothing, the calculated experimental semi-variogram 
values are a bit higher, which is improved after implementing 
the smoothing technique. The short scale variations are 
removed and the data closely match the benchmark semi-
variogram values especially along the 135° azimuth. The 
plots clearly reveal the cyclic behaviour of the semi-
variogram along the minor direction of continuity though not 
perfectly matching the points. 

 
Fig. 10. Average areal map of the facies indicators of all 
realizations at different update steps. The initial ensemble 
was re-generated using Pilot Point method. 

Fig. 11. Oil production rate and water injection rates before 
(left column) and after (right column) history match for Pilot 
Point Case. 

(a) (b) 
Fig. 12. Areal map of an updated realization with the lowest  
R-square value for Pilot Point Case before (a) and after (b) 
smoothing. 

(a) (b) 
Fig. 13. Experimental Variogram of an updated realization of 
Pilot Point Case along the horizontal azimuths of 45 (a) and 
135 (b) degrees. 

Figure 14 depicts the facies proportions of different cases 
before and after smoothing. Clearly the facies proportions are 
not preserved in Base Case. However, for the case with re-
generating the realizations using proposed pilot point method, 
the facies proportions are close to the Benchmark Case. 
Besides the graph shows that smoothing algorithm has not 
affected the facies proportions. 

 
Fig. 14. Facies histogram of different cases, compared to the 
Benchmark Case. 

4. CONCLUSIONS 

A novel predictor-corrector type bias correction procedure is 
proposed to (1) correct for the loss of non-Gaussian 
contributions in model parameters after EnKF update and to 
(2) honor the reference distribution obtained from static 
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geologic information.  The method involves combining a new 
pilot-point formulation with the DCT-EnKF approach. The 
results on numerical experiments conducted on multi-facies 
reservoir model showed the success of regenerating new 
realizations in facies pattern detection. The smoothing 
algorithm also assisted to correct for the short-scale 
variability of the distributions and the facies probability 
maps. This predictor-corrector-analysis type approach 
outperformed in terms of observed dynamic data are match as 
well as retaining non-Gaussian geological features such as 
short scale-variability, reference facies proportions and 
variogram cyclicity (spatial distribution of model 
parameters).   
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