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Abstract: Active control of the production choke valve is the recommended solution to prevent
severe slugging flow conditions at offshore oilfields. The focus of this work is to find the structure
of a simple, yet robust anti-slug control system. In order to find suitable control variables for
stabilization, a controllability analysis of the system with different available measurements
or different combinations of them was performed. Moreover, for including robustness and
performance requirements at the same time, the controllability analysis was extended to a mixed
sensitivity H∞ optimization problem. Two case studies were considered; first, the controllability
analysis was performed on a pipeline-rise system using a 4-state model for comparing the
results to the previous works. Next, using a 6-state model, the results were extended to a
more general well-pipeline-riser system. The controllability results were in accordance with the
practical experience in anti-slug control.
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1. INTRODUCTION

In an offshore oilfield, pipelines and risers transfer mul-
tiphase mixture of oil, gas and water from oil wells at
the seabed to the surface processing facilities. Several
kilometers of pipeline run on the seabed ending with risers
to topside platforms (Godhavn et al. (2005)). Surface of
the seabed is not even, and pipelines get the shape of the
terrain irregularities. For example, where there is a hill or
valley in the seabed, it makes a low-point in the pipeline.
Liquid phases tend to accumulate at low-points, and it
can block the gas flow. In low flow rate conditions, this
blockage leads to formation of a slugging flow regime called
terrain-slugging. If the low-point is located close to base
of the riser and length of the slugs are comparable to the
length of the riser, the flow condition is called “severe-
slugging” or “riser-slugging”. The severe-slugging is also
characterized by large oscillatory variations in pressure
and flow rate (Storkaas (2005), Storkaas and Skogestad
(2007)).

The oscillatory flow condition in offshore multi-phase
pipelines is undesirable and an effective solution is needed
to suppress it. This behavior can be prevented by reducing
the opening of the top-side choke valve. However, this
conventional solution increases the back pressure of the
valve and reduces the production rate from the oil wells.
Other conventional solutions are costly design changes
such as full separation or installing a large slug catcher
after the production choke. Active control of the topside
choke valve is the recommended solution to maintain a
non-oscillatory flow regime together with the maximum
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possible production rate (Sivertsen et al. (2009)). The
control system used for this purpose is called anti-slug
control. This control system uses measurements such as
pressure, flow rate or fluid density as the control variables
and the topside choke valve is the main manipulated
variable.

Anti-slug control systems in practice are not robust, and
the slugging flow often occurs even in closed loop system
because of large inflow disturbances or plant changes.
Therefore, we need to find a robust control structure
for anti-slug control systems which should be also very
simple so that operators will use it easily. In this way,
fundamental physical limitations of the system in terms
of controllability must be taken into account. For example
by manipulating a valve at an operating point with 90%
opening, it is impossible to control its upstream pressure
effectively.

Controllability of the system is evaluated by minimum
achievable peaks of different closed-loop transfer functions.
These bounds are independent from the controller design
and they are physical property of the system. The control
variables or a combinations of these resulting in smaller
peaks are preferable. However, controllability analysis is a
mathematical tool for linear systems. Knowing that nature
of the sever-slugging and even the simplified model used in
this work is highly nonlinear, controllability analysis only
gives useful information about the necessary conditions
and limitations.

For controllability analysis, a simplified dynamical model
of the system is needed. A 4-state model was proposed by
Jahanshahi and Skogestad (2011) and it is used as the first
case study in this work. This model has been developed
based on assumption of constant inlet mass flow rates.
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The model is also extended to include an oil well as the
inlet flow condition into the pipeline. The parameters in
the simplified models were obtained by matching results
to simulations using the more detailed OLGA model. In
order to study riser-slugging dynamics, a stable dynamic is
considered for the oil well and only pressure-driven nature
of the flow is considered. The resulting model has six
states, but a 5-state model has been used for the analysis.
After linearizing the model, it was observed that two states
regarding the mass of gas and liquid in the well have
the same dynamic, resulting in one pole and one zero
on the imaginary axis. To prevent numerical problems, a
minimum-phase realization of the system with five states is
used for the controllability analysis. In the control part, the
H∞ controller was designed based on the 5-state model,
but it could be able to control the original 6-state model.

This paper is organized as the following. Simplified models
for sever-slugging are introduced in Section 2. Afterwards,
the theoretical background for the controllability analysis
is given in Section 3. Controllability analysis results are
presented in Section 4, and finally, the main conclusions
and remarks will be summarized in Section 5.

2. SIMPLIFIED DYNAMICAL MODEL

2.1 Simple model for pipeline-riser system

Storkaas and Skogestad (2007) used a PDE-based two
fluid model with 13 segments which resulted in a set
of 50 ODEs. In their work, it was concluded that main
dynamics of severe slugging in a pipeline-riser system can
be captured by a simpler model. The model used for the
pipeline-riser system in this work is a 4-state model.

ṁG1 = wG,in − wG,lp (1)

ṁL1 = wL,in − wL,lp (2)

ṁG2 = wG,lp − wG,out (3)

ṁL2 = wL,lp − wL,out (4)

Details about this model are given by Jahanshahi and
Skogestad (2011). This model has been developed based on
assumption of constant inflow rates wG,in and wL,in. But,
in more practical conditions liquid and gas come from a
network of oil wells and the inflow rate is pressure-driven.

2.2 Pipeline-riser case study

The simplified 4-state model described by equations (1),
(2), (3) and (4) is fitted to a test case in OLGA simulator
using four tuning parameters. In the OLGA test case the
pipeline diameter is 0.12 m and its length is 4300 m.
Starting from the inlet, the first 2000 m of the pipeline
is horizontal and the remaining 2300 m is inclined with
a 1◦ angle. It causes 40.14 m descent and creates a low-
point at the end of pipeline. Riser is a vertical 300 m pipe
with the diameter of 0.1 m. The 100 m horizontal section
with the same diameter as that of the riser connects the
riser to the outlet choke valve. The feed into the system is
nominally constant at 9 kg/s, with wL = 8.64 kg/s (oil)
and wG = 0.36 kg/s (gas). The pressure after the choke
valve (P0) is nominally constant at 50.1 bar. This leaves
the choke valve opening Z2 as the only degree of freedom
in the system.

2.3 Simple model for well-pipeline-riser system

In order to study effect of pressure-driven inflow, dynamics
of an oil well is considered as the inlet boundary condition.
Moreover, Skofteland et al. (2007) suggests that source of
severe-slugging instability is at the bottom-hole of the well
and pressure at this position is the best control variable.
Considering the oil well dynamic is also helpful to study
this possibility theoretically. Two state variables, for mass
of gas and mass of liquid inside the oil well, are added to
obtain the 6-state model:

ṁG,w = αm
G,twr − wG,in, (5)

ṁL,w = (1− αm
G,t)wr − wL,in, (6)

where αm
G,t is the gas mass fractions at top of the well,

given by equation (15). Production rate from the reservoir
to the well can be described by the following linear
relationship.

wr = PImax(0, Pr − Pbh), (7)

where PI is productivity index of the well, Pr is the
constant reservoir pressure and Pbh is the bottom-hole
pressure of the well.

Pbh = Pwh + ρmixgLw. (8)

The other important variables in the well model consist of
the average density of the two-phase mixture

ρmix =
mG,w +mL,w

Vw
, (9)

density of the gas phase

ρG,w =
mG,w

Vw −mL,w/ρL
, (10)

pressure at the well-head

Pwh =
mG,wRTwh

MG(Vw −mL,w/ρL)
, (11)

and the average liquid volume fraction inside the well

αL,w =
mL,w

VwρL
. (12)

In order to calculate the volume fractions at top of the well,
the same assumptions as in the riser model by Jahanshahi
and Skogestad (2011) are used.

αL,t = 2αL,w − αL,b (13)

In this case, because of high pressure at bottom-hole, fluid
from the reservoir is saturated (Ahmed (2006)) and liquid
volume fraction at the bottom is αL,b = 1. However, with
a simple model it is not possible to predict the level of
liquid in the well. Therefore, a tuning parameter Ka ≈ 1
is added for the model fitting purpose.

αL,t = 2KaαL,w − 1 (14)

The gas mass fraction at top of the well follows as

αm
G,t =

(1− αL,t)ρG,w

αL,tρL + (1− αL,t)ρG,w
. (15)

And the density of the mixture at top of the well is

ρmix,t = αm
G,tρG,w + (1− αm

G,t)ρL. (16)
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Fig. 1. Schematic presentation of candidate control vari-
ables and manipulated variable

The subsea choke valve is considered as flow condition from
the well to the pipeline.

win = K1z1

√
ρmix,t max(Pwh − Pin, 0), (17)

where Pin is pressure at inlet of pipeline which is given
by the pipeline-riser model (Jahanshahi and Skogestad
(2011)). Flow rates of gas and liquid phases into the
pipeline are respectively

wG,in = winα
m
G,t + d1, (18)

wL,in = win(1− αm
G,t) + d2, (19)

where d1 and d2 can be assumed as disturbances from the
other oil wells in the network.

2.4 Well-pipeline-riser case study

As illustrated in Fig. 1, an oil well was connected to the
inlet of the pipeline. The oil well is vertical with depth of
3000 m, the same inner diameter as the pipeline, and the
reservoir pressure of 230 bar. Six tuning parameters in the
simple model were used for model fitting. The resulting
bifurcation diagrams of the simple model are compared to
the OLGA reference model in Fig. 2.

3. CONTROLLABILITY ANALYSIS: THEORETICAL
BACKGROUND

The state controllability is not our interest in this work;
instead the concept of input-output controllability as de-
fined by Skogestad and Postlethwaite (2005) is used.

Definition 1. (Input-output) controllability is the abil-
ity to achieve acceptable control performance; that is, to
keep outputs (y) within specified bounds or displacement
from their references (r), in spite of unknown but bounded
variations, such as disturbances (d) and plant changes
(including uncertainty), using available inputs (u) and
available measurements (ym and dm).

The controllability of the system can be evaluated quanti-
tatively by calculating minimum achievable peaks of differ-
ent closes-loop transfer functions. These values show the
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Fig. 2. Bifurcation diagrams of the simplified model (blue)
compared to OLGA reference model (red)

physical limitations of a system in terms of controllability
which are dependant on location of poles and zeros of the
open-loop system.

3.1 Transfer functions

We assume a linear model in the form y = G(s)u+Gd(s)d
with a feedback controller u = K(s)(r − y − n) in which
d represents disturbances and n is the measurement noise.
The resulting closed-loop system is

y = Tr + SGdd− Tn, (20)

where S = (I + GK)−1 and T = GK(I + GK)−1 =
I − S represent the sensitivity and the complementary
sensitivity transfer functions, respectively. The control
input to the closed-loop plant is

u = KS(r −Gdd− n). (21)

Moreover, the transfer function SG is related to the effect
of input disturbances on the control error r−y. One should
notice that the closed-loop transfer functions S, T,KS and
SG can also be regarded as the measures of robustness
against different types of uncertainty. We prefer to keep
them as small as possible to achieve better robustness
properties of the control system. For instance, the sensitiv-
ity transfer function S is also the sensitivity to inverse rel-
ative uncertainty, which is a good indication of uncertainty
in the pole locations (Skogestad and Postlethwaite (2005)).
Therefore, the lowest achievable peaks of the closed-loop
transfer functions S, T,KS, SG,KSGd and SGd provide
information regarding both achievable performance and
possible robustness issues.

By the “peak” we mean maximum value of frequency
response or H∞ norm, ∥M∥∞ = maxω ∥M(jω)∥, which
is simply the peak value of the transfer function. The
bounds presented in the following are not dependent on
the controller K, and they are physical properties of the
system itself. The bounds are, however, dependent on
a systematic and correct scaling of the system. We will
explain scaling of the system later in this Section.
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3.2 Lower bound on S and T

The lowest achievable values for peaks of the sensitiv-
ity and the complementary sensitivity transfer functions,
MS,min and MT,min, are calculated based on the distance
between the unstable poles (pi) and zeros (zi) of the
system. For SISO systems, Skogestad and Postlethwaite
(2005) give a bound for any unstable (RHP) zero z as the
following:

∥S∥∞ ≥ MS,min =

Np∏
i=1

|z + pi|
|z − pi|

. (22)

The bound increases rapidly as z gets close to pi, also
the bound is tight for a plant with only one RHP-zero.
Chen (2000) shows that the bound in equation (22) also
applies to ∥T∥∞, and gives the following bound for MIMO
systems which is tight for any number of RHP-poles and
RHP-zeros:

MS,min = MT,min =

√
1 + σ2(Q

−1/2
p QzpQ

−1/2
z ), (23)

where the elements of the matrices Qz, Qp and Qzp are
given by Chen (2000) as

[Qz]ij =
yHz,iyz,j

zi + zj
, [Qp]ij =

yHp,iyp,j

pi + pj
, [Qzp]ij =

yHz,iyp,j

zi − pj
(24)

The vectors yz,i and yp,i are the (unit) output direction
vectors of the zero zi and pole pi. Time delay introduces
additional limitations; the bounds for ∥T∥∞ is increased
by a factor |epθ| for a system with single RHP-pole.

3.3 Lower bound on KS

The transfer function KS is from the measurement noise n
to the plant input u which is desired to be kept small. The
lowest achievable peak for this transfer function can be
calculated from the bound (Havre and Skogestad (1997);
Havre and Skogestad (2001))

∥KS∥∞ ≥ |Gs(p)
−1|, (25)

where Gs is the stable version of G with the RHP-poles
of G mirrored into the LHP. The bound is tight (with
equality) for one real unstable pole p. For multiple and
complex unstable poles pi, Glover (1986) derived the tight
bound on the transfer function KS

∥KS∥∞ ≥ 1/σH(U(G)∗), (26)

where σH is the smallest Hankel singular value and U(G)∗

is the mirror image of the antistable part of G (for a stable
plant there is no lower bound).

3.4 Lower bound on SG and SGd

The transfer function SG is required to be small to reduce
the effect of input disturbances on the control error signal,
and also for robustness against pole uncertainty. SGd is
related to the effect of disturbances on the outputs. The
two following bounds are for any unstable zero z in G
(Skogestad and Postlethwaite (2005)):

∥SG∥∞ ≥ |Gms(z)|
Np∏
i=1

|z + pi|
|z − pi|

, (27)

∥SGd∥∞ ≥ |Gd,ms(z)|
Np∏
i=1

|z + pi|
|z − pi|

, (28)

where Gms and Gd,ms are “minimum-phase, stable ver-
sion” of the transfer functions G and Gd, respectively
(both RHP-poles and RHP-zeros mirrored into LHP).
These bounds are only tight for one unstable zeros z, but
since they are valid for any RHP-zero z, they can also be
used for systems with multiple unstable zeros (Storkaas
and Skogestad (2007)).

3.5 Lower bound on KSGd

In order to calculate the lowest achievable peak for the
transfer function KSGd, the bound in equation (26) can
be generalized as (Skogestad and Postlethwaite (2005))

∥KSGd∥∞ ≥ 1/σH(U(G−1
d,msG)∗). (29)

where U(G−1
d,msG)∗ is the mirror image of the anti-stable

part of G−1
d,msG. This bound is tight for multiple and com-

plex unstable poles pi. Note that any unstable modes in
Gd must be contained in G such that they are stabilizable
with feedback control. One simpler approach is to consider
the stable, minimum phase part Gd,ms of Gd as a weight
on KS. Thus, using equation (25) for any unstable pole p
(Havre and Skogestad (1997); Skogestad and Postlethwaite
(2005)):

∥KSGd∥∞ = |G−1
s (p)|.|Gd,ms(p)|. (30)

This bound is only tight for SISO systems with one real
unstable pole p.

3.6 Pole vectors

The output pole vector yp,i for a process with state-
space representation (A,B,C,D) is defined by (Havre and
Skogestad (2003))

yp,i = Cti, (31)

where ti is the right (normalized) eigenvector associated
with pi (Ati = piti). Based on minimum input usage for
stabilization, it can be suggested that the measurements
with the largest element in the output pole vector should
be used for stabilizing control. In the same way, for input
selection, the input that has the largest element in the
input pole vector up,i = BHqi, where qi is the left eigen-
vector of A(qHi A = piq

H
i ) should be used. One limitation

on the use of pole vectors is that the relationship between
the magnitude of the input usage and the magnitude of
the pole vectors elements only hold for a plant with a
single unstable pole p. In our system, there is a pair of
complex conjugate unstable poles pi, but pole vectors still
give useful information about the measurement selection
(Storkaas and Skogestad (2007)).

3.7 Mixed sensitivity controllability analysis

The above controllability measures were also considered
by Sivertsen et al. (2009), Storkaas and Skogestad (2007).
However, these measures considering only one of transfer
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functions at any time, may give conflicting results. To get a
single measure (γ), we consider an H∞ problem where we
want to bound σ(S) for performance, σ(T ) for robustness
and to avoid sensitivity to noise and σ(KS) to penal-
ize large inputs. These requirements may be combined
into a stacked H∞ problem (Skogestad and Postlethwaite
(2005)).

min
K

∥N(K)∥∞ , N
∆
=

[
WuKS
WTT
WPS

]
(32)

where WP and WT determine the desired shapes of sensi-
tivity S and complementary sensitivity T . Typically, W−1

P
is chosen to be small at low frequencies to achieve good
disturbance attenuation (i.e., performance), and W−1

T is
chosen to be small outside the control bandwidth, which
helps to ensure good stability margin (i.e., robustness).
Solution to this optimization problem is a stabilizing con-
troller K corresponding to S, T and KS which satisfy
the following loop shaping inequalities (Glover and Doyle
(1988), Doyle et al. (1989)):

σ(KS(jω)) ≤ γσ(W−1
u (jω))

σ(T (jω)) ≤ γσ(W−1
T (jω))

σ(S(jω)) ≤ γσ(W−1
P (jω))

(33)

To have the same cost function in all simulation tests
for the measurement selection, all the candidate control
variables shown in Fig. 1 are included in the y1 port and
the control variable(s) for test is in the port y2 of the
generalized plant in Fig. 3. The value of γ in equation (33)
should be as small as possible for good controllability.

3.8 Low frequency performance

Disturbance rejection is not the main objective for sta-
bilizing control, but to avoid the possible destabilizing
effect of nonlinearity, the system should not “drift” away
from its nominal operating point. To achieve low-frequency
performance, the steady-state gain of the plant must be
large enough. For disturbance rejection and avoiding input
saturation, we need |G(jω)| ≥ |Gd(jω)| at the frequencies
where |Gd| > 1.

3.9 Scaling

One important step before controllability analysis is scal-
ing of inputs, outputs and disturbances of the system. In

Definition 1, the bound that the control variable must be
kept within is not the same for different control variables
shown in Fig. 1. For a correct comparison between can-
didate control variables, they must be scaled based on
their maximum allowed variations, in a way that maximum
allowed variation for all of them in the scaled model will be
(-1,1). The scaling factors Dy for different measurements
are given in Table 1 and Table 3. Disturbances in the scaled
model are also expected to vary in the range of (−1, 1). The
maximum expected values of disturbances (inflow rates)
are close to 10% around nominal values of wG,in and wL,in.
The following values are used for scaling in the both case
studies.

Dd =

[
1 0
0 0.04

]
Controllability analysis is performed at two operating
points (Z2 = 10% and Z2 = 20%); therefore the maximum
possible changes of u at the two operating points are
Du = 0.1 and Du = 0.2 respectively.

4. CONTROLLABILITY ANALYSIS RESULTS

4.1 Pipeline-riser case

Minimum achievable peaks for different closed-loop trans-
fer functions explained in Section 3 are given in Table 1 and
Table 2, for two operating points Z2 = 10% and Z2 = 20%
reseptively. Minimum peaks of |S| = |T | for Pt, ρm and
αL,t in Table 1 are larger than 1, and it is expected to have
difficulty using these measurements as control variables.
Large values for minimum peak of |S| = |T | are because
of RHP-zeros in transfer function of these variables.
Location of RHP-poles of the system and RHP-zeros of
Pt for different valve openings are shown in Fig. 4. It
can be seen that for Z2 = 5% system has a pair of
complex conjugate poles on the Jω axis. For (Z2 > 5%)
two poles are in RHP, and the system becomes unstable.
For larger valve openings, one RHP-pole and one RHP-
zero get very close to each other. Considering equation
(22), when RHP-poles and RHP-zeros are close to each
other, the peak of the sensitivity transfer function has a
large value. Regarding data given in Table 1 and Table 2,
the minimum peak for S and T of Pt is much larger for
Z2 = 20% compared to its value for Z2 = 10%.

The other RHP-pole of the system moves far away from
the Jω axis as the valve opening increases. The faster
unstable dynamic makes the stabilization more difficult.
This effect can be seen by comparing |KS| for Z2 =
10% and Z2 = 20%. It is desired to have larger valve
opening and consequently higher production rate, but
because of physical limitations of the system in terms of
controllability, it is not possible to stabilize the system
with a large valve opening.

The minimum achievable peaks of |S| = |T | for Qout

and wout are 1, and no problem in term of controllabil-
ity is expected. But looking at G(0), small steady-state
gain leads to poor disturbance rejection. As a result, the
system might drift away from the operating point con-
troller designed for locally. The controllability data for
the combined measurements in Table 1 and Table 2 show
that combining one pressure measurement and one flow
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rate gives the best result in terms of controllability. These
findings are similar to the results reported by Storkaas
and Skogestad (2007) using a two-fluid model. In the next
section we extend our analysis to the more general well-
pipeline-riser case.

4.2 Well-pipeline-riser case

Controllability data for the two operating points (Z2 =
10% and Z2 = 20%) are given in Table 3 and Table 4.
The bottom-hole pressure demonstrates the largest steady-
state gain and relatively small values for minimum achiev-
able peaks of all close-loop transfer functions. This means
that the pressure at the bottom-hole is an effective control
variable. Unlike the pipeline-riser system, Qout and wout

show considerable steady-state gains which is result of
the pressure-driven nature on the inflows. Therefore, flow
rates also can be used in single loop for the stabilizing
control without drift problem. Fig. 5 demonstrates the
simulation result of H∞ control using Qout as the control
variable. Considering controllability data for the combined
measurements in in Table 3 and Table 4, again combining
pressure and flow rate improves the controllability of the
system. Simulation result of the H∞ control using Pbh and
Qout as the control variables is illustrated in Fig. 6.

4.3 Mixed Sensitivity Controllability Analysis

The γ values are given in the last column of Table 1,
Table 2, Table 3 and Table 4. The control variables with
small values of γ are able to control the system with better
performance and robustness, also less input usage. The
combination of one upstream pressure and the outlet flow
results in the smallest value for γ for the two systems.

In some cases, the resulted closed-loop system was unsta-
ble. Therefore, calculated γ is considered irrelevant and
’U’ is shown instead of the number. In addition, some
control variables under test were not able to minimize the
cost function and optimization did not converge; they can
be interpreted as ineffective control variables which is in
agreement with other controllability data.
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Fig. 5. Result of H∞ control using Qout as control variable
for well-pipeline-riser system, Z2 = 10%
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Fig. 6. Result of H∞ control using Pbh and Qout as control
variables for well-pipeline-riser system, Z2 = 10%

In the H∞-analysis, it was observed that for combing one
flow rate and one pressure, it is impossible to have tight
control on the both at the same time. If tight pressure
control is required, flow rate can not be controlled tightly.
Because when an inflow disturbance comes to the system,
it needs to be released to maintain a constant pressure. In
this situation, the flow control can only help for robustness
of the pressure control. Simulation result of this case which
was used for finding γ value for the well-pipeline-riser case
in Table 3 (Z = 10%) is shown in Fig. 7. This desired
performance requirement was simulated by considering
integral action (i.e. small value for W−1

P at low frequency)
for control of Pt and no integral action for Qout (i.e. the
weight of W−1

P = 1/Ms in which Ms is the desired peak
of sensitivity transfer function). Cascade control with the
flow control as the inner loop is a simple structure to
implement this case in practice. On the other hand, if
tight control on the flow rate is required, the pressure
fluctuations because of disturbances are unavoidable.
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Table 1. Controllability data for pipeline-riser case study at operating point Z2 = 10%

Measurement Value Dy G(0) Pole vector |S| = |T | |KS| |SG| |KSGd1| |KSGd2| |SGd1| |SGd2| γ

Pin[bar] 70.28 1 -2.75 0.0065 1 0.67 0 0.21 0.55 0 0 18.91
Prb[bar] 68.45 1 -2.76 0.0073 1 0.70 0 0.20 0.64 0 0 15.38
DPr[bar] 17.05 1 -0.20 0.0092 1 0.47 0 0.15 0.55 0 0 82.00
Pt[bar] 51.39 1 -2.56 0.0032 3.55 1.34 3.93 0.15 0.73 0.16 0.76 42.30
Qout[L/s] 17.94 2 0.19 0.0113 1 0.38 0 0.15 0.67 0 0 83.65
wout[kg/s] 9 1 0 0.0118 1 0.37 0 0.15 0.79 0.04 1 100
ρm[kg/m3] 501.81 50 -0.21 0.0062 2.94 0.70 5.64 0.26 0.95 0.48 0.13 80.65
αL,t[−] 0.58 1 -0.01 0.0004 2.94 11.05 0.34 0.26 0.95 0.03 0.33 –
Pin&Pt – – – – 1 0.6 0 0.21 0.76 0 0 14.93
Pin&Qout – – – – 1 0.33 0 0.20 0.14 0 0 10.37
Pt&Qout – – – – 1 0.37 0 0.19 0.08 0 0 12.19
Pt&ρm – – – – 1 0.62 0 0.17 0.84 0 0 18.62

Table 2. Controllability data for pipeline-riser case study at operating point Z2 = 20%

Measurement Value Dy G(0) Pole vector |S| = |T | |KS| |SG| |KSGd1| |KSGd2| |SGd1| |SGd2| γ

Pin[bar] 69.23 1 -0.70 0.0061 1 5.15 0 0.94 2.34 0 0 103.5
Prb[bar] 67.40 1 -0.70 0.0081 1 3.91 0 0.83 2.63 0 0 63.13
DPr[bar] 16.97 1 -0.05 0.0092 1 3.41 0 0.66 2.34 0 0 98.35
Pt[bar] 50.43 1 -0.65 0.0012 14.25 25.54 2.12 0.65 3.40 0.08 0.40 U
Qout[L/s] 18.08 2 0.05 0.0164 1 1.92 0 0.65 3.05 0 0 98.49
wout[kg/s] 9 1 0 0.0177 1 1.78 0 0.65 3.80 0.04 1 100
ρm[kg/m3] 497.78 50 -0.054 0.0025 32.71 12.45 5.54 3.69 13.30 1.77 0.37 –
αL,t[−] 0.57 1 -0.003 0.0002 32.80 196.07 0.35 3.70 13.32 0.11 0.35 –
Pin&Pt – – – – 1 5.05 0 0.68 2.45 0 0 98.98
Pin&Qout – – – – 1 1.80 0 0.68 2.3 0 0 37.45
Pt&Qout – – – – 1 1.91 0 0.55 2.76 0 0 41.58
Pt&ρm – – – – 1 11.19 0 1.74 6.69 0 0 337.2

Table 3. Controllability data for well-pipeline-riser case study at operating point Z2 = 10%

Measurement Value Dy G(0) Pole Vector |S| = |T | |KS| |SG| |KSGd1| |KSGd2| |SGd1| |SGd2| γ

Pbh[bar] 281.95 1 -3.80 0.0065 1 0.62 0 0.24 0.46 0 0 20.70
Pwh[bar] 68.85 1 -2.76 0.0048 1 0.86 0 0.24 0.46 0 0 28.23
win[kg/s] 10.46 1 1.05 0.0037 1 1.10 0 0.24 0.46 0 0 31.02
Pin[bar] 68.66 1 -2.80 0.0049 1 0.84 0 0.24 0.46 0 0 27.33
Prb[bar] 67.26 1 -3.07 0.0059 1 0.70 0 0.23 0.56 0 0 21.21
DPr[bar] 15.54 1 -0.18 0.0088 1.02 0.47 0.03 0.19 0.46 0.033 0.020 89.07
Pt[bar] 51.72 1 -2.89 0.0039 3.17 1.05 5.30 0.17 0.54 0.25 0.66 35.48
Qout[L/s] 20.66 2 1.24 0.0115 1 0.36 0 0.24 0.53 0 0 28.35
wout[kg/s] 10.46 1 1.05 0.0140 1 0.29 0 0.16 0.57 0 0 31.02
ρm[kg/m3] 506.56 50 -0.23 0.0055 3.43 0.74 5.50 0.30 0.84 0.69 1.70 85.47
αL,t[−] 0.58 1 -0.013 0.0004 3.43 11.70 0.35 0.30 0.84 0.044 0.10 U
Pin&Pt – – – – 1 0.65 0 0.22 0.57 0 0 16.72
Pbh&Qout – – – – 1 0.29 0 0.07 0.04 0 0 8.93
Pin&Qout – – – – 1 0.33 0 0.22 0.76 0 0 12.07
Pt&Qout – – – – 1 0.34 0 0.06 0.04 0 0 12.64
Pt&ρm – – – – 1 0.61 0 0.23 0.72 0 0 22.84

5. CONCLUSION

The controllability analysis results of the pipeline-riser sys-
tem using a simplified model are similar to what has been
reported in the previous work by Storkaas and Skogestad
(2007) using a two-fluid model. Further, we found that the
γ value calculated from the H∞-analysis predicts a good
single measure to compare the controllability of alternative
structures.

For SISO control of the pipeline-riser system, a pressure
measurement in pipeline is recommended, and the pressure
at the riser base demonstrates better result in controlla-
bility analysis using the H∞ method. For multivariable
control, one pressure measurement from the pipeline com-
bined with choke flow rate gives the best result. However,
if the subsea measurement is not available, combining top

pressure and flow rate gives satisfactory results. Top pres-
sure together with density is able to stabilize the system
in theory, if the flow measurement is not available. The
measurements αL,t and ρm are identified as ineffective
control variables for SISO control

The bottom-hole pressure is the best control variable for
SISO control of the well-pipeline-riser system. Because of
the pressure driven nature of the flow in this case, the
flow measurement shows larger steady-state gain and con-
sequently a better performance, compared to the pipeline-
riser case. Therefore, having an accurate measurement of
flow rate of the choke valve, it can be used in a SISO
control scheme for stabilization. Moreover, combining the
flow rate with the bottom-hole pressure improves the per-
formance and the robustness considerably.
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Table 4. Controllability data for well-pipeline-riser case study at operating point Z2 = 20%

Measurement Value Dy G(0) Pole vector |S| = |T | |KS| |SG| |KSGd1| |KSGd2| |SGd1| |SGd2| γ

Pbh[bar] 280.25 1 -1.15 0.0045 1 3.06 0 0.58 0.95 0 0 U
Pwh[bar] 67.69 1 -0.83 0.0033 1 4.24 0 0.58 0.95 0 0 –
win[kg/s] 10.93 1 0.32 0.0044 1 2.69 0 0.58 0.95 0 0 98.3
Pin[bar] 67.48 1 -0.84 0.0035 1 3.89 0 0.58 0.95 0 0 –
Prb[bar] 65.98 1 -0.92 0.0060 1 2.12 0 0.58 0.95 0 0 152.3
DPr[bar] 15.43 1 -0.056 0.0087 1.03 1.35 0.02 0.58 0.95 0.034 0.016 104.0
Pt[bar] 50.55 1 -0.87 0.0010 12.30 13.63 7.05 0.56 1.44 0.32 0.82 730.5
Qout[L/s] 21.79 2 0.37 0.0122 1 1.07 0 0.58 1.20 0 0 67.30
wout[kg/s] 10.93 1 0.32 0.0125 1 1.15 0 0.56 1.73 0 0 72.55
ρm[kg/m3] 501.63 50 -0.094 0.0012 14.74 15.23 8.74 5.22 10.69 2.76 6.10 –
αL,t[−] 0.58 1 -0.006 0.0000 14.64 238.0 0.55 5.19 10.64 0.17 0.39 –
Pin&Pt – – – – 1 2.53 0 0.93 2.04 0 0 110.7
Pbh&Qout – – – – 1 0.89 0 0.93 1.88 0 0 28.46
Pin&Qout – – – – 1 0.90 0 1.57 3.46 0 0 36.77
Pt&Qout – – – – 1 0.86 0 0.93 1.88 0 0 39.36
Pt&ρm – – – – 1 0.77 0 2.78 5.00 0 0 –
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Fig. 7. Result of H∞ control using Pt and Qout as control
variables for well-pipeline-riser system, Z2 = 10%

6. FUTURE WORK

The subsea choke valve is a possible manipulated variable,
but controllability analysis for only the top-side valve was
presented in this paper. A controllability analysis with the
subsea choke valve as the manipulated variable, and also
the both valves in a MIMO scheme can be beneficial as an
extension to this work.
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