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21st Nordic Process Control Workshop 
Welcome to the 21st Nordic Process Control Workshop (NPCW) held at Åbo Akademi University, 
Åbo (Turku), Finland, 18–19 January 2018. The workshop brings together the Nordic Process 
Control (NPC) community to present and discuss research topics, including recent advances, on-
going work, and future trends, and to consolidate and expand networking in the field of process 
control. Typical workshop participants are doctoral students, researchers, academics and 
professionals from academia, industry and research organisations. 

The workshop is organised every one-and-a-half year by the NPC Working Group, the venue alter-
nating between Denmark, Norway, Sweden and Finland. Current working group members are:  

Prof. Kurt-Erik Häggblom, Åbo Akademi, Finland (chair)  
Dr. Gürkan Sin, DTU, Denmark (co-chair)  
Dr. Elling W. Jacobsen, KTH, Sweden (previous chair)  
Prof. Sigurd Skogestad, NTNU, Norway (penultimate chair) 
Dr. Jenő Kovács, Sumitomo SHI SW, Finland 
Dr. John Bagterp Jørgensen, DTU, Denmark  
Dr. Jan Peter Axelsson, Vascaia AB, Sweden 
Prof. Bjarne Foss, NTNU, Norway  
Dr. Annika Leonard, Vattenfall AB, Sweden  
Dr. Alf Isaksson, ABB AB, Sweden  
Prof. Bernt Lie, University College Southeast, Norway  
Dr. Hans Aalto, Neste Engineering Solutions Oy, Finland  
Dr. Bjørn Glemmestad, Yara Technology Centre, Norway  
Prof. Tore Hägglund, LTH, Sweden  
Docent Torsten Wik, CTH, Sweden 
Dr. Krister Forsman, Perstorp AB, Sweden  
Dr. Christer Utzen, GEA Process Engineering A/S, Denmark  
Dr. Iiro Harjunkoski, Aalto University, Finland / ABB AG, Germany 

The NPC Working Group awards the “Nordic Process Control Award” to persons who have made 
“lasting and significant contributions to the field of process control”. The recipient of the 2018 
NPC Award is Professor Dale E. Seborg, University of California, Santa Barbara, USA. We warmly 
congratulate Prof. Seborg and look forward to his award lecture “A Process Control Odyssey”. 

Previous recipients of the NPC Award are: 

Howard H. Rosenbrock (Åland, Finland, 21 August 1995) 
Karl Johan Åström (Wadahl, Norway, 13 January 1997) 
F. Greg Shinskey (Stockholm, Sweden, 24 August 1998)
Jens G. Balchen (Lyngby, Denmark, 14 January 2000)
Charles R. Cutler (Åbo, Finland, 23 August 2001)
Roger W. Sargent (Trondheim, Norway, 9 January 2003)
Ernst Dieter Gilles (Gothenburg, Sweden, 19 August 2004)
Manfred Morari (Lyngby, Denmark, 26 January 2006)
Jacques Richalet (Espoo, Finland, 23 August 2007)
John MacGregor (Porsgrunn, Norway, 29 January 2009)
Graham Goodwin (Lund, Sweden, 26 August 2010)
Lawrence T. Biegler (Lyngby, Denmark, 26 January 2012)
James B. Rawlings (Oulu, Finland, 22 August 2013)
Rudolf Kalman (Trondheim, Norway, 15 January 2015)
Wolfgang Marquardt (Sigtuna, Sweden, 25 August 2016)
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Prior to the workshop, on 17 January 2018, there is a full-day tutorial on “Recent Developments 
of Optimization in Process Systems Engineering”. It is given by people with a background in the 
Optimization and Systems Engineering (OSE) group at Åbo Akademi University. 

The Laboratory of Process Control in the Department of Chemical Engineering, Faculty of Science 
and Engineering at the Åbo Akademi University, is responsible for the local arrangements this 
year. The local organising committee consists of 

Kurt-Erik Häggblom 
Annika Fougstedt 
Jari Böling 

We wish to thank Ms. Henna Sucksdorff for setting up the registration site and for handling 
incoming registrations. Help from doctoral students and postdoctoral researchers at the 
Laboratory of Process Control and the Laboratory of Process Design and Systems Engineering is 
gratefully acknowledged. 

We wish you all an enjoyable workshop! 

Åbo, 15 January 2018 

Kurt-Erik Häggblom 
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Program Outline 
Tutorial: 
Recent Developments of Optimization in Process Systems Engineering 

Wednesday 17 January 
09.30–10.10 Registration with coffee & sandwich 
10.10–10.15 Opening words 
10.15–11.55 Modeling in Process Control and Systems Engineering from a Sparse Perspective 
12.00–13.00 Lunch 
13.10–14.10 Optimization in Process Systems Engineering 
14.15–15.15 Semidefinite Programming — Basics 
15.15–15.30 Coffee break 
15.30–17.00 Semidefinite Programming — Advanced Topics and Application 
19.00– Dinner 

Workshop 
Thursday 18 January 
08.15–08.50 Registration 
08.50–09.00 Welcome to the 21st NPCW 
09.00–09:15 Nordic Process Control Award presented to Prof. Dale Seborg 
09.15–10.00 Award Lecture by Prof. Dale Seborg 
10.00–10.20 Coffee break 
10.20–12.00 Session 1: Optimization and Control 
12.10–13.10 Lunch  
13.20–15.00 Session 2: Performance and Diagnostics 
15.00–15.20 Coffee break 
15.20–17.00 Session 3: Use of Soft Sensors in Process Control 
17.00–18.00 Poster Session with refreshments 
17.30–18.30 NPC Working Group Meeting 
19.00–20.00 Guided tour at Aboa Vetus Museum of History 
20.00– Workshop Dinner at the museum restaurant 

Friday 19 January 
08.20–10.00 Session 4: Control Structures and Strategies 
10.00–10.20 Coffee break 
10.20–12.00 Session 5: Modelling 
12.10–13.10 Lunch 
13.20–14.40 Session 6: System Identification 
14.40–15.00 Closing Ceremony and Welcome to 22nd NPCW 
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List of Participants 
Denmark (7+3=10) 
Ricardo Caroço Technical University of Denmark rcar@kt.dtu.dk 
Eskild S Fleischer GEA Process Engineering eskild.s.fleischer@gea.com 
John Bagterp Jørgensen Technical University of Denmark jbjo@dtu.dk 
Jørgen K H Knudsen 2-control Aps joek@2-control.dk 
Frederico Montes Technical University of Denmark fmon@kt.dtu.dk 
Emil Krabbe Nielsen Technical University of Denmark ekrani@elektro.dtu.dk 
Merve Öner  Technical University of Denmark meon@kt.dtu.dk  
Gürkan Sin  Technical University of Denmark gsi@kt.dtu.dk 
Robert Spann  Technical University of Denmark rosp@kt.dtu.dk 
Christer Utzen GEA Process Engineering christer.utzen@geagroup.com 

Finland (24+10+4=38) 
Neste Engineering Solutions Oy hans.aalto@neste.com 
Borealis Polymers Oy merja.aartovaara@borealisgroup.com 
Finnish Defence Research Agency bernt.akesson@mil.fi 
Åbo Akademi University jboling@abo.fi 
Metso Flow Control mats.friman@metso.com 
Åbo sten.gustafsson@abo.fi 
Åbo togustaf@gmail.com 
Åbo Akademi University khaggblo@abo.fi 
Aalto University / ABB AG, Germany iiro.harjunkoski@aalto.fi 
Åbo Akademi University carolyn.joko@abo.fi 
Enbuscon Oy kaj.juslin@enbuscon.com 
Sumitomo SHI SW jeno.kovacs@shi-g.com 
Åbo Akademi University jan.kronqvist@abo.fi 
Åbo Akademi University mkurula@abo.fi 
Aalto University antton.lahnalammi@aalto.fi 
Aalto University rinat.landman@aalto.fi 
National Defence University esa.lappi@mil.fi 
Åbo Akademi University andreas.lundell@abo.fi 
Åbo Akademi University mmanngar@abo.fi 
Stora Enso International Oy erkka.moilanen@storaenso.com 
Aalto University minh.dn.nguyen@aalto.fi 
Neste Engineering Solutions Oy antti.pelkola@neste.com 
Åbo Akademi University frank.pettersson@abo.fi 
Åbo Akademi University rporn@abo.fi 
Wärtsilä Finland Oy Ilkka.rytkola@wartsila.com 
Åbo Akademi University hsaxen@abo.fi 
Åbo Akademi University john-eric.saxen@abo.fi 
University of Oulu istvan.selek@oulu.fi 
Neste Engineering Solutions Oy amir.shirdel@neste.com 
Åbo Akademi University anders.skjal@abo.fi 
Aalto University bei.sun@aalto.fi 

Hans Aalto  
Merja Aartovaara 
Bernt Åkesson 
Jari Böling  
Mats Friman  
Sten Gustafsson 
Tore Gustafsson 
Kurt-Erik Häggblom 
Iiro Harjunkoski 
Alia Joko 
Kaj Juslin 
Jenő Kovács  
Jan Kronqvist  
Mikael Kurula  
Antton Lahnalammi 
Rinat Landman 
Esa Lappi 
Andreas Lundell 
Mikael Manngård 
Erkka Moilanen 
Minh Nguyen  
Antti Pelkola  
Frank Pettersson 
Ray Pörn 
Ilkka Rytkölä  
Henrik Saxén  
John-Eric Saxén 
István Selek  
Amir Shirdel  
Anders Skjäl  
Bei Sun 
Hannu Toivonen Åbo Akademi University htoivone@abo.fi 
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Stefan Tötterman Neste Engineering Solutions Oy stefan.totterman@neste.com 
Ann-Christin Waller Åland ann-christin.waller@aland.net 
Kurt Waller  Åland kurt.waller@aland.net 
Matias Waller  Åland University of Applied Sciences matias.waller@ha.ax 
Tapio Westerlund Åbo Akademi University twesterl@abo.fi 
Kai Zenger  Aalto University kai.zenger@aalto.fi 

Iran (1) 
Bijan Moaveni Iran Univ.  of Science and Technology b_moaveni@iust.ac.ir 

Norway (19+1=20) 
Muhammad Faisal Aftab Norwegian Univ. of Science and Technology muhammad.faisal.aftab@ntnu.no 
Christoph Backi Norwegian Univ. of Science and Technology christoph.backi@itk.ntnu.no 
Timur Bikmukhametov Norwegian Univ. of Science and Technology timur.bikmukhametov@ntnu.no 
Tamal Das  Norwegian Univ. of Science and Technology tamal.das@ntnu.no 
Bjørn Glemmestad Yara Technology Centre bjorn.glemmestad@yara.com 
Johannes Jäschke Norwegian Univ. of Science and Technology johannes.jaschke@ntnu.no 
Jonatan Klemets Norwegian Univ. of Science and Technology jonatan.klemets@itk.ntnu.no 
Dinesh Krishnamoorthy Norwegian Univ. of Science and Technology dinesh.krishnamoorthy@ntnu.no 
Torstein T Kristoffersen Norwegian Univ. of Science and Technology torstein.t.kristoffersen@ntnu.no 
Bernt Lie University College Southeast bernt.lie@usn.no 
Pedro Lira-Parada Norwegian Univ. of Science and Technology pedro.a.l.parada@ntnu.no 
Bahareh Nikparvar Norwegian Univ. of Science and Technology bahareh.nikparvar@ntnu.no 
Sveinung Ohrem Norwegian Univ. of Science and Technology sveinung.j.ohrem@ntnu.no 
Marius Reed  Norwegian Univ. of Science and Technology mariusre@stud.ntnu.no 
Sigurd Skogestad Norwegian Univ. of Science and Technology skoge@ntnu.no 
Julian Straus  Norwegian Univ. of Science and Technology julian.straus@ntnu.no 
Mandar Thombre Norwegian Univ. of Science and Technology mandar.thombre@ntnu.no 
Adriaen Verheyleweghen Norwegian Univ. of Science and Technology adriaen.verheyleweghen@ntnu.no 
Ludmila Vesjolaja University College Southeast ludmila.vesjolaja@usn.no 
Cristina Zotica  Norwegian Univ. of Science and Technology cristina.f.zotica@ntnu.no 

Sweden (8+3=11) 
Khalid Atta  Luleå University of Technology khalid.atta@ltu.se 
Jan Peter Axelsson Vascaia AB jan.peter.axelsson@vascaia.se 
Fredrik Bengtsson Chalmers University of Technology fredben@chalmers.se 
Wolfgang Birk  Luleå University of Technology wolfgang.birk@ltu.se 
Krister Forsman Perstorp AB krister.forsman@perstorp.com 
Tore Hägglund Lund University tore@control.lth.se 
Elling W Jacobsen Royal Institute of Technology jacobsen@ee.kth.se 
Michael Lundh ABB AB michael.lundh@se.abb.com 
Simon Pedersen Chalmers University of Technology pesimon@chalmers.se 
Olle Trollberg  Royal Institute of Technology olletr@kth.se 
Torsten Wik  Chalmers University of Technology tw@chalmers.se 

USA (2) 
Dale Seborg University of California, Santa Barbara dale.seborg@gmail.com 
Judy Seborg Santa Barbara, California seborgj@gmail.com
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Tutorial Program 
Recent Developments of Optimization in Process Systems Engineering 

Wednesday 17 January 

09.30–10.10 Registration with coffee & sandwich 

10.10–10.15 Opening words 

10.15–11.55 Modeling in Process Control and Systems Engineering from a Sparse Perspective 
Hannu Toivonen and Mikael Manngård, Åbo Akademi 

12.00–13.00 Lunch 

13.10–14.10 Optimization in Process Systems Engineering 
Jan Kronqvist, Åbo Akademi 

14.15–15.15 Semidefinite Programming — Basics 
Ray Pörn, Åbo Akademi 

15.15–15.30 Coffee break 

15.30–17.00 Semidefinite Programming — Advanced Topics and Applications 
Ray Pörn, Åbo Akademi 

19.00– Dinner 

You are encouraged to bring your own laptop to the tutorial with programs and toolboxes 
installed as explained in the topic outlines. 
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Sparse modeling in process control and process systems engineering 

Hannu Toivonen and Mikael Manngård 

Developments in sparse optimization during the last twenty years have made it possible to address 

certain combinatorial optimization problems, which were previously deemed intractable. The 

purpose of this tutorial is to describe some applications of sparse optimization in process control and 

systems engineering. These include variable selection for predictive models, identification of 

switching systems, system identification in the presence of trends, and identification of low-order 

dynamic models. 

The structure of the presentation is as follows:  

1) Background: examples of combinatorial optimization problems

- Variable selection, i.e., finding a small subset from a given set of variables which explains

data. For example, for predictive models, or to explain fault situations.

- Change detection in data or model. For example: identification of switching systems, which

switch between a number of modes at unknown time instants, or estimation of piecewise

linear trends in data.

2) A basic problem: selection of independent variables in regression model

Here we describe how a combinatorial problem can be solved, either exactly or approximately,

by relaxing it to a convex l1-constrained problem. The most important properties of this

approach are reviewed.

3) System identification in the presence of trends and level shifts

Here we identify a system model and structured disturbances (such as trends, outliers and level

shifts) simultaneously using sparse optimization. Results are demonstrated on numerical

examples.

4) Identification of low-order system models

System order can be characterized in terms of the rank of a Hankel matrix associated with the

system’s impulse response. Identification of a low-order model can therefore be formulated as a

rank-constrained optimization problem. These are numerically hard problems, but can be

relaxed by replacing the matrix rank by its nuclear norm, defined as the sum of the matrix

singular values. The nuclear norm relaxation results in a convex optimization problem, for which

efficient solvers exist.

For the numerical examples in the tutorial the cvx toolbox in Matlab will be used. 
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Optimization in process systems engineering 

Jan Kronqvist 

In this workshop we present some important types of optimization problems, with focus on how to 
solve these problems. We present some basic theory, methods and some problem formulations. We 
demonstrate how these problems can be solved efficiently in Matlab by the state-of-the-art solvers 
Gurobi and IPOPT. 

1) A brief introduction to optimization

2) Integer programming
We present techniques for solving linear problems containing integer variables, mainly the
branch and bound method and some cutting planes.

3) Disjunctive programming
How to incorporate logic decisions in optimizations problems.

4) Solving optimization problems in Matlab
We show how to solve linear problems with integer variables in Matlab using Gurobi. We also
give a brief illustration on how to use the nonlinear solver IPOPT with Matlab.

5) Optimization problems with nonlinear functions
How can we solve optimization problems with both nonlinear functions and integer variables?

In this workshop we will use the solvers Gurobi and IPOPT in Matlab. There are free Academic 
licenses available for both solvers and we encourage participant to obtain these in advance. 

Opti toolbox which contains IPOPT and some other powerful solvers can be obtained from: 
https://www.inverseproblem.co.nz/OPTI/ 

Gurobi which is one of the most powerful solvers for linear and quadratic optimization problems can 
be obtained directly from: 
http://www.gurobi.com/ 
There is an interface to Matlab which is easy to set up. Obtaining the Academic license takes less 
than 5 minutes (can only be done with a university network connection).  
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Semidefinite programming – basics and applications 

Ray Pörn 

Semidefinite programming (SDP) is one of the most exciting developments in mathematical 

programming during the last 20 years. SDP has applications in very diverse fields such as convex 

constrained optimization, control theory, combinatorial optimization, statistics, differential geometry 

and many more. SDPs are often solved using interior-point methods and many applications can be 

solved fairly efficiently in practice. The structure of this workshop is as follows:  

1) Introduction and some applications

2) Representability

What can be expressed as SDPs? Many different things can be expressed using linear matrix

inequalities (LMIs) and solved with SDP methods. Some tools from linear algebra are given in

order to represent different constraints in correct form.

3) Relaxation and randomization

SDP provides tight approximation of different non-convex optimization problems. The SDP

solution can also be used as a basis for a fast randomization procedure in order to obtain a good

quality solution for the non-convex problem.

4) Reformulation

Combinatorial problems can be reformulated in many ways, a typical technique is linearization.

SDP can be used to obtain an optimal reformulation of certain combinatorial problem.

5) More applications

6) Computer exercises

The participants are encouraged to bring their own laptop with matlab and the cvx toolbox

(http://cvxr.com/cvx/download/) installed.
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Workshop Program 
Thursday 18 January 

08.15–08.50 Registration 

08.50–09.00 Welcome to the 21st NPCW 

09.00–09:15 Nordic Process Control Award presented to Prof. Dale Seborg 

09.15–10.00 Award Lecture by Prof. Dale Seborg 
Chair: Elling W. Jacobsen, KTH 

1. A Process Control Odyssey [Abstract]
Dale Seborg
University of California, Santa Barbara, USA

10.00–10.20 Coffee break 

10.20–12.00 Session 1: Optimization and Control 
Chair: Sigurd Skogestad, NTNU 

2. On Handling Non-Linearity for Model-Based Predictive Control and Optimization [Paper]
Hans Aalto and Antti Pelkola
Neste Engineering Solutions Oy, Finland

3. Industrial Implementation of Nonlinear Model Predictive Controllers [Paper]
Jørgen K.H. Knudsen1 and John Bagterp Jørgensen2

12-control Aps, Denmark, 2Technical University of Denmark (DTU)

4. A Novel Approach to Steady-State Gradient Estimation Using Transient Measurements
[Abstract]
Dinesh Krishnamoorthy, Esmaeil Jahanshahi, and Sigurd Skogestad
Norwegian University of Science and Technology (NTNU)

5. Steady-State Optimization Using Phase-Lag Information [Abstract]
Olle Trollberg and Elling W. Jacobsen
Royal Institute of Technology (KTH), Sweden

6. State of the Art of Integration of Scheduling and Control — Remaining Challenges [Abstract]
Iiro Harjunkoski
Aalto University, Finland, and ABB AG, Germany

12.10–13.10 Lunch 

13.20–15.00 Session 2: Performance and Diagnostics 
Chair: John Bagterp Jørgensen, DTU 

7. Intelligent Vessels [Abstract]
Ilkka Rytkölä and Fredrik Östman
Wärtsilä Finland Oy

8. Analysis of Indirect Fire System Effectiveness Using Simulation and Data Farming [Abstract]
Miika Haataja1, Esa Lappi2, and Bernt Åkesson1

1Finnish Defence Research Agency; 2National Defence University, Finland
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9. Assessment of the Control Performance of Combustion-Thermal Power Plants [Abstract]
István Selek1 and Jenö Kovács2

1University of Oulu, Finland; 2Sumitomo SHI FW, Finland

10. Detection and Characterization of Oscillations in Control Loops using Multivariate Empirical
Mode Decomposition: An Overview [Abstract]
Muhammad Faisal Aftab and Morten Hovd
Norwegian University of Science and Technology (NTNU)

11. Using Multilevel Flow Modeling for Fault Diagnosis of Produced Water Treatment [Abstract]
Emil Krabbe Nielsen, Jerome Frutiger, Gürkan Sin, Ole Ravn, and Morten Lind
Technical University of Denmark (DTU)

15.00–15.20 Coffee break 

15.20–17.00 Session 3: Use of Soft Sensors in Process Control 
Chair: Jenö Kovács, Sumitomo SHI SW, Finland 

12. Fault-Tolerant Control of Actuators [Abstract]
Mats Friman
Metso Flow Control, Finland

13. Analysis of Influence of Sensor Degradation on Flowrate Estimates by Virtual Flow Metering
Systems [Abstract]
Timur Bikmukhametov and Johannes Jäschke
Norwegian University of Science and Technology (NTNU)

14. Model-Based Process Development and Monitoring of Lactic Acid Bacteria Fermentations
[Abstract]
Robert Spann1, Anna Eliasson Lantz1, Christophe Roca2, Krist V. Gernaey1, and Gürkan Sin1

1Technical University of Denmark (DTU); 2Chr. Hansen, Denmark

15. Comparative Study of Kalman Filter-Based Observers with Simplified Tuning Procedures
[Abstract]
Christoph Josef Backi and Sigurd Skogestad
Norwegian University of Science and Technology (NTNU)

16. State and Parameter Estimation for a Gas-Liquid Cylindrical Cyclone [Abstract]
Torstein Thode Kristoffersen and Christian Holden
Norwegian University of Science and Technology (NTNU)

17.00–18.00 Poster Session with refreshments 

17.30–18.30 NPC Working Group Meeting 

19.00–20.00 Guided tour at Aboa Vetus Museum of History 

20.00– Workshop Dinner at the museum restaurant 
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Friday 19 January 

08.20–10.00 Session 4: Control Structures and Strategies 
Chair: Kurt-Erik Häggblom, ÅA 

17. A New Efficient Ratio Control Structure [Abstract]
Tore Hägglund
Lund University, Sweden

18. Discrete PI Controller Design for Linear Measurement Combinations in Self-Optimizing
Control [Abstract]
Jonatan Klemets and Morten Hovd
Norwegian University of Science and Technology (NTNU)

19. Risk-Based Health-Aware Control of Subsea System [Abstract]
Adriaen Verheyleweghen and Johannes Jäschke
Norwegian University of Science and Technology (NTNU)

20. Resolving Issues of Scaling for Gramian Based Input-Output Pairing Methods [Abstract]
Fredrik Bengtsson1, Torsten Wik1, and Elin Svensson2

1Chalmers University of Technology, Sweden; 2CIT Industriell Energi AB, Sweden

21. On the Modified Hankel Interaction Index Array for Control Configuration Selection
[Abstract]
Bijan Moaveni1 and Wolfgang Birk2

1Iran University of Science and Engineering; 2Luleå University of Technology, Sweden

10.00–10.20 Coffee break 

10.20–12.00 Session 5: Modelling 
Chair: Bernt Lie, UCS 

22. Surrogate Model Generation Using the Concepts of Self-Optimizing Control [Paper]
Julian Straus and Sigurd Skogestad
Norwegian University of Science and Technology (NTNU)

23. Scale-Up Modeling of a Pharmaceutical Crystallization Process via Compartmentalization
Approach [Abstract]
Merve Öner1, Getachew S. Molla1, Michael F. Freitag2, Stuart M. Stocks2, Jens Abildskov1,
and Gürkan Sin1

1Technical University of Denmark (DTU); 2LEO Pharma A/S, Denmark

24. Nonsmooth Modelling Methods in Chemical Engineering [Abstract]
Marius Reed, Marlene Lund, and Johannes Jäschke
Norwegian University of Science and Technology (NTNU)

25. Neural Network-Based Model Reduction and Sensitivity Analysis of Apoptosis [Abstract]
C. Alia Joko, Frank Pettersson, and Henrik Saxén
Åbo Akademi University, Finland

26. A Dynamic Model of the Response of Foodborne Pathogenic Bacteria to High Pressure
Processing [Abstract]
Bahareh Nikparvar1, Nils Nieuwenkamp2, and Nadav Bar1

1Norwegian University of Science and Technology (NTNU); 2University of Amsterdam, the
Netherlands
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12.10–13.10 Lunch 

13.20–14.40 Session 6: System Identification 
Chair: Tore Hägglund, LTH 

27. Input PRBS Design for Identification of Multivariable Systems [Paper]
Winston Garcia-Gabin and Michael Lundh
ABB AB, Sweden

28. Experiment Designs to Obtain Uncorrelated Outputs in MIMO System Identification
[Abstract]
Kurt-Erik Häggblom
Åbo Akademi University, Finland

29. Data-based Testing for Nonlinearity in Dynamical Systems: Surrogate Data Compared with
Nonlinear Distortion [Paper]
Matias Waller
Åland University of Applied Sciences, Finland

30. Identification of Low Order Output-Error Models [Abstract]
Mikael Manngård, Jari M. Böling, and Hannu T. Toivonen
Åbo Akademi University, Finland

14.40–15.00 Closing Ceremony and Welcome to 22nd NPCW 
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List of Posters 
Presentations for the poster session were selected based on submission preferences or degree 
of difficulty to classify the topic of the contribution as one for the oral sessions.   

P1. Comparison of Two Classes of Observers in a Biochemical Process [Abstract] 
R.F. Caroço1, J. Abildskov1, T. López-Arenas2, and J.K. Huusom1 
1Technical University of Denmark (DTU); 2Universidad Autónoma Metropolitana-
Cuajimalapa, Mexico 

P2. Control Strategy Based on Radial Basis Function for an Ibuprofen Batch Crystallization 
Process under Upstream Uncertainty [Abstract] 
Frederico Montes, Krist V. Gernaey, and Gürkan Sin 
Technical University of Denmark (DTU) 

P3. Modelling of the Prehydrolysis Kraft Process for Process Control [Paper] 
Antton Lahnalammi, Herbert Sixta, and Sirkka-Liisa Jämsä-Jounela 
Aalto University, Finland 

P4. Fault Propagation Analysis Combining a Nonparametric Multiplicative Regression 
Causality Estimator with Process Connectivity Information [Paper] 
Rinat Landman and Sirkka-Liisa Jämsä-Jounela 
Aalto University, Finland 

P5. A Receding Horizon Optimal Control Approach for Solution Purification Process [Paper] 
Bei Sun1, Sirkka-Liisa Jämsä-Jounela1, and Chunhua Yang2 
1Aalto University, Finland; 2Central South University, Changsha, China 

P6. Spectroscopic Method for Bacterial Quantification in Suspension [Abstract] 
Minh Nguyen1, Jarmo Alander2, and Kai Zenger1 
1Aalto University, Finland; 2Vaasa University, Finland 

P7. Estimation of the Regulating Power Potential of the Grocery Store S-Market Tuira 
[Abstract] 
István Selek and Enso Ikonen 
University of Oulu, Finland 

P8. Methods and Software for Solving Convex Mixed Integer Nonlinear Programming 
Problems [Abstract] 
Jan Kronqvist 
Åbo Akademi University, Finland 

P9. Profile Based Analysis for Automatic Feature Extraction from Time Series Data [Abstract] 
John-Eric Saxén, Jerker Björkqvist, and Hannu T. Toivonen 
Åbo Akademi University, Finland 

 P10. A Control Oriented Model for Inline Deoiling Hydrocyclone [Abstract] 
Tamal Das and Johannes Jäschke 
Norwegian University of Science and Technology (NTNU) 
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missions with authors from both academia and industry (2 papers), 5 submissions from industry 
(2 papers), and 1 submission from a research agency. Five contributions have an author with an 
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A Process Control Odyssey 

by 

Dale E. Seborg  

Professor Emeritus and Research Professor 

University of California 

Santa Barbara, California, U.S.A 

This presentation will provide a personal perspective on the development of the field of 

process control, including process control education, during the past 50 years. Much of the 

talk will be anecdotal, based on my research and teaching experience at the University of 

Alberta (U of A) and the University of California, Santa Barbara (UCSB). It will also be 

based on industrial control issues encountered during industry-sponsored research, 

consulting, and short courses.  

My early research at the U of A emphasized the development of novel advanced process 

control techniques and their application to pilot-scale equipment, using first-generation 

real-time computers. I was fortunate to be able to collaborate on these research and 

education projects with two very talented and collegial colleagues, Grant Fisher and Reg 

Wood. 

My research projects at both universities have typically included experimental applications 

to university pilot-scale equipment, in addition to theoretical analysis and computer 

simulation. These applications featured critical evaluations of new control techniques and 

experimental comparisons with existing methods. All but a few of my Ph.D. students were 

required to do some experimental work as part of their thesis projects. Also, about one half 

of my M.Sc. students included experimental results in their theses. The early research 

projects resulted in some of the first published process control applications of modern 

control multivariable control techniques such as Kalman filtering, LQG optimal control, 

and model-reference adaptive control. Later experimental studies were increasingly 

concerned with applications to larger scale industrial equipment, as well as biochemical 

and biomedical applications. At UCSB, I was fortunate to be able to collaborate with two 

very talented and collegial colleagues, Duncan Mellichamp and Frank Doyle, on both 

research projects and our textbook.  

In general, publications on experimental applications in process control (and other fields) 

present glowing reports of successful research projects. By contrast, unsuccessful 

applications are seldom published, for obvious reasons. But unsuccessful projects can 

provide valuable insight into the limitations and shortcomings of advanced control 

techniques. Several such “failures”, and the resulting insights gained from them, will be 

described.  

In many ways, process control education has changed significantly over the past 50 years, 

with respect to curriculum and computer applications. In other ways, the basic 

methodology, classroom lectures and few, if any experiments, has changed very little. 

Current trends in process control education, as well as the evolution of my Process 

Dynamics and Control textbook, will be discussed.  
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ABSTRACT 

Two methods are brought about which extend the robust and industry-adopted linear model-predictive control 

(LMPC) towards non-linear cases. In addition, we present a simple formulation of model-predictive dynamic 

real-time optimization (DRTO) which is a equivalent with the widely used term economic MPC. 

The LMPC algorithm is set up in such a way that it offers opportunities to incorporate the non-linear behaviour 

of the target process response, the most obvious being the prediction of the process response, using an internal 

model, prior to the calculation of the optimal control solution. Further on, iterative refinement of the optimal 

control solution to better match process non-linearity can be used. Such solutions can be built as extensions to 

existing LMPC which has value in industrial applications. 

DRTO can be derived from MPC by replacing the cost function, i.e. the predicted control error, with a cost 

function reflecting the process economics or with a negative benefit function. This means that control close to 

targets in terms of the control error minimization is no longer done, but the control task is re-formulated so as to 

keep the controlled variables between suitable minimum and maximum limits, in other words, the set of 

constraints of the original MPC is extended.  

The two methods presented above are developed and tested in simulation environments with a distillation 

column and natural gas pipelines as target process models. 

1 INTRODUCTION 

Non-linear dynamic process models can be represented as first-principles non-linear ordinary or partial 

differential equations or obtained by experimental, data-driven methods. Hybrid representations also exist where 

these two models are combined to describe the overall behavior of some complex process. First-principles 

models often need parameter estimation (or model output validation, or both) against true measured data from 

the process, so the models may be augmented with a linear or non-linear estimator part so that the combined 

model and estimator are operating in either off-line or on-line mode.  

Straightforward implementations of non-linear model-predictive control (NL-MPC) use either first-principles or 

experimental non-linear models when iterating towards the optimum control solution i.e. the optimum profile of 

present and future manipulated variables (MV). This approach almost always means long execution times from 

which long control cycles follows and quite often convergence problems also need to be addressed. Of course, 

non-linear model means non-linear optimization methods to be used in NL-MPC. A plethora of publications 

exist on utilizing particular model constructs such as polynomials to make the NL-MPC somewhat easier. In 

practical industrial applications, the linear MPC (LMPC) seems to be much more popular than NL-MPC because 

LMPC, which uses linear (or linearized) dynamical models, the calculation of the optimum MV profiles is 

accomplished by solving a quadratic programming (QP) problem which is much easier. 
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MPC executes three steps at each control  cycle : 1) calculate, using a model, the "free response" M-vector ypre of 

all controlled variables  (CV)  based on MV moves, measured disturbance variables (DV) and measured CV 

values and 2) make a "bias" correction of the CV predictions based on the freshest available process output data 

and define either the reference value M-vectors for CV's yref or minimum/maximum limits and 3) calculate the 

optimum (predicted control error minimizing) profile  u* of MV's from present time into the future honouring 

the constraints. The additivity of free response and the optimized part of the response to form the optimal output 

(CV) response M-vector ,  𝑦∗ = ℎ̃1𝑢∗ + 𝑦𝑝𝑟𝑒, is valid for LMPC but in principle not for the non-linear case. M is

the length of the prediction horizon and ℎ̃1is a matrix of impulse response coefficients.

See Section 2.1 and Figure 2 below for definition of bias and other terms used. 

Figure 1. The three steps of the MPC control cycle 

A first-principles model is essentially a black box accepting inputs and producing outputs, while access to 

internal state variables may or may not be possible. A number of adjustable parameters affect the state and 

output behavior. 

A general framework for empirical non-linear models is the Volterra series representation (Schetzen, 1980, 

among others): 
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where the first term represents the linear part of the process. The second term covers all the process 

nonlinearities. This model structure corresponds to the general Wiener model representation, where the linear 

part and the nonlinear part are additive to each other. In practice this nonlinear part is too complicated and heavy 

to be implemented in real time controls. Further the Volterra series has quite limited convergence. To avoid this 

problem Wiener suggested utilizing orthogonal functionals in his general Wiener representation (Wiener N., 

1958). Due to space limitations we shall not present any of the numerous reduction techniques available to make 

the model structure more suitable for real-time MPC. 
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2 NON-LINEARITY WITH LINEAR MPC 

2.1 Non-linear MPC with Wiener model structure 

The full order Volterra series representation in SISO case (see Eq. 1) can be rewritten as follows: 
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where 
 hy  is the h :th degree contribution to the overall  response y  and h

~
 is a  nonlinear Volterra operator 

that maps the input u  into the output variable y . A single component  uhh hh ;
~

 of this operator represents the 

h :th order Volterra kernel, where for each time instant k the following holds:

   )()()(),,,(;
~

2121

0 0 01 2

hhh

M

j

M

j

M

j

hh jkujkujkujjjhkuhh
h

 
  

 . (3) 

The total nonlinear Volterra operator h
~

can be written in the following operator form in case the inverse of the 

linear part of this series 
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Further the total inverse can be derived into the form (Doyle et al., 1995): 
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This inverse of the whole Volterra operator (5) can be defined as the controller operator.  The inverse of the total 

model requires first the inversion of only the first term 
1

1

~h , which is the linear part of the model, and secondly 

it requires the internal feedback from the controller output via the nonlinear terms of the model as shown in Eq 

(5).The resulting nonlinear internal model controller structure is shown in Figure 2, which corresponds to the 

linear internal model controller presented by Deshpande (1989) and others. This nonlinear controller synthesis 

yields the controller output as: 
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This non-linear MPC in Figure 2 is an infinite sequence of operators. The first term is the linear model inverse, 

which is the only inverse operator in the subsequent terms. The terms are totally decoupled, which means that 

the linear operator inversion is all that is required initially and subsequent terms depend only on this linear 

inverse, previous terms in the operator series and the original model operator series. Feedback signal lines in the 

nonlinear MPC block are drawn as shown to emphasize that they are invoked by iteration and not 

simultaneously. 

The key issues from the controller synthesis point of view are the convergence of the controller operator 

sequence, the way to implement a practical controller and the existence and the realizing of the inverse 
1

1

~ h , 

which is not often implementable (Doyle et al., 1995). 
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Figure 2. Nonlinear problem setting of MPC with Volterra model structure in SISO case. 

As described earlier the linear part and the nonlinear part of the model are additive to each other and 

consequently they can be totally separated and identified separately. On the controller synthesis this can utilized 

in the same way as principally already shown in Figure 2. When the nonlinear terms are lumped together into an 

appropriate NN-model structure, the nonlinear predictive controller gets in general more simplified structure. 

The two main parts of the controller structure are first the nonlinear prediction, which is the past contribution of 

the linear and the nonlinear NN-model predictions based on the process input history vector 
pu . Secondly the

nonlinear MPC structure, where the future contribution of the prediction based the nonlinear NN-model (

 32

~~
hh ) and the future control scenario  ccc uuu 21  , is subtracted from the predicted control 

error e . The remaining linear part of the error 
c

NLe is minimized by the feedback controller, which approximates 

the inverse of the linear part of the model 
1

1

h . 

The total nonlinear past contribution of the prediction 
*y based on the process input history vector 

pu is:

***

NLLIN yyy  , (7) 

where the linear part of the prediction 
*

LINy  is based on any kind of linear model identified by any well-known 

identification techniques. The nonlinear part of the prediction 
*

NLy can be totally described e.g. by an 

appropriate neural network structure.  In order to introduce feedback from the true process, the predicted output 

y*(k) at the first prediction time step from the previous cycle is subtracted from the measured process output y(k) 

and multiplied by a (gain) M-vector K to obtain a bias correction to be added to the non-linear prediction. This is 

a standard procedure for MPC. 

2.2 Linear MPC with external black-box model 

A black-box model does not reveal the model structure, but still it can be used to calculate the non-linear future 

predictions y* in Figure 2. The non-linear corrections of the non-linear MPC : ℎ̃2, ℎ̃3,,… cannot be formed so the

LMPC is left alone to control the non-linear process although being supplied with non-linear predictions y*. The 

linear models within LMPC do not match the non-linear predictions for most of the time but the control 

performance can still be good because LMPC is known to be robust against modelling error. If the degree of 

non-linearity of the process and the black-box model is significant, parameter adaptation within LMPC can be 

used, which then has a certain analogy with the non-linear corrections  ℎ̃2, ℎ̃3,,… in Figure 2.

It is actually quite self-evident to bring up the idea of augmenting LMPC with a black-box model, however, this 

idea is not widely discussed in literature and when brought up, it is hidden in more complicated model structures 

and concepts, (Gattu and Zafiriou, 1992 and 1995). From a practical standpoint, the concept is very appealing 

because a dynamic process simulator can be used to provide y* and a suitable simulator model may be readily 
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available from e.g. previous process and control design tasks. Of course, interlinking LMPC and simulator needs 

software work such as time synchronization and modification of LMPC so that it can receive free response 

predictions from the simulator. The bias correction (see Figure 2) can be done within LMPC or in the simulator, 

if such a feature is available. 

 

3 FROM LINEAR MPC TO DRTO 

The basic idea to "upgrade" MPC to DRTO is to replace the control error cost function with a cost function 

which describes the process economy such as energy consumption. The DRTO optimization solver (QP for 

LMPC and some nonlinear solver for NL-MPC) can trivially be set to maximize a profit function. The MV, CV 

and DV variables involved and their dynamical relationships do not need any new conceptual definitions, only 

the selection of those variables may differ from a regular MPC set of variables. The MV's, CV's and DV's enter 

into the quadratic or non-linear cost (profit) function in an obvious way. If some CV constraints need to be 

obeyed they are easily incorporated into the set of constraints of the DRTO problem, either as linear (linearized) 

or non-linear constraints. 

In the case of linear dynamic models and quadratic cost/profit, the attractive positive definiteness of the 

quadratic control error may be lost, so the QP solver must be able to copy with non-convex optimization. 

An example is given in section 4.2 below. 

 

4 METHODS VERIFICATIONS BY SIMULATIONS 

Two case examples are presented: Non-linear MPC of a heavy oil fractionator using non-linear corrections 

within the MPC controller (Figure 2) and a DRTO for a natural gas pipeline system using a black-box model 

without the non-linear corrections. 

4.1 Heavy Oil Fractionator 

Crude oil and heavy oil fractionators are multi-product columns, where crude oil feed or in cracking reactors 

treated heavy oil feed is separated into several product cuts. The energy comes to the column with the vaporized 

feed and the separation is controlled by manipulating the cooling, the internal liquid reflux flow rate in the 

column and the outflow rates. Usually these columns are also strongly integrated to the energy recycle system of 

the plant. In the following a typical heavy oil fractionator is introduced for modeling and controls study 

purposes. 

A full scale multivariable nonlinear control problem is introduced by Prett and Garcia (1988). As explained by 

the authors, it contains all the practical elements included in multivariable control applications. The process 

considered here is a heavy oil fractionator as shown in Figure 3. 
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Figure 3. Heavy Oil Fractionator with 5 MV’s (=U’s) and 7 CV’s (=Y’s). 

The energy is fed into the Heavy Oil Fractionator only with the feed and is removed by the overhead and side 

coolers. The material balance is handled by the feed and product flow rates. The column separation can be 

maintained optimal continuously with these elements. The MV’s are the main product flows (U1 and U2) and 

the duties of the side reflux duties (U3, U4 and U5). The CV’s are the end points of the two main products (Y1 

and Y2) and the specific column temperatures (Y3, Y4, Y5, Y6 and Y7) (Prett and Garcia, 1988). 

Figure 4. Linear and nonlinear MPC control in case of measured step disturbances in the bottoms reflux 

duty U3 occur (Pelkola A., 2016). 

In Figure 4 the linear MPC (blue lines) and the nonlinear MPC with orthogonal Wiener NN model structure 

(green lines) have been simulated in a case, where the step disturbances in the bottoms reflux duty U3 (red line) 

occur. In both cases the tunings of the MPC’s are the same. These sizes of disturbances are quite dramatic in the 

operation of the column separation. It can be clearly seen that the control performance of the presented nonlinear 

MPC is better and stabilizes the process quicker than the corresponding linear MPC. Also the product quality 

and temperature deviations from the targets are smaller with the nonlinear MPC with orthogonal Wiener NN 

model structure (Pelkola A. 2016). The presented simulation period is 10 h’s (600 minutes). 
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4.2 Natural gas pipeline network 

The dynamics of natural gas pipeline networks is just slightly nonlinear (Aalto, 2008) which means that linear 

dynamical models can be used to model the behavior between MV's, typically discharge pressures of compressor 

stations and CV's, typically pressures and gas flows along the pipeline network. The DV's are the numerous gas 

off-take flow rates in the network which typically are accurately measured and for which, in several cases, 

forecasts are available. The DRTO task in this case is to minimize the energy used by compressor stations while 

fulfilling constraints on gas flow to clients (off-takes) and pressures in the pipeline.  

The non-linear expression for energy used by a compressor can with good accuracy be approximated by a 

expression as follows: 

𝑘𝐹 [(
𝑃𝑑

𝑃𝑠
)

𝛾
− 1] ≈ 𝑘𝐹(𝑎∆𝑃𝑑 + 𝑏∆𝑃𝑠 + 𝑐)       (8) 

where k, a, b and c are constants , F is the gas flow through the compressor, γ is the polytropic exponent, Pd is 

compressor discharge pressure and Ps is compressor suction pressure. 

Because Pd is an MV and F and Ps are CV's linearly dependent on MV's, (8) is a quadratic expression and as 

such usable in LMPC instead of the quadratic control error. 

Each compressor must operate in a given window in the (F, Pd/Ps) coordinate system, the operating envelope, 

which act as non-linear constraints but may be linearized with reasonable accuracy, see Figure 5. 

 

 

Figure 5. Non-linear compressor envelope 

DRTO for the Finnish natural gas pipeline network was tested in a simulation test-bench. A first-principles 

dynamical model produced the non-linear predictions (see figure 2 above) and the linearization and quadratic 

approximation steps from above were used. The pipeline network has three compressor stations with two 

compressors in each one and is presented in Figure 6. 

Flow 

Pd /  Ps 
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Figure 6. Schematic of the Finnish natural gas pipeline network with 3 compressor stations (CS). Total 

pipeline length is around 1000 kilometers. 

Gas consumption forecasts are available and enter the non-linear prediction calculations directly. The target is to 

minimize total energy consumption of all three compressor stations. A test run using true pipeline data from year 

2003 showed that 5% energy decrease is achieved. Figure 7 shows the behavior the pipeline pressure of a remote 

location at the end of the last pipeline segment. The pressure is moving very close to the minimum limit 29 bar 

compared to how the pipeline was really operated during the same time period. Lower pressure Px3 also mean 

less energy consumption of CS3. The three MV's, i.e. discharge pressures for compressor stations behaved as 

expected for simple transmission  pipeline networks: discharge pressure of CS3 is minimized against constraints 

and CS1 and CS2 maximized against constraints. For details, see (Aalto, 2008). 

Figure 7. Pressure Px3 kept close to the minimum 29 bar by DRTO in simulation test-bench (solid line) 

and as controlled in the true pipeline system (dashed line). Time axis is in minutes. 

5 CONCLUSIONS 

The two methods to handle non-linearity in MPC presented in this paper adds to the multitude of existing 

methods however, our belief is that industrial users value the additivity or modularity of the approaches: if an 

LMPC exists, then add the non-linearity handling methods and continue operations with improved performance. 

If non-linearity creates some problems - not rarely seen in practical applications - then turn off the non-linear 

parts and continue with the LMPC until problems are rectified. 

The method of using and external first principles model has an extra added value in such applications normally 

found in energy systems, where a large number of measurable disturbance variables (DV) exists and for which 
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forecasted DV profiles exist. The first-principles model automatically invokes these DV's and their forecasts 

without the need to do experimental modeling of the DV to CV responses. 
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Abstract:
This paper describes some important factors for successful implementation and maintenance
of nonlinear MPC in an industrial environment. ModelBuilder is a simple modeling language,
which uses basic mass and heat balances to describe plant dynamic. The nonlinear ModelBuilder
model can effectively be linearized as a set of state space models around given operating points.
Based on this set of state space models a linear MPC controller calculates an optimal control
strategy. Subsequently the set of state space models are updated based on the predicted future
plant trajectory.

Keywords: Advanced process control (APC), Nonlinear model predictive control (NMPC),
Model predictive control (MPC), Models, ModelBuilder

1. INTRODUCTION

In order to be successful, an advanced process control
application must be commissioned and maintained by pro-
cess engineers with detailed knowhow and understanding
of the process to be controlled. Normally the process engi-
neer does not have a Ph.D degree and is not a programmer
used to work in MATLAB or a high level language such as
C#. We have to provide tools which can be used by the
process engineer, requiring a minimum of programming
skills and training, and which can be used occasionally,
whenever maintenance of the control system is required.

Futhermore it is important to use simulation of the plant
to make the initial tests an tuning of the controller before
moving the controller to the real plant and presenting it
to the plant operators. If the operators looses confidence
to the advanced process control system, it will be virtually
impossible to achieve a succelfull installation.

MPC controllers based on linear models are being imple-
mented successfully in the industry today. Linear models
can be defined and entered into the APC control system
as state space models or transfer functions.

For MPC using nonlinear models, the situation is much
more difficult. Nonlinear models can be developed using
high level programming languages as MATLAB or C#.
Programming the necessary Jacobians are tedious and
error prone. Development of these models requires a MAT-
LAB or a compiler.

ModelBuilder provides a solution for development of non-
linear models. ModelBuilder describes process dynamics
at high abstraction level using the mass and energy bal-
ances familiar to process enginers. ModelBuilder gener-
ates the model without requing a compiler and finally

Fig. 1. APCSuite modules.

ModelBuilder generates Jacobians using automatically dif-
ferentiation of the system equations.

ModelBuilder is a part of 2-control’s APCSuite product,
shown in Fig. 1. APCBox is the server running the MPC
controllers 24/7. APCBox exchanges data and setpoints
with the plant PLC system using an OPC connection.
APCView in the client program used to configure APCBox
and supervise the control loops.

The use of ModelBuilder is demonstrated on a U-Loop
reactor for single cell protein production (Olsen et al.
(2010)) and finally the generated model is used in a
nonlinear controller.

2. THE U-LOOP REACTOR.

The U-Loop reactor consist of CSTR and an U shaped
plug flow reactor as shown in the left part of Fig. 2. In
the U-Loop reactor biomass (single cell protein) grows on
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Fig. 2. U-Loop reactor.

Fig. 3. Biomas growth rate.

methanol and oxygen. The gases and liquids are mixed
effiently in the plug flow reactor enabling the reaction.
After the U-Loop reactor, separator and drying units are
used to produce the final single cell protein. This part of
the process is not considered in this article.

Inputs to the U-Loop reactor are the methanol, Fs, water,
Fw, and oxygen, Fo flow rates. The output flow from the
CSTR reactor is characterized by the concentration of
biomass, Cx, the concentration of metanol, Cs, and the
concentration of oxygen in the liquid phase, Co.

The growth rate of the biomass is a highly nonlinear
function of the methanol concentration, as shown in Fig. 3,
making it a challenging task to control the U-Loop reactor

3. MODELBUILDER

ModelBuilder is used to generate ordinary differential
eqations, ODE, of the form

.
x= F (x, u) or differential

algeabraic equations,DAE, of the form F (x,
.
x, u) = 0. x

is a vector of states,
.
x is the time derivative of the states

and u a vector of process inputs. In both cases the process
outputs are defined as y = G(x, u)

ModelBuilder source code consist of a declaration section
followed by an equations section:

Model ODE (....)

declarations ...

Equations

equations ....

End

The Model statement defines the model type (ODE or
DAE) and defines some general information around the
handling of the model. The declarations statements de-
fines constants, parameters, variables, states, model in-
puts, and model outputs. The equations statements de-
fines the relations between the entities defined under the
declaration section.

Constants and parameters are defined as shown below:

// Yield Coefficients

Constant Yso = 0.439;

Constant Ysx = 0.732;

// Molar Weights

Constant Mws = 1.0079*4+12.011+15.9994; // [S = CH3OH][g/mol]

Constant Mwo = 2*15.9994; // [O = O2][g/mol]

Constant Mwx = 12.011+1.8*1.0079+0.5*15.9994+0.2*14.0067; // [X][g/mol]

// Kinetic Parameters

Parameter mumax = 0.37; // [][1/hr]

Parameter ks = 0.021; // [][kg/m3]

Parameter ki = 0.38; // [][kg/m3]

Parameter ko = 6.4e-5; // [][kg/m3]

Assingments can be expressions. Parameters can be
changed from outside the the model.

Declaration of states and inputs:

// CSTR states

State Cxcstr = 10.3; // [protein concentration][mol/m3]

State Cscstr = 0.01; // [substrate concentration][mol/m3]

State Cocstr = 0.123; // [oxygen concentration][mol/m3]

Input Fs = 0.00411; // [Substrate input][m3/hr]

Input Fw = 0.1736; // [Water input][m3/hr]

Input Fg = 0.7034; // [gas input][m3/hr]

The positions in the x and u vectors follows the declaration
sequence. The states and inputs can be assigned inital
values.

Declaration of variables:

// Mixer

Var Fliq; // [Liquid flow][[m3/hr]

Var Ftot; // [Total flow][[m3/hr]

Var epsilon; // [gas/liquid ratio][]

Var v; // [PFR flux][m/hr];

The values of the variables must be a function of the states
and inputs, as described in the equation section.

Finally the outputs y can be defined as:

Output Cxcstr; // [protein concentration][mol/m3]

Output Cscstr; // [substrate concentration][mol/m3]

Output Cocstr; // [oxygen concentration][mol/m3]
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The positions in the y vector follows the declaration
sequence.

The equation section is used to specify the relations
between inputs, variables and states

Equations

F = Fs + Fw; // Total flow

// Mixer

// Inlet boundary conditions for the PFR

Fliq = F + FR;

Ftot = Fliq + Fg;

epsilon = Fg / Ftot;

v = Ftot /Apfr;

Cxpfrin = (Fs * Cxin + FR * Cxcstr) / Fliq;

Cspfrin = (Fs * Cmet + FR * Cscstr) / Fliq;

Copfrin = (Fs * Coin + FR * Cocstr) / Fliq;

Cgopfrin = Cgoin;

.

.

// Differential equations for CSTR

rx[N] = Cxcstr * Mu(Cscstr,Cocstr);

time * der(Cxcstr) = (Fliq / Vcstr) * (Cx[N - 1] - Cxcstr) + rx[N];

time * der(Cscstr) = (Fliq / Vcstr) * (Cs[N - 1] - Cscstr)

- gammaS * rx[N];

time * der(Cocstr) = (Fliq / Vcstr) * (Co[N - 1] - Cocstr)

- gammaO * rx[N];

where the operator der(Cxcstr) indicates the time deriva-
tive of a state variable Cxcstr. ModelBuilder automaticly
sorts the equations in the correct sequence. The equations
are of the type expression = expression, not just simple
assignments. The number of equations must be equal to
the number of states and variables.

ModelBuilder supports the standard mathematical func-
tios as Exp, Ln, Log, Sin, Cos, Tan, Sqrt and Pow. New
functions, as the reaction rate, can defined in the decla-
ration section, and subsequently be used in the equation
section

// Kinetic Parameters

Parameter mumax = 0.37; // [][1/hr]

Parameter ks = 0.021; // [][kg/m3]

Parameter ki = 0.38; // [][kg/m3]

Parameter ko = 6.4e-5; // [][kg/m3]

// Kinectics

Function Mu(Cs,Co) = mumax * (Cs /(ks + Cs

+Pow(Cs/ki,2)) * (Co/(ko + Co)));

.

Equations

.

rx = Cxcstr * Mu(Cscstr,Cocstr);

.

End

The plugflow reactor section of the U-Loop reactor is
discretized into N sections of equal size. In the declaration
section the states and variables for these sections can be
defined as:

// Plug Flow reactor states

Constant N = 15; // Number of cells in plug flow reactor

State Cx[N] = 10.3; // [protein concentration][mol/m3]

State Cs[N] = 0.01; // [substrate concentration][mol/m3]

State Co[N] = 0.123; // [oxygen concentration][mol/m3]

State Cgo[N]= 10.0; // [oxygen concentration gas phase][mol/m3]

// Flux

Var Nx[N+1]; // [protein flux][mol/m]

Var Ns[N+1]; // [substrate flux][mol/m]

Var No[N+1]; // [oxygen flux][mol/m]

Var Ngo[N+1]; // [oxygen gas phase flux][mol/m]

// Reaction rates

Var rx[N+1]; // [recation rates][mol/m3];

Var Jglo[N];

The declaration State Cx[N ] = 10.3 is equivalent to 15
statements

State Cx[0] = 10.3; // [protein concentration][mol/m3]

State Cx[1] = 10.3; // [protein concentration][mol/m3]

State Cx[2] = 10.3; // [protein concentration][mol/m3]

State Cx[3] = 10.3; // [protein concentration][mol/m3]

.

State Cx[14] = 10.3; // [protein concentration][mol/m3]

In the equations section, the equations can be repeated
using the Repeat statement

// Plug Flow reactor flux

Nx[0] = v * Cxpfrin;

Ns[0] = v * Cspfrin;

No[0] = v * Copfrin;

Ngo[0] = v * Cgopfrin;

Repeat(1 : N -1)

{

Nx[ix] = v * Cx[ix - 1] - (Dx / dz) * (Cx[ix] - Cx[ix - 1]);

Ns[ix] = v * Cs[ix - 1] - (Ds / dz) * (Cs[ix] - Cs[ix - 1]);

No[ix] = v * Co[ix - 1] - (Do / dz) * (Co[ix] - Co[ix - 1]);

Ngo[ix] = v * Cgo[ix - 1] - (Dgo / dz) * (Cgo[ix] - Cgo[ix - 1]);

}

Nx[N] = v * Cx[N - 1];

Ns[N] = v * Cs[N - 1];

No[N] = v * Co[N - 1];

Ngo[N] = v * Cgo[N - 1];

Repeat(0 : N - 1)

{

// Gas-Liquid Transport

Jglo[ix] = klaO * (RTdivMwoHo * Cgo[ix] - Co[ix]);

rx[ix] = Cx[ix] * Mu( Cs[ix], Co[ix]) ;

time * der(Cx[ix]) = -(Nx[ix + 1] - Nx[ix]) / dz + rx[ix];

time * der(Cs[ix]) = -(Ns[ix + 1] - Ns[ix]) / dz - gammaS * rx[ix];

time * der(Co[ix]) = -(No[ix + 1] - No[ix]) / dz - gammaO * rx[ix]

+ Jglo[ix] / (1.0 - epsilon);

time * der(Cgo[ix]) = -(Ngo[ix + 1] - Ngo[ix]) / dz - Jglo[ix] / epsilon;

}

The Repeat(0 : N − 1){......} repeats the statements in {
...... } with the index variable ix set to values from 0 to
14. The Repeat statement can handle up to 3 dimensions,
with index variables ix, iy, iz.

ModelBuilder models can be used as ordinary differential
equations,ODE, or differential algebraic equation,DAE.
The ODE are computationally more efficient than DAE
models, but it put some restrictions the equation system.
For that reason we standardized the APCSuite system to
use the DAE formulation. This choice is not presented to
the user.
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Fig. 4. Control cycle

4. THE MPC CONTROLLER

The resulting ModelBuilder model can be used by APCSuite’s
MPC controllers. Here the MPC is defined declaring in-
puts, outputs, targets, limits e.t.c. as shown in Fig. 5.

The default option is to linearize the ModelBuilder model
as a state space model around the operations point speci-
fied in the ModelBuilder source code, resulting i a conven-
tional linear MPC controller.

Alternatively the MPC can use the ModelBuilder model
to calculate a collection of linear linear state space models
along future trajectory predicted by the MPC controller
resulting in a nonlinear MPC controller, as shown in Fig.
4. The state space models are collected i a ModelProvider,
which is initailized with state space models corresponding
to the operating point given in the ModelBuilder source
code.

The plant outputs are read via the OPC connection to the
plant PLC, and the current state of the plant is estimated
with a Kalmann filter.

The MPC algorithm runs as a conventional linear MPC
using state space models from the ModelProvider, and
calculates setpoints for plant inputs together with the
anticipated future trajectory of the plant.

Setpoints are written to the plant PLC.

Finally the idle time until next sample time is used to
update the models in the ModelProvider according to the
new future trajectory calculated by the MPC controller.

The updating of the state space models around the pre-
dicted future states can result in cyclic iterations, which
can be eliminated by filtering the predicted response. The
UpdateFilter, α, filters the predicted plant trajectory and
plant input:

Fig. 5. MPC configuration.

Fig. 6. U-Loop initial trajectory.

xf (t) =αx(t) + (1− α)xf (t) (1)

uf (t) =αu(t) + (1− α)uf (t) (2)

0 < α ≤ 1 (3)

where x(t) and u(t) are the predicted trajectories and
process inputs calculated by the MPC algorithm. xf (t)
and uf (t) are the filtered trajectory and process inputs
used to calculate next set of state space models.

5. SIMULATION RESULTS

The proposed control cycle scheme was tried on the U-
Loop reactor.

Fig. 6 shown the very first prediction by the MPC algo-
rithm, using the initial state space model derived from the
operation point given in the ModelBuilder source code.
After a number of control cycles the MPC controller ap-
proaches the nonlinear predictions an shown in Fig. 7.
After a while, the predicted trajectory is stable as shown
in Fig.8. Finally Fig. 9 shown the state after many control
cycles just before reaching the final steady state of the
process.

In Fig. 10 the MPC controler was started without updating
the models. This resulted in an unacceptable oscillatory
response, which disappered after re-starting updating of
the models as shown in Fig. 11. This is the type of results,
which should be studied with a simulator and not in front
of a group af sceptical process operators.
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Fig. 7. U-Loop after 10 control cycles.

Fig. 8. U-Loop converged.

Fig. 9. U-Loop reaching final stationary state.

6. CONCLUSION

The ModelBuilder language and the proposed control cycle
with a ModelProvider enables process engineers to develop
and maintain advanced process controllers for nonlinear
processes without having to use MATLAB or compilers.

The relatively simple strategy by using the linear algo-
rithms combined with subsequent updating of the models,
provides a fast immediate response to the process and it
works for difficult cases as the U-Loop reactor. For unsta-
ble systems more complicated strategy based on ”multiple-
shooting” might be required.

Fig. 10. Linear MPC performance (unacceptable !).

Fig. 11. MPC after re-starting model update.
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A novel approach to steady-state gradient

estimation using transient measurements
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Real-time optimization deals with the optimal economic operation of a process. There are several

different approaches to real-time optimization in the process control literature. Recently, there has

been a surge of interest in the so-called “direct-input adaptation” approaches, where the optimiza-

tion problem is converted into a feedback control problem. Optimal operation is thus achieved by

directly manipulating the inputs based on feedback measurements instead of solving a numerical

optimization problem. Self-optimizing control, extremum seeking control and NCO-tracking belong

to this category of RTO methods. In this paper, we propose a novel approach to such a direct-

input adaptation strategy, where the estimated steady-state gradients are controlled using transient

measurements.

In this paper, we propose a novel approach to such a direct-input adaptation based RTO scheme,

where the steady-state gradient is controlled to zero using transient measurements. The proposed

approach can be seen as an online variant of self-optimizing control, where the self-optimizing variable

is the steady-state gradient. To control the gradient, the proposed scheme uses a dynamic model

online to estimate the steady-state gradient using transient measurement data. This is done by

means of a combined state and parameter estimator. With the use of the estimated states and the

cost function model, a local linear dynamic model (1) can be obtain by linearization of the nonlinear

model.

ẋ = Ax + Bu

J = Cx + Du (1)

The steady state gradient of the cost function can then be obtained using the system matrices.

Ju = −CA−1B + D (2)

For driving the gradients to a setpoint of zero, any feedback controller such as PID or MPC can be

used.

When compared to self-optimizing control, the model is used online instead of offline and the

proposed method is based on local linearization around the current operating point, as opposed to

local linearization around the nominal optimal point in self-optimizing control. By doing so, we

reduce the steady-state losses associated with the standard self-optimizing control and reach the

true optimum following a disturbance. Similar, to the self-optimizing control, the proposed method

provides fast reaction to disturbances and converges to the new optimal point, without the need to

solve computationally intensive numerical optimization problems.

1
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Figure 1: Block diagram of the proposed Model based extremum seeking control

The idea of controlling the steady-state gradient to a constant setpoint of zero is similar to

extremum seeking control and NCO-tracking. However, extremum seeking control and NCO tracking

are model-free approaches and requires the system to reach steady-state before the data can be used

to estimate the steady-state gradient. Using transient measurements leads to inaccurate gradient

estimation. This leads to very slow convergence to the optimum point. Model-free approaches

also require the cost to be measured and requires additional perturbations for accurate gradient

estimation. In the proposed method, the steady-state gradient can be estimated using transient

measurements, hence providing fast reaction to disturbances. In addition, it also does not require

any additional perturbations or cost measurements. However, since the proposed approach is model-

based, unmodelled disturbances may not be handled as effectively as the model-free approaches.

In contrast with nonlinear Economic Model Predictive Control (EMPC), optimization is done

by feedback control. Hence, the computation time of the proposed method is significantly smaller

which allows for faster sampling interval of the overall control loop. As a result, problems associated

with computational delay are alleviated.

The proposed method was compared to self-optimizing control (SOC), extremum seeking control

and economic NMPC in simulations. The proposed method was able to drive the process to the

optimal operating point without the need to re-optimize.

2
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Steady-state optimization
using phase-lag information

Olle Trollberg12 and Elling W. Jacobsen1

Steady-state output optimization is a key problem in
the process industry. Due to the presence of uncer-
tainty and lack of sufficiently accurate models, data-
driven methods are frequently used to solve this prob-
lem. The most common data-driven methods are gra-
dient based, e.g., necessary conditions for optimal-
ity (NCO) tracking [2] and extremum seeking control
(ESC) [1]. Since the gradient typically cannot be
measured directly, it is estimated and then the in-
put is adapted to move this estimate towards zero.
Recently we showed [3] that extremum points in the
steady-state input-output mapping are not only char-
acterized by a zero gradient. In general, there will
also exist a transmission zero at the origin at such
points. This has implications for the phase lag of
the process at the optimum, and herein we make use
of this fact to design a method for steady-state op-
timization based solely on estimation and regulation
of the system phase-lag.

In [3], we show that a plant linearized at an operat-
ing point corresponding to an extremum point in the
steady-state input-output map, i.e., at a steady-state
optimum, in general will have a transmission zero at
the origin, and that this zero locally will cross be-
tween the RHP and LHP as the operating point is
moved past the optimum. This implies that the lo-
cal phase-lag ϕ will equal ±π/2 at the optimum, and
that the phase-lag will vary by π rad in a neighbor-
hood centered about the optimum. This is exact for
the frequency zero, but holds approximately also for
a range of nonzero frequencies. This implies that a
steady-state optimum may be found by considering
the phase-lag only, in particular by adapting the in-
put until the local phase-lag ϕ of the plant equals
π/2 + nπ, n ∈ Z.

Here we note that this problem is similar to the
problem addressed by phase-locked loops (PLL), and

1KTH Royal Institute of Technology, School of Electrical
Engineering, Department of Automatic Control.

2Corresponding author: olletr@kth.se

design a simple controller based on elements com-
monly found in a PLL. In particular, we perturb the
plant by adding a sinusoidal to the input and use a
Kalman-Bucy filter to estimate the local phase-lag ϕ
at the current operating point. We then use an in-
tegral controller to move the system towards a point
where ϕ = ±π/2. The controller equations are given
by

ẋK = PHTR−1(y −HxK)

Ṗ = Q− PHTR−1HP

H = [1 sin(ωt) cos(ωt) sin(2ωt) cos(2ωt)]

˙̂u = k(arctan2(xK,3, xK,2) + (π/2))

u = û+ a sin(ωt).

(1)

Here the filter is based on the assumption that the
output is periodic with the same fundamental period
as the perturbation. The elements of the filters state-
vector xK then serve as estimates of the first coeffi-
cients of the Fourier series of the output, and the local
phase-lag may be computed from the coefficients for
the first harmonic as ϕ = arctan2(xK,3, xK,2). The
matrices Q and R may be considered as tuning pa-
rameters along with the perturbation amplitude a,
the perturbation frequency ω, and the gain of the
integral controller k.

Assuming that we do not have a model avail-
able, we apply this controller in order to optimize
an isothermal perfectly mixed tank reactor with the
reactions A → B, and 2B → C where y = B is the
output and C is an unwanted byproduct. For sim-
ulations, we use standard mass action kinetics and
represent the dynamics by

V ċA = F (cAf − cA)− V k1cA
V ċB = −FcB + V k1cA − V k2c2B

(2)

where cA and cB are concentrations of A and B, re-
spectively, V = 1.0 is the volume, cAf = 1.0 is the
concentration of A in the inflow, and the kinetic con-
stants are k1 = 2.0, k2 = 0.1. The process is con-
trolled via the total flow u = F which determines the
retention time in the reactor. The production of B
has a unique maximum for F = 0.375 with B = 0.71.

1
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We use the controller-parameters,

R = 0.01, Q = 10I, (3)

a = 0.01, ω = π/50, k = 0.0001, (4)

and initialize the search from cA = 0.1, cB =
0.1, u = 0.012. Fig. 1 shows the closed-loop tra-
jectories of the simulation. The top and middle parts
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Figure 1: Optimization of the CSTR described by (2)
using estimation and regulation of the plant phase-
lag.

of Fig. 1 show the convergence of the input u and
output y to the optimal solutions marked by dotted
lines. For the input we show the The bottom part
shows how the estimated phase converges to −π/2
rad, also marked by a dotted line.
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time optimization by extremum-seeking con-
trol. Wiley-interscience publication. Wiley-
Interscience, 2003.
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State of the art of integration of scheduling and control – remaining challenges 
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Abstract: Integration of scheduling and control is a relatively new field of research that gains attention 
especially owing to Internet of things (IoT), which enables seamless and easier communication channels 
between the various functions in automation. Whereas scheduling and control have separately advanced 
especially in the area of optimization, their interplay is still not fully clarified. It is, nonetheless, clear that 
optimization can be seen as the main criteria or measure to evaluate how well the integration aspects are 
fulfilled. There are a number of potential approaches, each of which have their own merits, but very little 
industrial implementations to prove the value in real-life production have been reported. In this 
presentation we will review some of the main methods and discuss challenges that must be solved before 
a wider deployment is possible. 
Keywords: Scheduling, control, optimization, integration, industrial implementation 

 
The topic of integrating scheduling and control has been 
discussed at least during three decades (Shobrys and Baker, 
1986) and above all in the last decade many contributions 
especially towards optimization solutions have been reported. 
Recent reviews give an overview of the state-of-the art from 
the operations perspective (Engell and Harjunkoski, 2012), 
methodological overview (Baldea and Harjunkoski, 2014) 
summarizing the research directions, uncertainty (Dias and 
Ierapetritou, 2016) and framework perspective (Pistikopoulos 
and Diangelakis, 2016) introducing a PAROC system 
bringing many central aspects together. Looking at the 
integration problem we are basically dealing with a mixed 
integer dynamic optimization (MIDO) problem (Allgor and 
Barton, 1999), which is nontrivial to solve for larger problem 
instances. The key towards solving the problem more 
efficiently lies in the selected modeling strategy. A natural 
approach would be to deploy advanced process control 
methods, e.g. through the use of economic-MPC type of 
approach (Subramanian et al., 2012; Touretzky and Baldea, 
2014), or to handle the process dynamics as pre-determined 
parameters in the scheduling models that can be updated 
regularly (Chu and You, 2012). Multi-parametric MPC 
approaches have also been deployed in Zhuge and 
Ierapetritou (2014) and a time scale-bridging approach in Du 
et al. (2015), enabling a low-order representation of the 
process dynamics in the scheduling framework. Design 
aspects and uncertainty in the demand have been studied in 
Patil et al. (2015) and to reduce the computational complexity 
Lagrangean heuristics is deployed in Terrazas-Moreno et al. 
(2008). 
 
While significant progress has been achieved over the years, 
it is fair to say that at the moment there is not a generally 
accepted methodology and/or “protocol” for such an 
integration – it is also interesting to note that currently, there 
is not a commercially available software system to fully 
support such an activity (Pistikopoulos and Diangelakis, 

2016). The most successful use cases have been mainly 
applied to continuous processes where the scheduling 
challenge limits to the sequencing of changeovers taking into 
account optimal trajectories e.g. in polymer production. Also 
batch processes with either relatively uncomplicated 
dynamics or low number of binary decisions have provided a 
good fundament for theoretical studies. In practice, it is very 
difficult to prove both the expectations and the outcoming 
value and so far operations and control are still hierarchically 
separated in most industrial landscapes. The mental and 
organizational barriers are well analyzed in Shobrys and 
White (2000) and in order to overcome them the value of 
integration must be well evaluated. 
 
The current discussion is moving away from strict integration 
of “silos” but more towards collaboration concepts such as 
online scheduling (Gupta et al., 2016), often also with both 
academic and industrial contributions. This is a promising 
direction as the industrial Internet of Things will enable better 
data communication and exchange bringing “physically” 
solutions closer together (Harjunkoski, 2016; Isaksson et al., 
2017), taking the first steps towards synergistic process 
control. Thus, the main challenges are 

• Breaking the formal silos between scheduling and 
control and enable full data exchange 

• Finding the best methodological approaches and 
understanding their pros and cons 

• Proving the value of integration in practice – a 
challenge even on the theoretical level 

• Ensuring that the right people are working together 
towards a common and well understood goal 

Consequently, integration of scheduling and control will 
affect both the control and scheduling communities. The 
optimization aspects are central – both in enabling the 
collaboration as well as in proving the value of the 
integration. 
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Intelligent Vessels 
Ilkka Rytkölä and Fredrik Östman, Wärtsilä Finland Oy 

The traditionally so conservative marine industry is today facing a change that is picking up pace. IoT, 

analytics and connectivity is promising the introduction of new business models are new value 

creation beyond the reach of traditional thinking. Novel sensor technologies and increased 

computational power enables already today technologies for intelligent and autonomous operation 

of vessels, which wasn’t even conceivable just some years back. In this presentation, the concepts of 

autonomous and intelligent vessels will be presented along with a discussion around the main 

challenges. Concrete examples developed within Wärtsilä will, moreover, be shown related to engine 

control and diagnostics, to highlight what will be required in the future. 
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Abstract:

Indirect fire (gun artillery, rocket launchers, mortars) is one on the most important casualty producing agents
on the battlefield, with fragments from high explosive ammunition being the principal cause of casualties in
modern conflicts [5].

Indirect fire can be considered a system consisting of five elements: surveillance and target acquisition, C4
(command, control, communication and computation), munitions, weapon platforms and logistics [10]. Using
simulation models, the effectiveness of indirect fire systems can be studied. Possible cases include technolog-
ical development influencing the subsystems, changes in use and organization of indirect fire assets, as well as
protection against indirect fire.

The data farming process, introduced by [7] and codified in [1], applies a simulation-based approach to analyze
complex systems. Data farming combines simulation modelling, rapid prototyping, experimental design, high-
performance computing and analysis and visualization for conducting large-scale simulation experiments.
Multiple simulation runs are performed using different parameter values for each run.

A numerical model for simulating the effects of indirect fire has been developed in the Finnish Defence Forces.
The model is based on physical properties of the ammunition and has been validated using field experiments
[3]. The simulation model has been used in a number of studies over the years [9, 2, 4], and is also integrated
in the combat modelling software Sandis [8].

This paper discusses findings from simulation studies on indirect fire, where only open source data has been
used as input and the data farming approach has been applied to generate and analyze data. In particular,
we discuss a recently presented case study on the effectiveness of 120 mm mortar ammunition against prone
infantry [6]. Two questions were analyzed, concerning more powerful explosives and improved metallurgical
properties of the casing. First, what is the optimal fragment mass distribution parameter for a given target
and initial fragment velocity? Second, how will increasing the initial fragment velocity change the number of
projectiles needed to achieve a desired effect?

Keywords: modelling and simulation, data generation, data analysis and visualization
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Abstract 

Current trends indicate that renewable energy is going to have a significant share in the production 

portfolio, as it is forecasted (IHS Market) that approx. 50% of global capacity additions (1400GW until 

2025) will be RES (solar, wind). The widespread of renewable energy reconfigures the role of

conventional power production, simultaneously triggering tightening emission and safety regulations 

and demanding performance requirements. For example, due to the intermittent nature of variable 

RES (vRES) power, the role of conventional combustion plants is drifting from base power production 

to load flexible power generation which requires high flexibility in operation, i.e. capability for frequent 

start-ups, decreasing the minimum load, performing rapid load changes within well-defined load range 

and participating in frequency control duties. The usual load ramps are in the range of 2-5 %MCR/min 

(percentage of the maximum continuous rate per time), and typically in the range of 50%-90% load 

level. Additionally, there is a clear trend requiring smaller (5-10%) load change but in a much quicker 

manner.  

In order to address the aforementioned challenges, the dynamic response of power plants has to be 

improved. The improvement can be achieved by (a) application of advanced control/automation 

solutions for a given construction or (b) evaluation of the dynamic characteristics during the design 

phase. For existing plants the most cost–effective manner to improve the operation flexibility is to

(re)design the unit master control since these may inherently have great potential for flexibility

currently not utilized by the applied control approach which is typically built on boiler- or turbine-follow 

arrangements.  

This paper addresses the control performance evaluation of combustion-thermal power plants. The 

core problem is described as follows: given a nonlinear (mathematical) plant model, what is the best 

possible performance (regarding reference tracking) which can be achieved by means of feedback 

control subject to system constraints, assuming full state information. Consequently, the related 

problem to be considered is the derivation of the feedback law which actually achieves the best 

possible performance.  Given the outlined problems, an approach is developed to provide a (lower) 

bound estimate on closed loop control performance for nonlinear combustion-thermal power plant 

models regarding reference tracking criteria. The approach assumes full state information and 

considers hard (process input and state) constraints. Using this, a best possible operation strategy (by 

means of feedback control) is proposed for the plant given a load rejection reference. Finally an 

application of the proposed approach is considered. 
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Oscillations are one of the major performance issues in industrial control
systems. The presence of oscillation can lead to equipment wear and product
variability, thereby effecting the profitability of the plant. Moreover, oscillations
originating in one of the loops can propagate to different parts due to underlying
interactions and process flows, giving rise to plant-wide oscillations. In order to
reduce the adverse impacts of the oscillatory control loops a robust oscillation
detection and diagnosis mechanism is required to reduce the shut down and
maintenance time.

The increased level of complexity and automation in industry necessitates
the provision of adaptive and data driven tools for the diagnosis and detection of
oscillations. The data driven approaches are preferred over the traditional model
based analysis as the accurate physical mathematical models are not easily
available. Multivariate empirical mode decomposition (MEMD) has the ability
to process multivariate data and to sift out different oscillatory components
from the data without any model and any assumption about the underlying
process itself. The MEMD is applicable to both non-stationary and non-linear
time series data and is quite helpful in detection and diagnosis of the oscillations
in control loops.

MEMD owing to its peculiar dyadic filter bank and mode alignment property
can be applied to the variety of issues ranging from oscillations in individual
loops to the plant wide oscillations. The method not only detects the oscillation
in the loops but also checks for the presence of the harmonics to ascertain the
existence of non-linearity as the source of oscillations in an automated manner.
Presence of multiple sources of oscillations can also be handled accordingly.
Moreover, the MEMD can be used for the case of plant wide oscillation detection
where the loops oscillating with common cause and hence common frequency
are grouped for further analysis.
∗muhammad.faisal.aftab@ntnu.no
†morten.hovd@ntnu.no
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The effectiveness of the MEMD based methods both for the detection of
oscillations in individual control loops and plant-wide oscillations are demon-
strated using simulation and industrial case studies.

2
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Decision support systems are crucial in order to improve the efficiency and safety of control systems. With 

an increase in system complexity and autonomy, the tasks for operators to analyse situations, of behaviours 

deviating from nominal system operation, becomes increasingly complicated. 

Automated fault diagnosis is a method which can potentially decrease the reaction time, and increase the 

probability of a correct response to faults. The focus of online fault diagnosis has primarily been on 

component level. Multilevel Flow Modeling (MFM), is a method for modelling the functionality of complex 

mass and energy flow systems1. Models of nuclear power systems, electric power grids and oil production 

systems have been used for online fault diagnosis2. The method is used for modelling how high level 

functionality is supported by lower levels, commonly referred to as means-end models. MFM has numerous 

different applications of which one is fault diagnosis. Online fault diagnosis with MFM is limited in 

application2,3,4,5,6,7, whereas offline root cause analysis has been applied diversely8,9,10. 

Faults are problems that pose a risk to the quality of a product or the safety of the environment, equipment 

or staff. It is impossible to foresee every possible fault on a plant. For this reason, MFM becomes beneficial, 

as models are general and high level descriptions of the plant functionality, at a qualitative and discrete level. 

This means, that models are capable of predicting a wide range of causes and consequences of faults. MFM 

is however intended as a tool for decision support, providing information on the type of fault and its origin, 

requiring a final analysis of an operator, based on the provided information. MFM is different from 

conventional fault diagnostic methods11,12, as MFM does not require that one classifies faults in groups such 

as: broken bearing, broken shaft, broken propeller and no faults. Instead, MFM provides causal 

consequence/cause pathways, e.g. the flow of water has decreased into a separator, due to an imbalance 

between incoming and outgoing mass flows, caused by either a) a low flow at a pump, b) a valve failing to 

open/close, etc. MFM thus has the potential to distinguish between a considerably large amount of different 

faults with low modelling effort. Currently there is no method for selection amongst multiple candidate 

diagnoses, however this is currently a topic of investigation. 

In this project, a pilot plant of an offshore water treatment process is modelled with MFM. A set of faults 

have been defined based on a HAZOP study and simulated on the pilot plant. The model is then used for 

predicting causes and consequences of triggered alarms. This projects aims to produce robust predictions of 

causes and consequences from MFM models, by synthesizing a method and framework for validating and 

testing MFM models. The framework will provide a means for comparison of different models or model 

versions on a specified set of faults. It will also enable comparison with other fault diagnostic methods, or 

different versions of the MFM methodology rule base13. 

Based on the work carried out by Wu14 we are investigating how to validate the model, based on expert 

knowledge and a HAZOP for high risk and rare faults. And also on dynamic process simulations and on-line 

experiments. We seek to validate models by combining qualitative statements with dynamic process 

simulations and on-line experiments, to produce a large set of faults with variations, to determine the model 

robustness to fault variations. 
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Extended Abstract 

In the process industry, final control elements are used to implement control actions of PID control 

loops, such as flow, pressure, level, temperature, and quality controls. The most common controls are 

liquid  and  gas  flows  in  pipelines,  which  are  usually  implemented  by  pneumatically  powered  servo  

actuating systems. They have a key position ensuring safe and economical operation of the plant, and in 

the case of failures, such as faulty sensors, it is important to retain control over the actuator. 

Today's servo actuating systems utilize auxiliary sensors (e.g. pressure sensors) for position control, but 

the most important sensor is for position. Most servo actuator controllers can operate in a mode where 

only the position sensor is utilized for control, so a fault in any other sensor does not cause major 

problems for control. However, if we lose the position measurement, some indirect control must be used. 

In this presentation, we introduce a new idea for fault-tolerant control targeted for failures in the position 

sensor. The key idea is to replace the faulty position opening measurement with a corresponding 

simulated value, and to use the simulated measurement for ordinary feedback control. 
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Abstract 

Accurate flowrate measurements in petroleum production is important for optimization, fiscal metering 

and allocation purposes. Currently, multiphase flow meters are widely used in the industry as the most 

reliable source for online monitoring of oil and gas production rates. However, such meters are 

expensive and may give inaccurate flowrate predictions for a flow with high gas-oil ratio (GOR) and 

water cut (WC).  

As an alternative, Virtual Flow Meters (VFM) may be used. These meters estimate the flowrates based 

on a  computational fluid flow model in a combination with an optimization routine. 

In this work, a Virtual Flow Meter is created based on OLGA-MATLAB interaction via a Matrikon 

OPC server. This VFM system is used together with Monte Carlo simulations in order to investigate 

the influence of sensor degradation on the flowrate estimates.  

In addition, the influence of heat transfer modeling on the flowrate estimates is discussed. More 

specifically, a segmented modeling approach of the well heat transfer is compared with a non-

segmented approach. Applicability of both approaches for VFM systems is discussed. 

In the results it is obtained that the sensor degradation may have a noticeable impact on the flowrate 

estimates using VFM. In addition, it is obtained that the failure of the temperature sensors may lead to 

a bias in the flowrate estimates. 

In the heat transfer modeling part, it is obtained that the segmented approach does not give any 

advantage if the wellhead pressure is known. However, under some circumstances, this approach may 

produce better results than the non-segmented approach.  
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Abstract 

A mechanistic process model describing a lactic acid bacteria (LAB) fermentation was applied to both 

optimize a continuous fermentation process and to monitor a 700 L batch fermentation of Streptococcus 

thermophilus considering model and measurement uncertainties. The mechanistic model for a 

Streptococcus thermophilus fermentation comprised biological and chemical mechanisms. It included a 

description of the biomass growth rate as a function of the pH and inhibition effects of metabolites, and 

predicted biological state variables, such as the biomass, substrate (lactose), and lactic acid concentrations. 

In addition, the model predicted the pH of the fermentation broth by solving the dissociation reactions of 

the charged components, as lactate, ammonia, carbonate, and phosphate. (i) The dynamic model was 

applied to optimize a continuous fermentation in a 50 m3 bioreactor considering the feasibility for the 

downstream units. The optimal substrate concentration in the feed and dilution rate were estimated in 

order to maximize the cell yield (biomass concentration) and to minimize the waste of substrate owing to 

raw material costs. Producing LAB in a continuous fermentation would reduce production costs compared 

to traditional batch fermentations. (ii) The model was used in a soft sensor framework to monitor a 700 L 

Streptococcus thermophilus fermentation. The soft sensor was based on a data reconciliation module and 

the dynamic model. The data reconciliation module used a general process stoichiometry model to update 

some of the model parameters with 5 minutes intervals using the very limited available on-line 

measurements, which were pH and amount of ammonia addition. The updated parameters were used as 

input to the dynamic model. The model predicted then unmeasured, important process parameters, such 

as biomass, lactic acid, lactose (substrate), and the measured pH. Uncertainties in model parameters, initial 

conditions, and measurements were accounted for by performing Monte Carlo simulations of 100 input 

samples leading to a probability distribution of the state variables in the monitoring system. The presented 

applications were implemented and solved in MATLAB® (The MathWorks®, Natick, MA) using the built in 

solver, ode15s, and the nonlinear least-squares solver, lsqnonlin. 
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Abstract: In the oil- and gas industry, gravity separators are used for bulk separation of
hydrocarbons (oil and condensate), gas and water. Further purification happens in downstream
equipment, such as hydrocyclones, gas flotation units or membranes. The composition of the
multiphase inlet stream to the gravity separator is often not known, since multiphase metering
is expensive or sometimes not applicable at all. However, knowledge of the amounts of gas and
liquid entering the separator and in consequence also the downstream equipment is beneficial
for optimal operation or to launch countermeasures in the event of severe slugging.

We use a first-principles model for a gravity separator [1] to design observers for estimation of
the liquid and gas inflows to the separator, which constitute disturbance variables. Furthermore,
we estimate the effective split ratio between the respective water and oil phases. The observers
are based on an Extended Kalman Filter (EKF) in its continuous-time implementation. The
first observer design is a standard EKF, whereas the second is a Kalman-like Filter, or more
precise a least-squares observer with forgetting factor [2], since the Kalman Filter in its
deterministic sense is in fact a least-squares observer. Hence, the second observer (KF-like LSO)
is closely related to the EKF design. The only difference is found in the way the differential
Matrix-Riccati-Equation (DMRE) is solved and consequently how the Kalman feedback gain
is calculated.

For the EKF, the following well-known DMRE is solved
dP1(t)

dt
= A(t)P1(t) +P1(t)A

T (t)�K1(t)CP1(t) +Q1,

K1(t) = P1(t)C
T
R

�1
1 ,

(1)

where A(t) =
@ˆf(x̂,u)

@x̂
denotes the time-varying Jacobian of the extended system dynamics

˙

x̂ = ˆ

f(x̂,u), C is the output matrix in y = Cx̂, Q1 and R1 are the covariance matrices of
process and measurement noises, respectively, and K1(t) is the time-varying Kalman feedback
gain.

For the KF-like LSO, the DRME is slightly modified [3, Section 2.3]
dP2(t)

dt
= A(t)P2(t) +P2(t)A

T (t)�K2(t)CP2(t) + �P2(t),

K2(t) = �P2(t)C
T
R

�1
2 ,

(2)

where A(t) and C have been defined before, R2 is the measurement covariance noise matrix,
K2(t) denotes the Kalman feedback gain and � is the forgetting factor.

The advantage in using (2) instead of (1) for multivariable systems can be found in the simpler
tuning procedure, which implies defining the matrix R and the scalar �. Hence, tuning via
the process noise covariance matrix Q is skipped, which is often not known anyhow and in
many cases offers too many degrees of freedom.

In addition, the model structure of the gravity separator allows for the design of a cascaded
observer due to the fact that decoupling for some state variables is possible. This leads to
further simplification of the tuning procedure since each of the observers in the cascade can
be tuned independently.

In simulation studies we demonstrate that, despite the simpler tuning procedure, the KF-like
LSO performs at least equally well, if not better, compared to the EKF. The advantages of
simpler tuning procedures (KF-like LSO and cascaded design) become apparent, especially for
cases with added process and measurement noises.

[1] C.J. Backi and S. Skogestad – A simple dynamic gravity separator model for separation efficiency evaluation
incorporating level and pressure control. 2017 American Control Conference, Seattle, USA, May 24–26, 2017.

[2] R.M. Johnstone, C.R. Johnson Jr., R.R. Bitmead and B.D.O. Anderson – Exponential convergence of recursive
least squares with exponential forgetting factor. 21st IEEE Conference on Decision and Control, Orlando,
USA, December 8–10, 1982.

[3] M.A.M. Haring – Extremum-seeking control: convergence improvements and asymptotic stability. PhD Thesis,
Norwegian University of Science and Technology, 2016.
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State and parameter estimation for a
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torstein.t.k@gmail.com, christian.holden@ntnu.no).

Abstract: The gas-liquid cylindrical cyclone (GLCC) is a compact separator recently
considered for subsea separation of oil and gas in deep waters in remote areas (Kristiansen
et al., 2016) where large, traditional separators can’t be used. Several challenges need to be
resolved before placing this separator at the seabed. The small operational volume reduces
the separation performance and leads to high sensitivity to changes in inlet conditions.
Measurements of several critical variables are therefore necessary for both operators and
controllers to efficiently control the separator (Kristoffersen and Holden, 2017).

Available measurements are often limited due to a lack of suitable sensor technology, i.e., too
expensive sensors, unreliable measurements or simply non-existing sensors. Soft sensors are a
cost-efficient approach for estimating unmeasured states and parameters, using a prediction
model and the available measurements in place of expensive sensor hardware. Previous results
on estimation for GLCC separators are limited to use of the Extended Kalman Filter (EKF) for
parameter estimation assuming full state knowledge (Kristoffersen and Holden, 2017). The EKF
showed low robustness to measurement errors and was only able to handling approximately 1%
measurement noise in this case.

Therefore, in this work, we develop an Unscented Kalman Filter (UKF) and a linear Moving
Horizon Estimator (MHE) for improved robustness and state and parameter estimation of a
GLCC separator having limited state knowledge. The estimators apply the same estimation
model as the previously proposed EKF, but calculate the unmeasured states using an algebraic
transformation. The estimation performance are evaluated by considering the statistical proper-
ties of the state estimation error. A block diagram of the closed-loop system with the estimator
providing state feedback to a controller is shown in Fig. 1.

Keywords: Nonlinear estimation, Kalman filtering, MHE, UKF, EKF

Fig. 1. Block diagram showing the closed-loop system.
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A new efficient ratio control structure

Tore Hägglund
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In ratio control, the control objective is to keep the ratio between two signals,

normally flow measurements, at a desired value. There is no problem to achieve this

in a steady-state situation, but an efficient ratio control structure should be able to

take care of setpoint variations, load disturbances, and control signal saturations. It

is also desirable to have a structure that manages to keep the ratio also when one of

the controllers is switched to manual mode.

The flow setpoint is normally varying to follow demands on combustion or

production rate. There are various reasons for load variations, e.g. pressure variations

in the tubes, and the control signals are often reaching their saturation limits when

the control is aggressive and the actuators are not oversized.

So far, there has not been any approach that manages to track the ratio during

all possible transients caused by setpoint changes, load disturbances and control

signal saturations. This presentation describes the Tracking Ratio Station (TRS) that

manages to take all these disturbances into account. It is also able to keep the ratio

when one of the controllers takes a local setpoint or is switched to manual control.

The Tracking Ratio Station determines the setpoints of the two flow loops so that

the one with the largest control error follows the external setpoint, whereas the one

with the smallest control error follows the process output of the opposite control loop.

The Tracking Ratio Station has been implemented in an industrial DCS system

at a paper mill, and the field tests showed that the TRS worked as desired even in

this industrial environment in the presence of disturbances and sticky valves. Results

from the field tests will be given at the presentation.
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Abstract: Self-optimizing control focuses on minimizing loss for processes in the presence of
disturbances by holding selected controlled variables c at constant set-points. The loss can
further be reduced by selecting c as linear combinations H of the available measurements y
such that the controlled variables become c = Hy. Two methods for finding locally optimal
measurement combinations are the Null-space and the Exact local method. Both approaches
offer sets, with an infinite number of possibilities for selecting the measurement combinations
that all give the same loss. Since self-optimizing control mainly focuses on the steady-state
operation, little attention has been put on the dynamic performance when selecting measurement
combinations. In this work, PI controllers and measurement combinations are simultaneously
obtained with the aim to improve the transient response while maintaining the self-optimizing
control properties. A solution can be found by solving a bilinear matrix inequality (BMI), which
becomes a linear matrix inequality (LMI) by specifying a stabilizing state feedback gain. Since
the resulting PI controllers and measurement combination requires solving a BMI, a globally
optimal solution can’t be guaranteed. However, the proposed method often seems to give good
results. This is illustrated on a binary distillation column case study which shows an improved
dynamic response when the process is facing disturbances.

Keywords: Self-optimizing control, Static output feedback, Linear Matrix Inequality
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Risk-based health-aware control of a subsea system 

- Adriaen Verheyleweghen & Johannes Jäschke, Department of Chemical

Engineering, NTNU

Subsea oil and gas production and processing plays an important role in satisfying the worlds growing 
energy demands, despite the recent decline in oil price. Easy reserves have been largely exhausted, 
so new fields pose many challenges, such as large water depth, long tie-back distances or even 
seasonal inaccessibility. Subsea oil and gas processing can be an enabling technology in such cases, 
but it comes with challenges of its own. One of the biggest challenges is the large cost associated with 
maintenance interventions. For this reason, operation is often conservative, to prevent unplanned 
breakdown. Unfortunately, high system reliability is usually in conflict with the economic objective of 
the plant. In order to avoid sub-optimal operation, it is therefore important to devise a systematic 
approach to ensure optimal economic operation without compromising the system integrity.  

Health-aware control has been proposed to deal with problems where there is a trade-off between 
reliability and economic performance (Escobet, Puig, & Nejjari, 2012). They propose a reconfigurable 
control scheme that keeps the remaining useful life (RUL) of the system within predefined bounds by 
adjusting the throughput of the plant. Model predictive control may also be used to achieve health-
aware operation, by putting constraints on the maximum allowable system degradation, as shown e.g. 
by (Pereira, Galvão, & Yoneyama, 2010) and (Salazar, Weber, Nejjari, Theilliol, & Sarrate, 2016).  

We further develop the framework presented in (Verheyleweghen & Jäschke, 2017) of health-aware 
operation by looking at how the problem of optimal operation should be defined in a meaningful way. 
Rather than constraining the maximum allowable deterioration of certain critical health-indicators, 
we propose to limit the overall risk of unavailability during operation, as this directly relates back to 
the economics of the plant. To be able to evaluate the risk of unavailability, we need to know the joint 
density function of the individual sub-components. This requires detailed knowledge of the RUL 
distribution, of which the shape maybe known, but the parametrization of which might be uncertain. 
This problem can be partially mitigated by using stochastic or robust optimization methods. In this 
work, we assume that the RUL is Weibull-distributed. The parameters of the Weibull distribution are 
assumed to be known to lie within upper and lower bounds. To ensure feasibility and optimality of the 
solution regardless of the true realization of the parameters, we use scenario-based stochastic 
optimization. 

We demonstrate our approach on a subsea case study, where the production rate is adjusted such 
that the survival of the production system is guaranteed with a given probability. We also show that 
our approach results in more meaningful operation strategies than previously described approaches.  
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Resolving issues of scaling for gramian based input-output pairing
methods

Fredrik Bengtsson∗, Torsten Wik∗, and Elin Svensson†

A common issue in many industries is that interaction between different parts of the plant gives rise to a multiple input
multiple output (MIMO) system, where the same input may affect multiple outputs, or conversely, the same output is
affected by multiple inputs. This is the core of the input-output pairing problem; which inputs should be used to control
which outputs. While one often solves this by matching one input to one output by a decentralized configuration, at times
it can be necessary to add additional feed-forward between the inputs, or even implementing a full MIMO controller for
parts of the system.

There are numerous proposed input-output pairing methods, many of which are discussed in [6]. The most prominent
one is probably still the Relative Gain Array (RGA), and modifications of it, such as the dynamic RGA and the Relative
Interaction Array (RIA)[8]. Relatively recently a new group of input-output pairing methods have been introduced,
namely the gramian based methods. This group includes the Σ2 method [2], the participation matrix (PM) [3] and the
Hankel interaction index array (HIIA) [7]. These methods use the controllability and observability gramians to create
an interaction matrix which gives a gauge of how much each input affects each output. An attractive property of these
interaction matrices is that they can be used to determine both a decentralized controller structure and a sparse structure
(a structure which includes feed-forward or MIMO blocks). Moreover, the gramian based measures take into account
system dynamics and not only the steady state properties.

The gramian based methods however differ from the RGA and its variants in that they suffer from issues of scaling in
the sense that the results of the methods vary depending on input and output scaling. While some methods are suggested
to solve this problem in for example [4], we will show by an example of a heat exchanger network how these methods are
in some situations insufficient. A method to scale the Σ2 interaction matrix by normalizing either its columns or rows
was presented in [1] and here we will examine this method in more detail and also apply it to the PM and the HIIA.
Furthermore, we will examine a new scaling scheme which uses the Sinkhorn-Knopp algorithm [5] to normalize both the
rows and columns of the interaction matrix.

To demonstrate the benefit of the new scaling schemes we have developed a MIMO-generator to generate a large
number of systems. The scaling method for the gramian, with either columns or rows normalized, or both using the
Sinkhorn-Knopp algorithm was then compared to the gramian based methods without any additional scaling on each
of the generated systems. This is done by determining the control configuration of each method and evaluating their
responses to reference changes and load disturbances. It is shown that using the Sinkhorn-Knopp algorithm to scale the
interaction matrices generally gives the control configuration which handled both references and disturbances the best.
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On the Modified Hankel Interaction Index Array for
Control Configuration Selection

Bijan Moaveni1, Wolfgang Birk2
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Control configuration selection (CCS) is an important step in multivaraible control sys-
tems design, especially for decentralized control systems where an appropriate input-
output pairing has to be selected. There are numerous methods available for evaluating
the interactions between subsystems and solving the input-output pairing problem, ini-
tiated with the introduction of the Relative Gain Array (RGA). In general, input-output
pairing methodologies for linear multivariable plants can be classified in two categories,
transfer function based relative gain related methods and Gramian based methodologies
for state space realizations. The main benefit of transfer function based approach, like the
RGA, is that these methods take the closed loop properties into account, while those are
usually not ideal when dealing with large scale plants. On the other hand, Gramian-based
methodologies are efficient for large scale plants while these methods until now cannot
consider the closed loop properties in the pairing analysis. In other words, Gramian-based
methodologies are not really interaction measures, since these methodologies just consi-
der the open loop properties of the multivariable plant. Consequently, the main critic on
Gramian-based methodologies is that the methods do not provide any insight on closed
loop properties like stability and integrity, as well as that they are scaling dependent.

In this presentation, we are introducing and discussing the modified HIIA (mHIIA), which
tries to combine the benefits of the RGA-based and Gramian-based input-output pairing
approaches. The mHIIA is defined as the element-wise ratio of the open loop Hankel
norm with the Hankel norm of the closed loop.

δij =
σH,o,ij

σH,T,ij

In the derivation of the mHIIA, an interpretation of the perfect control requirement for
state space realisations is used and subsequently, the ratio between open-loop and closed-
loop Hankel norms is calculated. It is shown that mHIA has the following interesting
properties

• mHIIA is input-output scaling independent, while HIIA is not.
• mHIIA and HIIA consider the dynamics of the process in input-output pairing

analysis.
• mHIIA can consider the effect of internal time delays on input-output pairing,

while HIIA has problem with internal time delayed subsystems.

A number of typical benchmark cases will be used to evaluate the mHIIA and some of the
shortcomings of this approach will be discussed. It is important to note that the mHIIA in
its current form, does not yet provide insights on stability and integrity. Latest achieve-
ments in mHIIA approach will also be presented.
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Abstract—This paper presents the application of self-
optimizing control in the concept of surrogate model generation.
Surrogate model generation generally has problems with a large
number of independent variables resulting in a large sampling
case. Utilizing the concept of self-optimizing control and keeping
measurements constant, it is on the one hand possible to reduce
the number of independent variables resulting in a reduced
sample space. On the other hand, this allows to map a close-to-
optimal response surface. As the surrogate model is subsequently
used for optimization, this is as well advantageous; regions in
which the system is suboptimal are not mapped this way. The
proposed method is studied using an ammonia reactor which
for disturbances experiences limit-cycle behaviour and/or reactor
extinction. Using SOC, it is possible to reduce the number of
manipulated variables by three and map the optimal response
surface.

I. INTRODUCTION

Surrogate models are an emerging field and may be utilized
for the optimization of integrated flowsheets [1]. Using a
sequential-modular software like Aspen Plus®, Aspen Hysys®,
SimSci PRO/II, or UniSim Design Suite, problems may arise
in the convergence, whereas equation-orientated solver may
be difficult for complicated models. It is possible to simplify
the optimization through the incorporation of recycles within
the surrogate models. The calculation of surrogate models
struggles however if the number of independent variables (nu)
is high. This is generally the case, if the surrogate model i
is designed for the latter combination with other surrogate
models j. In this case, the connection variables xi, j may
increase nu. This so-called “curse of dimensionality” says
that the number of sampling points np grows exponentially
with the number of independent variables nu. This may result
in an excessive number of points one has to sample. One
alternative is the application of PLS regression to define new
latent variables u′ with dim(u′) < dim(u) [2]. As a second
alternative, we proposed to use the concepts of self-optimizing
control [3] to reduce nu [1]. This allows the mapping of the
region we are actually interested in and will hence be further
investigated in this paper.

This paper is structured as follows; Section II introduces
the problem in the context of surrogate model generation for
a submodels. Section III explains how self-optimizing control
is applied in this context and the properties of self-optimizing
control. Section IV first introduces the utilized case study

and then shows results from the application of self-optimizing
control in surrogate model generation. Section V discusses
the applicability of the proposed procedure and addresses
limitations and problems if self-optimizing control is utilized.

II. PROBLEM STATEMENT

Consider a large scale process to be optimized. This is
generally difficult and the process is hence split into several
submodels. Each of these submodels should be reformulated
as a surrogate model to simplify the optimization. An opti-
mization problem as shown below can then be defined for
some of the submodels i

min
xi,ui

Ji (xi,ui,di)

s.t. 0 = gi (xi,ui,di)

0≥ hi (xi,ui,di)

(1)

where Ji : Rnx×Rnu×Rnd →R describes the economic objec-
tive of the system, gi : Rnx×Rnu×Rnd →Rnx the plant model
and hi : Rnx ×Rnu ×Rnd → Rnhi the operational inequality
constraints. The inlet connection variables, xi,in, are hereby
considered to be the disturbances di ∈ Rnd . The manipulated
variables of a submodel i, ui ∈ Rnu,MV , are the real degrees
of freedom for the submodel. However, we consider the
total number of independent variables, nu = nu,MV + nd , for
surrogate model generation. The sampling space is then given
by bounds as

dmin ≤d≤ dmax (2)
umin ≤u≤ umax (3)

and the sampling is performed using e.g. Latin hypercube
sampling or regular grid sampling.

III. PROCEDURE

A direct possibility to reduce the number of independent
variables by nu,MV is given by fitting a surrogate model for
the optimal response surface. If nu,MV is relatively large, this
would reduce the number of points which one has to sample.
This approach would require the solution of np nonlinear
problems. A further advantage of this approach is that the
surrogate model is sampled in the direction interesting for the
subsequent optimization. An analogy to this approach is the
creation of road maps. Theoretically, it is possible to include
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in a map every single small road and even hiking paths. This
would however make the map complicated. Hence, maps only
feature the roads that are useful for the desired application.

Alternatively, self-optimizing control can be applied to the
submodels and additional nc equality constraints given by

0 = ci−Hiyi (4)

with ci ∈ Rnc being the SOC variables and yi ∈ Rny being
chosen measurements of the system are added to the nonlinear
system given by gi in Eq. (1) [4]. The matrix Hi is the optimal
selection matrix and can be calculated in different ways [5].

The advantage of using self-optimizing control in this
context can be seen in the reduced number of optimization
problems one has to solve compared to mapping the optimal
response surface. These correspond to nd +1 nonlinear prob-
lems with additional nu systems of nonlinear equations in the
definition of the SOC selection matrix according to Eq. (4).
The sampling then consists of solving np nonlinear systems
of equations.

A. Calculation of the selection matrix H
The optimal selection matrix H can be calculated using the

nullspace method [6] or the exact-local method [7]. It is given
by the solution to the following optimization problem

min
H

∥∥HY
∥∥

F

s.t. HGy = J1/2
uu

(5)

with Gy ∈Rny×nu,MV representing the measurement gain matrix
with respect to the input u. Y is given by

Y =
[
FWd Wny

]
(6)

The optimal sensitivity matrix F =
∂yopt

∂d can be calculated as

F =−
(
GyJ−1

uu Jud−Gy
d

)
(7)

using the disturbance gain Gy
d ∈R

ny×nd , the hessian of the cost
function Juu ∈ Rnu,MV×nu,MV , and Juu ∈ Rnu,MV×nd the second
order derivative of J with respect u and d. Wd and Wn are
the disturbance and measurement scaling matrices given by

∆d = Wdd′; ny = Wnyny′ (8)

in which the vectors d′ and ny′ are assumed to satisfy∥∥∥∥[ d′

ny′

]∥∥∥∥
2
≤ 1 (9)

This scaling is necessary as this allows us to define selection
matrices which minimizes the loss if disturbances occur. It
is important to note for the scaling matrices that the 2-
norm is used in the scaling in Eq. (9). This implies, that all
disturbances and measurements may not be at their upper or
lower limit simultaneously. In the case of control, this seems
reasonable and a detailed discussion for using the 2−-norm is
given by Halvorsen et al. [4]. However, this is not the case,
if we want to use the self-optimizing control variables for
variable reduction in surrogate model definition. We actually

want to sample these so-called corner points to avoid extrapo-
lation. This could be circumvented by multiplying the Wd by√

nd and would make a difference, if measurement noise is
considered. We propose to set the disturbance scaling matrix
Wd in the case of surrogate model generation to

Wd = diag(max(d−dmin,dmax−d)) (10)

and the measurement noise scaling matrix to

Wny = 1−kexpdiag(1) (11)

with 1 being a vector of ones with length ny. The parameter
kexp can be chosen arbitrarily as the measurements will not
have any noise in the case of surrogate model sampling.
However, two necessities arise for the parameter kexp

• kexp is large enough so that YYT is nonsingular;
• kexp should be small compared to the entries of Wd to

reduce the effect of measurement noise in the calculation
of the selection matrix H;

The solution to this problem in its simplified version is given
by [8]:

HT =
(
YYT

)−1 Gy (12)

One could argue that the nullspace method [6] can be used
as an alternative as measurement noise is not existing and the
number of measurement is not important. Hence, the dynamic
properties of this specific control structure do not play a role
and it is possible to increase the number of measurements
This results in a reduced loss as shown in [8]. Furthermore, it
is possible to extent the measurements to states, which are
generally not considered as they are hard to measure, e.g.
concentrations. The application of the nullspace method would
require that

ny ≥ nd +nu,MV (13)

which may not be possible to satisfy for submodels with a lot
of manipulated variables and connection variables. Addition-
ally, problems may arose in the solving of the flowsheet, if a
sequential-modular flowsheet solver is used. In this situation,
the setpoints to the original manipulated variables u is obtained
in an iterative manner which may slow down the solution of
each sampling point. This may lead to problems especially
in the case of interacting manipulated variables u. Hence, it
is generally advisable to choose only a limited number of
measurements.

B. Measurement Selection

In order to select the an optimal subset of measurements
ny,sel , Yelchuru and Skogestad [8] developed a mixed integer
quadratic programming approach. It requires the reformulation
of the problem given in Eq. (5) in vectorized form:

min
hδ σδ

hT
δ

Fδ hδ

s.t. Gy
δ

Thδ = jδ

ny

∑
j=1

σδ , j = ny,sel

(14)
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where σ j ∈ {0,1} with j = 1 · · ·ny are binary variables to
indicate, whether measurements are used in the selection
matrix and the optimization matrix. The quadratic cost term
is given by

Fδ = Yδ YT
δ

(15)

and is block diagonal. The same holds true for Gy
δ

T whereas
hδ and jδ are a vectorized form of H and Juu respectively.
Further constraints have to be imposed on hδ to guarantee
that h jk = 0 for σk = 0 and input u j and measurement yk. In
this problem, the big-m approach is chosen. This results in
bounds for the entries in the selection matrix H given by

−


m
m
...
m

σk ≤


h1k
h2k

...
hnuk

≤


m
m
...
m

σk ≤ σk, ∀k ∈ 1,2, . . . ,ny (16)

For a detailed description and derivation, the reader is
referred to [8].

Unfortunately, this approach does not handle structural zeros
in the selection matrix H. That is, certain measurements
should be candidates for certain manipulated variables and
would lead to e.g. block diagonal selection matrices. This may
then lead to complicated adjustments in the flowsheet solver.
Hence, we propose to calculated optimal selection matrices
Hi ∈ R1×nyk for input uk using close measurements and not
the overall measurement set. This does guarantee the optimal
measurement combinations and may lead to cases, where
problems may arise. However, it is not possible to generalize
when problems may occur and when not. Unfortunately, there
are no simple methods for solving this problem in a convincing
way [5].

IV. CASE STUDY - AMMONIA REACTOR

The case study for the investigation of this procedure is
given by a heat-integrated ammonia reactor. The investigated
reactor submodel is shown in Figure 1. This reactor was pre-
viously used in stability analysis [9] as well as the feasibility
of the application of economic NMPC [10] for the given
system. A detailed model description can be found in [10].
The subscript i is dropped for this submodel in the following
to improve the understanding. At the optimal operation point,
small disturbances lead to limit-cycle behaviour and/or reactor
extinction [10]. Hence, varying the manipulated variables u
individually results on the one hand in creating a response sur-
face including regions, in which reactor extinction is present.
In regions where limit cycle behaviour occurs, it is on the
other hand not possible to define a steady state for the system.
Hence, the response surface is complicated and it is necessary
to sample a lot of points to achieve a decent surrogate model.

A. Model Adaptation

In order to increase the applicability of the resulting sur-
rogate model, the hydrogen to nitrogen molar ratio is not
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Fig. 1. Heat-integrated 3 bed reactor system of the ammonia synthesis gas
loop.

considered to be fixed anymore. Instead, the ratio of hydrogen
to nitrogen given by

RH2/N2, j =
ṅH2, j

ṅN2, j
(17)

in each reaction section j is introduced. This results in 3n
additional algebraic constraints given by

0 = RH2/N2, j−
ṅH2, j−1 + rH2, jmcat, j/MH2

ṅN2, j−1 + rN2, jmcat, j/MN2

(18)

in which Mi is the respective molar mass and ri, j the reaction
rate in [kg i/kgcat h]. Alternatively, it is possible to use the
respective mass balance of hydrogen or nitrogen. It seems
however useful, to use a fifth inlet variable, whose influence is
directly known to process operators and which offers a direct
relation to the processes before the reactor. The cost function
for the optimization problem shown in Eq. (1) is given by the
(mass) extent of reaction ξ

ξ = ṁin (wNH3,30−wNH3,in) (19)

whereas the equality constraints are given by the ammonia
mass balance and the temperature balance described in [10]
with addition of Eq. (18) for each CSTR j in the CSTR
cascade.

For this system, the independent variables are given by the
three split ratios

u =
[
u1 u2 u3

]T (20)

as well as the inlet to the system

d =
[
ṁin pin Tin wNH3,in RH2/N2,in

]T (21)

This implies that nu for this submodel corresponds to 8 of
which 3 are real manipulated variables. The other 5 variables
are input connection variables. Their respective bounds are

21st NPCW, 18–19 January 2018, Åbo, Finland 63



TABLE I
BOUNDS AND UNITS FOR THE CONNECTION VARIABLES.

ṁin pin Tin wNH3,in RH2/N2 ,in
[kg/s] [bar] [°C] [wt.%] [-]

Lower Bound 59.5 185 235 7 2.8
Nominal Point 70.0 200 250 8 3.0
Upper Bound 80.5 215 265 9 3.2

given in Table I. Two output variables have to be fitted due
to the assumption of constant pressure and a single outlet
stream. These correspond to the outlet temperature Tout and
the (mass) extent of reaction ξ . The outlet ratio RH2/N2,out can
hereby be calculated through the respective outlet molar flows
ṅi,out which in turn are calculated using ξ . This furthermore
guarantees mass conservation in the resulting surrogate model.
The system was modelled using CasADi [11] and optimized
using IPOPT [12]. The number of CSTRs in each bed is given
by n = 10.

B. Application of SOC

As nu,MV = 3, three SOC variables have to be calculated.
According to Skogestad [3], a self-optimizing control variable
has to satisfy among other requirements

1) the optimal value of the controlled variable should be
insensitive to disturbances, which is equivalent to the
entries in the scaled sensitivity matrix for the respective
measurement is small;

2) the gain from the input i to the controlled variable ci
should be large. This corresponds to a flat optimum with
respect to ci;

3) the controlled variables c should not be closely related;
The chosen measurements are give by a local analysis for
each reactor bed to reduce the correlation in-between the
measurements. This does not imply that the measurements
and their combination are as well optimal considering the
overall process. The MIQP approach as proposed by Yelchuru
and Skogestad [8] is applied hence individually for each bed
resulting in a block diagonal matrix given by

H =

H1 0 0
0 H2 0
0 0 H2

 (22)

In order to have a small number of measurements, ny,sel = 1
and ny,sel = 2 are used and compared to the intuitive control
structure, where the input and output temperatures of the
respective beds are used. The investigated measurements for
the MIQP approach are given by

y1 =
[
Tin,1 TT

1:10
]T for Bed 1, u1

y2 =
[
Tin,2 TT

11:20
]T for Bed 2, u2

y3 =
[
Tin,3 TT

21:30
]T for Bed 3, u3

(23)

The scaling matrix Wd according to Eq. (10) and Table I is
given by

Wd = diag
([

10.5 15 15 1 0.2
])

(24)

Fig. 2. Infinity norm for the row k of the scaled sensitivity matrix FWd and
gain Gy,k j as a function of the measurement ycomb,k in the system and input
u j .

whereas the parameter kexp in the calculation of Wny is given
by kexp = 3.

Based on the requirements for SOC variables, it may be
interesting to look at the sensitivity of single measurements
with respect to disturbances as well as the gain. The infinity
norm of the rows in the scaled sensitivity matrix

∣∣FWd
∣∣
∞

as
well as the gain Gy, jk of each temperature k with respect
to the corresponding input u j are given in Figure 2. The
temperature coordinate k is given by entry k in the vector
ycomb =

[
yT1 yT2 yT3

]T. The application of the infinity norm
instead of the l1 or l2 norm can be reasoned by the fact, that
we are interested in the worst case scenario. From this Figure,
it would make sense to use as a single measurement a tem-
perature close to the end of each bed. This would correspond
to a maximized gain and minimized scaled sensitivity matrix
and is indeed the solution of the optimization problem (14)
with ny,sel = 1

HQP1,1 = T9 HQP1,2 = T18 HQP1,3 = T25 (25)

with m = 100 in the big-m approach of Eq. (16). The solution
to the optimization problem (14) with ny,sel = 2 is given in
Table II and unfortunately cannot be explained by Figure 2.
Similar to the results reported by Yelchuru and Skogestad [8],
the chosen measurements change depending on the chosen
number of measurements ny,sel .

C. Fitting of the Surrogate Model

The surrogate models are cubic B-splines fitted through
the application of the SPLINTER library [13] which requires
a regular grid. The regular grid is given by four points for
each of the varied variable d resulting in np = 1024 sampling
points. The advantage of using B-splines of order two or
higher is given by the continuity of the first derivative of
the surrogate model. This gives advantages for the subsequent
optimization in which the surrogate model should be used.
If self-optimizing control is not used for variable reduction,
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TABLE II
OPTIMAL MEASUREMENT SUBSET FOR EACH INPUT AND THE

CORRESPONDING OPTIMAL SELECTION MATRIX Hi WITH ny,sel = 2
(MIQP) AS WELL AS THE OPTIMAL SELECTION MATRIX FOR A FIXED

SELECTION (IN-OUT).

Chosen Variables Selection Matrix

M
IQ

P HQP2,1 T4, T6
[
0.952 −1.000

]
HQP2,2 Tin,2, T11

[
0.982 −1.000

]
HQP2,3 T28, T30

[
1.000 −0.994

]

In
-O

ut

HIO,1 Tin,1, T10
[
0.067 −1.000

]
HIO,2 Tin,2, T20

[
0.098 1.000

]
HIO,3 Tin,3, T30

[
1.000 0.721

]
this would correspond to 48 = 65536 sampling points. Alter-
natively, other surrogate model structures like Kriging [14] or
the Alamo approach [15] could be used.

D. Results

The resulting surrogate models for the outlet temperature
Tout and ξ were evaluated using 5000 randomly sampled vali-
dation points. These validation points are the optimal response
surface for this model. This implies, that the surrogate model
may theoretically give perfect fit for self-optimizing control
model structure and it would not be seen in the results. How-
ever, this is only of minor interest as the aim of the surrogate
model is to utilize it in further optimization. The relative error
ε for the dependent variable is subsequently calculated with
the optimal response surface. In order to compare the different
methods, the maximum absolute relative error max |ε| and the
mean absolute relative error |ε| are calculated. The results
of the three different combination matrices can be found in
Table III. Based on the presented results, we can see that
arbitrarily chosen measurements do not necessarily result in
a good surrogate model fit. Through application of the MIQP
approach in selecting the optimal measurement variables, it is
possible to reduce the maximum and mean error with respect
to the optimal response surface by more than a factor of two
for both the outlet temperature and the extent of reaction.
Increasing the number of measurements in the MIQP approach
to 2 results in a decrease of one order of magnitude with
respect to 1 measurement.

Varying the inlet variables and the manipulated variables
as an alternative to utilizing self-optimizing control is for this
case study not advisable. This leads in the case of all inlet
variables being at their lower bound (see Table I) and the
manipulated variables at their nominal optimum to reactor
extinction. Contrary, if all inlet and manipulated variables are
at their nominal value, the reactor is at its optimum. Hence,

TABLE III
RESULTS FOR THE THREE SOC VARIABLES USING DIFFERENT SELECTION

MATRICES H.

H definition Extent of Reaction ξ Outlet Temperature Tout

max |ε| |ε| max |ε| |ε|
In-Out 0.540 % 0.092 % 0.232 % 0.041 %
MIQP1 0.211 % 0.027 % 0.095 % 0.012 %
MIQP2 0.022 % 0.003 % 0.009 % 0.001 %

x

Fig. 3. Outlet temperature of Bed 3 with a pressure drop of ∆pin =−15 bar
at t = 10 min with a constant input u at the optimal point.

including the split ratios in the independent variable space
would require the mapping of regions in which the reactor is
extinct as well as crossing the limit-cycle region in which no
upper steady-state solution exists. This region is exemplified in
Figure 3 where the inlet pressure is at its lower bound and the
other disturbances at their nominal value. We can directly see,
that the system is in limit-cycle behaviour and it is not possible
to define a steady-state value for this operating point. These
regions are not important for the subsequent optimization, and
hence, should not be sampled.

V. DISCUSSION

The proposed utilization self-optimizing control to map the
optimal response surface can be a promising new method in
the generation of surrogate models. The main advantages are
given by

1) a reduced number of sampling points compared to
sampling the total number of independent variables;

2) a response surface which is close to the optimal response
surface with a reduced number of optimization problems
to be solved;

The reduced number of sampling points is directly visible
through the definition of setpoints of controlled variables. The
latter allows as well to sample only regions which we are
interested in and neglect regions, which will not be approached
in the practical application. In the proposed case study, it is in
fact not possible to use the splitratios as independent variables
and a variable transformation would be required independently
of the application of self-optimizing control. This is similar to
the variable transformation utilizing the existing control struc-
ture as proposed by Straus and Skogestad [1]. An alternative
can be seen in sampling the optimal response surface which
is limited by the computational demand of this approach; it
would require the solution to np nonlinear problems whereas
in the application of the proposes method, only nd +1 have to
be solved in the calculation of the optimal sensitivity matrix F.
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If it is necessary to have surrogate models for other variables,
it is possible to calculate them as well, e.g. for the actual split
ratios u or for additional potential measurements.

However, certain limitations can be identified and need to
be addressed as well:

Number of Manipulated Variables

The number of manipulated variables is important in con-
sidering the applicability of the approach. If nu,MV = 1, the
reduction in sampling points can be negligible in cases where
other sampling methods than regular grid sampling are used.
Hence, there may not be a clear advantage in applying self-
optimizing control for variable reduction. However, the simpler
response surface through application of self-optimizing control
may still hold. If nu,MV > 1, measurement selection may
result in problems associated with the non-convexity of the
MIQP approach if structural zeros are defined in the selection
matrix. The approach of treating each input independently
can work and give good results as it is the case for the
presented ammonia reactor. It is also advantageous to use a
structured selection matrix H if one is using a sequential-
modular flowsheet software. Here, the manipulated variables
are adjusted iteratively, and hence, it is beneficial if there is
a reduced coupling between the SOC variables c. However,
it cannot be generalized for all problems, if the application
of a structured selection matrix improves the performance.
Furthermore, it cannot be said how the solution to a non-
convex optimization problem (14) for a structured selection
matrix would differ to the one calculated through treating the
reactor beds independently.

Application in Flowsheeting Software

One may argue that the application in flowsheeting software
is difficult, mostly due to the iterative procedure in which
variables are adjusted in sequential-modular software. This
can be especially problematic in the investigated case study,
where each change in one of the manipulated variables affects
the value of all controlled variables directly. As a result, the
calculation time for each sampled point is higher than in
the case of not applying the proposed method. This can be
negated, if the measurement variables are localized close to
the respective manipulated variable. As a results, a structured
selection matrix H will be calculated. The problem is however
less pronounced in equation-orientated flowsheeting solver.
There, the application of surrogate model-based optimization
results in smaller models, and hence, a simpler initialization
of the models. Then, the only change is an increase in the
number of nonlinear equality constraints and potentially a
slightly more complex system of equations.

VI. CONCLUSION

Combining principles from control and surrogate mod-
elling, a new method was derived to reduce the number of
independent variables of surrogate models. In addition, the
corresponding response surface may be simpler. This is caused
by omitting regions in which the submodel is for example

in reactor extinction. Furthermore, the method is independent
of the structure of the surrogate model. Hence, it is possible
to combine it with other approaches in the literature for the
calculation of surrogate models.

VII. ACKNOWLEDGMENT

The authors gratefully acknowledge the financial support
provided by Yara International ASA.

REFERENCES

[1] J. Straus and S. Skogestad, “Minimizing the complexity of
surrogate models for optimization,” in 26th European Sympo-
sium on Computer Aided Process Engineering, ser. Computer
Aided Chemical Engineering, Z. Kravanja and M. Bogataj, Eds.
Elsevier, 2016, vol. 38, pp. 289 – 294.

[2] J. Straus and S. Skogestad, “Variable reduction for surrogate
modelling,” in Proceedings of Foundations of Computer-Aided
Process Operations 2017, Tucson, AZ, USA, Jan 2017.

[3] S. Skogestad, “Plantwide control: the search for the self-
optimizing control structure,” Journal of Process Control,
vol. 10, no. 5, pp. 487 – 507, 2000.

[4] I. J. Halvorsen, S. Skogestad, J. C. Morud, and V. Alstad, “Opti-
mal selection of controlled variables,” Industrial & Engineering
Chemistry Research, vol. 42, no. 14, pp. 3273–3284, 2003.
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Abstract 

Crystallization is a prevalently applied technique in many industries including food, bulk and fine chemicals 

as well as manufacturing of active pharmaceutical ingredients (APIs). In the pharmaceutical industry, 

crystallization processes are employed mainly for separation, purification as well as for formulation of 

APIs. Moreover, the process should guarantee that the performance of the delivered APIs is suitable for 

downstream processing, handling and drug efficacy. The performance of an API crystal is strongly affected 

by the product quality attributes such as crystal size distribution, morphology, shape and purity, which are 

the main targets of the process output to be achieved within specific range. Prediction of the influence of 

the crystallizer scale on the process behavior and process performance is one of the major challenges in the 

design of industrial crystallization processes. Fluid dynamic conditions of industrial scale crystallizers are 

far from well-mixed behavior. This leads to spatial variations of critical process variables such as 

temperature, super-saturation, particle concentration  within crystallizer geometry. Consequently, 

crystallization process models based on the assumption of well-mixed behavior are not representative for a 

scaled-up process, and therefore not credible for the use in supporting optimal design and control of 

industrial crystallizers. Therefore, a more detailed insight into mixing conditions and its consequences for 

local crystallization phenomena – such as a spatially distributed parameter model - must be taken into 

account in order to achieve reliable process design, scale-up and process control. 

The main objective of this work is to develop a predictive scale-up model of a pharmaceutical crystallization 

process based on compartmentalization approach. Compartmental modeling is a trade-off approach to 

overcome the limitations of well-mixed models, by considering local mixing, heat transfer and fluid 

dynamics separately from crystallization kinetics within a crystallizer in comparison with fully developed 

computational fluidic dynamics (CFD) models.  Application of compartmental modeling requires the 

division of the crystallizer into a finite number of compartmental volumes. Minimized or negligible 

gradients in e.g. temperature, crystal distribution, super-saturation and energy dissipation should exist 

within individual compartmental volumes. To determine the compartmental zones within the volume of 

industrial-scale crystallizer equipment, primarily the fluid dynamics, mixing and heat transfer are studied 

by means of CFD simulations. The compartmental volumes, location and flux connections are extracted 

from CFD data analysis to define the interconnected compartment network. The crystallization process 

modeling based on compartmentalization approach is implemented in MATLAB/Simulink.  The same set 

of model equations and model parameters are defined in order to solve the conservation balance equations 

for crystallization process system (population, mass, etc.) for every compartment. However, spatial 

variations in the crystallizer modelled by different profiles/gradients result in different rates of 

crystallization kinetics (nucleation, growth, dissolution, etc.) between the individual compartments, which 

represents the deviation from the ideal case. 

The process behavior of the pharmaceutical batch cooling is analyzed with respect to crystallizer scale, 

process variables and operation conditions. The multi-compartment model is compared with a single-

compartment well-mixed model to examine the influence of the non-uniformly distribution of the related 

process variables on process performance in terms of crystal size distribution. 
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In this work, we present a set of nonsmooth modelling methods for use in chemical engineering problems.
Further, a case study on modelling of a steady-state oil and gas production network is given to illustrate how
nonsmooth equations allow for different directions of flow through the system.

Nonsmooth formulations such as min, max and absolute values are not widely used in modelling, because it is
difficult to obtain derivatives and sensitivities in the nonsmooth points of these functions. Instead, it is common
to apply hybrid models where logic is applied to switch between different modes in the model, or to make smooth
approximations of the nonsmooth functions. In general, using nonsmooth equations in models relies on the ability to
compute derivative-like elements that can act as derivative information in equation solvers for nonsmooth equations.
For instance, the LP-Newton method presented by Facchinei et. al [1] has convergence properties comparable to
Newton methods for smooth equations, if provided an element of the B-subdifferential. Such elements are not
possible to compute automatically, because calculus rules, such as the chain rule, hold only as inclusions for the B-
subdifferential. However, new developments within nonsmooth analysis by Khan and Barton facilitate for automatic
differentiation of nonsmooth model equations [2]. Khan and Barton proved that the lexicographic derivative is a
subset of the B-subdifferential for piecewise differentiable functions, and that these derivative elements obey strict
calculus rules.

The oil and gas production network illustrated in Figure 1 has been modelled using nonsmooth formulations.
These are applied to describe the direction of flow through the manifolds depending on the wellhead pressure of the
three wells, as well as the routing of flow into available paths in terms of open valves. Traditionally, varying flow
directions are dealt with using hybrid models combined with logic expressions in the implementation. However,
such solutions break down if the driving force in pressure is zero over a pipe segment, for instance in the case where
several wells have the same wellhead pressure. Using an absolute value formulation of the valve equation opens
for changes in the flow direction, dependent on the pressures in the different parts of the system. In addition, the
process of mixing streams in the manifolds can be modelled using min and max functions to describe that each
flow can both enter and leave the manifold. Unlike for the hybrid case, derivatives can also be obtained in the case
where the flow is zero.

Riser 1 Riser 2

Reservoir

Well 1 Well 2 Well 3

Manifold 1

Manifold 2

Manifold 3

Figure 1: Oil and gas production network.
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Title:  Neural network-based model reduction and sensitivity analysis of apoptosis 

C. Alia Joko, Frank Pettersson & Henrik Saxén

Abstract 

Apoptosis or programmed cell death (‘cell suicide’) is a central mechanism in many biological 

processes including embryonic development and cancer progression. Several mathematical models 

of apoptosis have been developed to shed light on the complex interactions associated with this 

pathway. This paper applies a neural network pruning algorithm to a large dataset from a detailed 

ODE-based model of apoptosis to infer input-output relations. The pruning algorithm takes 

advantage of the sparsity of connections in a multilayer perceptron with a single hidden layer to 

determine only the most important inputs. The method thus provides an approach for complexity 

reduction, model selection and generation of nonlinear algebraic simplifications as applied to a 

model of apoptosis.  In addition, the method provides a tool for local sensitivity analysis. This analysis 

gives insights into how the dominant model inputs affect the outputs as well as the robustness of the 

responses. In the case study where the time to apoptosis was selected as the target output, the 

model identifies nine key parameters among 55 potential ones. It is also demonstrated that a 

reduced model with only five parameters can adequately describe the main features of the output. 

The progress of the pruning method and the performance of the reduced model are presented, 

demonstrating the effectiveness of the modelling approach. 

Keywords: Nonlinear modeling, model reduction, pruning, apoptosis 
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Background: Minimally processed and ready-to-eat food is becoming increasingly popular, but it is 
susceptible to harmful human pathogenic bacteria such as Listeria monocytogenes (LM). Current solutions 
such as thermal treatment can inactivate microorganisms, but they also degrade the taste, texture, andquality of fresh food. High Pressure Processing (HPP) is a promising method with minimal adverse sensory
side effects on food quality. However, it has limited success because of rapid recovery of pressure-injured 
bacteria.  
 Results: With the aim to understand and control the processes that underlie bacterial recovery after HPP, 
we developed a mathematical dynamic model. The model explains how high pressure stress damages the 
bacteria, and how they respond to such stress. It consists of a set of ordinary differential equations that 
comprise three main intracellular compartments: cell wall, cell membrane, and protein repair compartments. 
We assume that these are the primary components or processes involved in bacteria damage and response 
to pressure. Using rate equations and modified Hill functions, we defined the governing key metabolic 
pathways and transcriptional control that respond to HPP in each compartment. We used databases like 
STRING, KEGG, and BRENDA to estimate the model parameters. We are currently conducting a set oftime-series experiments to gather data on gene expression kinetics in LM following HPP to increase the
accuracy of the model predictions. 
 Conclusion: By analyzing the model, we can identify potential repair mechanisms and their weaknesses 
in bacteria exposed to high pressure. With the final goal of optimizing the processing conditions used in 
HPP, we can target those mechanisms by genome editing techniques or by natural additives that will controland limit bacterial growth in food. This has a potential to eradicate harmful microorganisms from ready-to-
eat food and hereby make it safer. 
Keywords: High pressure processing, Foodborne bacteria, Dynamic model. 
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Abstract— This paper presents a systematic procedure for 

designing the input signals to identify multivariable processes. 

The procedure is based on time domain specifications and can 

be applied to multivariable processes with m-outputs and n-

inputs, which can be operating in closed-loop. The design of the 

input signals, which are pseudo random binary sequences, are 

based on the old information about the process model and the 

controller, together with the measures of the input and output 

variances of the process. The method proposes excitation in the 

frequency interval where the model needs to be accurate for 

robust feedback control. The method is illustrated using the 

Wood & Berry distillation column model, which is a 2-inputs-2-

outputs benchmark in process control.  

I. INTRODUCTION

Empirical identification is a well-established methodology to 

obtain multivariable process models, often intended for 

control but also for other purposes. The choice of input signals 

for the identification has a large impact on the quality of the 

model [1]. However, in most cases input signals cannot be 

freely chosen with respect to plant performance constraints. 

There exist a rather extensive literature on optimal experiment 

design [2-8]. The problem optimal experiment design whose 

objective is to design the least costly identification 

experiment while guaranteeing a sufficiently accurate model. 

The main contribution of the paper is to provide a 

methodology oriented to practitioners for facing the problem 

of input signal design for identification for cases when the 

current model in an MPC controller needs to be updated. The 

problem of the experiment design is approached with the idea 

of producing a procedure for designing the signals for 

identification of multivariable processes, minimizing the 

disturbance in the process, but keeping in mind that the 

methods for controller maintenance tools must be developed 

for an easy implementation for plant operators. In the 

proposed methodology for input signal design, first, the 

required increments of the output variances are defined. Then, 

the information relate to the process model and the controller 

is used for calculating the excitation signals. This paper is 

focused mainly in Pseudo Random Binary Sequence. 

However, the method provides the variance and bandwidth of 

the excitation signals, which can be used for characterizing 

other signals, e.g. multi-sine signals.  

The paper is organized as follows. Introduction shows the 

presentation of the problem faced on the paper. Section II 

develops the procedure for input PRBS design for 

identification. A case study using Wood & Berry distillation 

*ABB AB, Corporate Research, SE72178, Västerås, Sweden. e-mail:

{winston.garcia-gabin,  michael.lundh}@se.abb.com. 

column model is presented in Section III. Finally the 

conclusions are summarized in Section IV. 

II. INPUT PRBS DESIGN FOR IDENTIFICATION

Closed-loop identification methods requires excitation 

signals to be applied in the process inputs such that they 

produce changes in the process outputs. The resulting 

additional variances in the outputs are subject to a trade-off. 

They must be big enough to produce persistent excitation for 

identification, but also to disturb the normal operation of the 

process as little as possible. In this procedure, the nominal 

variances of the process outputs are taken as reference for 

defining the set of increment in the outputs due to the 

excitation signals. The excitation signals can be applied to 

closed-loop systems as it is shown in Fig. 1, where, 𝑟(𝑡) is the 

set point, 𝑢𝑐(𝑡) is the controller output, 𝑢𝑒𝑥(𝑡) is the

excitation signal, 𝑢(𝑡) is the manipulated variable, v(t) is the 

measured noise, 𝑦(𝑡) is the measured output. However, the 

procedure could also be also applied for designing the 

experiment in open-loop. 

Fig. 1 Closed-loop identification diagram 

Pseudo Random Binary Sequences (PRBS) are often used as 

excitation signals for identification propose, because it has a 

finite length that can be synthesized repeatedly with simple 

generators while presenting favorable spectra for 

identification propose. The spectrum at low frequencies are 

flat and constant, at high frequencies the spectra drop off, 

consequently the spectra have a specific bandwidth, which 

can be utilized for exciting the processes in the required 

frequencies. 

The analytical expression for the power spectrum of a PRBS 

signal is given by 

𝑠(𝜔) =
𝐴2(𝑁+1)𝑇𝑐𝑙

𝑁
[

sin (𝜔𝑡𝑐𝑙/2)

𝜔𝑡𝑐𝑙/2
]

2

(1) 

where A is the signal amplitude, 𝜔 is the frequency, tcl is the 

clock period (i.e. the minimum time between changes in level 
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of the signal), which must be multiple of the sampling time 

Ts. The sequence repeats itself after T=N∙tcl units of time, 

where N=2n-1 and n is the number of shift registers used to 

generate the sequence. For low frequencies, the power 

spectrum has the approximate value of  

𝐴2(𝑁+1)𝑡𝑐𝑙

𝑁
 (2) 

At =2.8/tcl the power spectrum is reduced by half. Therefore, 

the frequency range [𝜔𝑙𝑜𝑤 , 𝜔ℎ𝑖𝑔ℎ] of a PRBS signal

considered to be useful for excitation here is  

2π

𝑇
≤ 𝜔 ≤

2.8

𝑡𝑐𝑙
  [Rad/s] (3) 

Thus, for designing a PRBS signal is necessary to determine 

the frequency range and the amplitude A of the signals. Some 

different approaches for estimation of the frequency range are 

discussed below. 

A. Estimate the range using time domain information

The frequency specification of the PRBS is based on the ideas 

in [9] and [10]. They can also be used for multi-sine design as 

can be seen in [11]. Here, we propose the following procedure 

to estimate the lower frequency of interest: 

1. Obtain crude estimates of the time constants and the

time delays of the open loop process (𝜏𝑖𝑗
𝑜𝑙 , 𝑡𝑑𝑖𝑗

𝑜𝑙) for

all m outputs for each n inputs using the process

model that is used in the model-based controller.

2. Approximate the settling times for all the input-

output pairs: 𝑡𝑖𝑗
𝑜𝑙 = 4𝜏𝑖𝑗

𝑜𝑙 + 𝑡𝑑𝑖𝑗
𝑜𝑙

3. Calculate the lower value of frequency as follows

𝜔𝑙𝑜𝑤 =
1

𝑆𝑓 max(𝑡𝑖𝑗
𝑜𝑙)

   [rad/s] (4) 

A safety factor 𝑆𝑓 > 1 is introduced, with the main propose to

augment the bandwidth of the excitation signal. It is carried 

out reducing the lower value and increasing the upper value 

of the frequency range. Based on simulation tests, 𝑆𝑓 = 1 is

enough to manage changes in the dynamic of the models 

around 30 % with regard to the initial model. If it is assumed 

that the actual model changed much more respect to the initial 

model, it is convenient increase the safety factor. Values in 

the range 1 to 4 are recommended.  

The upper frequency for the range can be estimated either 

using open loop information or using closed loop information. 

When using open loop information, estimate for each input-

output pair the highest frequency content using the time 

constant and the time delay (𝜏𝑖𝑗
𝑜𝑙 , 𝑡𝑑𝑖𝑗

𝑜𝑙) as follows

𝜔𝑖𝑗
𝑐𝑙 =

𝛼 𝑆𝑓

𝜏𝑖𝑗
𝑜𝑙   where 𝛼 = max ((−

𝑡𝑑𝑖𝑗
𝑜𝑙

𝜏𝑖𝑗
𝑜𝑙 + 2) , 0.5) (5) 

The variable factor 𝛼, is a measure of how much faster the 

intended closed-loop speed of response will be relative to 

open-loop.  

Then determine the upper value of frequency for the PRBS as 

follows 

𝜔ℎ𝑖𝑔ℎ = max(𝜔𝑖𝑗
𝑐𝑙) [rad/s] (6) 

When using closed loop information, first obtain estimates of 

the settling time without taking into account the time delay 

for the closed-loop step response for all the outputs: 𝑡𝑖
𝑐𝑙. Then

determine the upper frequency for the range using 

𝜔ℎ𝑖𝑔ℎ =
4 𝑆𝑓

min(𝑡𝑖
𝑐𝑙)

 [rad/s] (7) 

where 𝑆𝑓 is the earlier introduced safety factor and the 4 is

chosen to be sure to capture the interesting frequencies in the 

transients. 

The upper value of frequency must be lower than the Nyquist 

frequency thus, 𝜔ℎ𝑖𝑔ℎ ≤ 𝜔𝑁.

B. Frequency response of the singular values of the

closed-loop system

Another method for obtaining the bandwidth of the excitation 

signal is using the singular values of the output sensitivity 

function. This is however, only possible when a linear model 

and controller is available. In this case, the information 

regarding the controller model and process model is used to 

calculate the output sensitivity function. Then, the frequency 

response of the singular values of the output sensitivity 

function is drawn, as it is shown in Fig. 2. 

Fig. 2 Frequency response of the singular values 

The idea here is to consider an interval around the peak, 𝜔𝑝

in the sensitivity function. The width is determined using the 

factor 𝛽, which in the range (4 to 10). It is selected according 
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to sharpness of the peak. For A narrow peak a small value of 

𝛽 is adequate, on the other hand, for smoother peak large 

value is convenient. 

The upper value of the frequency range is the minimum value 

between β times the peak frequency and the geometric mean 

of peak frequency and Nyquist frequency, as it is shown 

below 

𝜔ℎ𝑖𝑔ℎ = min (βω𝑝 , √𝜔𝑝𝜔𝑁)  [rad/s]      

The lower value of frequency is as follows 

𝜔𝑙𝑜𝑤 =
1

𝛽
ω𝑝   [rad/s]        

The lower value of frequency is of little interest in case of 

PRBS. However, it is useful for designing multi-sine 

excitation signals.  

C. PRBS clock period and the number of shift registers 

The clock period 𝑡𝑐𝑙 and the number of shift register 𝑛𝑟 of 

the PRBS can now be determined from 

 

𝑡𝑐𝑙 ≤
2.8 

𝜔ℎ𝑖𝑔ℎ
              𝑁 = 2𝑛𝑟 − 1 ≥

2𝜋

𝑡𝑐𝑙∗𝜔𝑙𝑜𝑤
   (8) 

D. PRBS amplitudes 

Once the frequency ranges of the excitation signals are 

defined, the amplitudes are yet to be defined. Although 

several authors define methods to calculate the bandwidth of 

the excitation signals [1,10]. A systematic procedure is not 

provided for calculating the amplitude of the excitation 

signals. Most of the time, literature merely indicates that the 

amplitudes of the PRBS signals are chosen such that they will 

generate data with good enough signal-to-noise ratio but will 

not disturb the product quality. Normally, most of the 

information needed for determining the amplitudes of PRBS 

signals can be obtained by interviewing experienced 

operators and operation engineers [1,9,12]. 

Below is a systematic way proposed, how to obtain the 

amplitudes of the excitation signals: 

A multi-sine is considered as base signal for developing this 

procedure. A multi-sine can be described as a weighted sum 

of sinusoidal signals 

𝑢𝑒𝑥(𝑡) = ∑ 𝐴𝑘𝑠𝑖𝑛(𝜔𝑘𝑡 + φ𝑘
𝑢)𝑛

𝑘=1     (9) 

Where  𝐴𝑘 is the amplitude of the k-term of the multi-sine at 

the frequency 𝜔𝑘 and φ𝑘
𝑢 is its phase. n is the number of terms 

of the multi-sine. 

The signal variance of a multi-sine signal is equal to the signal 

power with mean removed, when the multi-sine is composed 

of a sum of sine terms with different frequencies. Thus, the 

variance of the multi-sine (9) is  

𝜎𝑢𝑒𝑥
2 = ∑ 2 (

𝐴𝑘

2
)

2
𝑛
𝑘=1 .      (10) 

Considering that the amplitude 𝐴𝑘 of all terms of the multi-

sine have constant amplitude 𝐴. The variance of the multi-

sine (10) is given by 

𝜎𝑢𝑒𝑥
2 = 𝑛

𝐴2

2
.        (11). 

Consider the closed loop system 𝐺 from the excitation signals 

to the process outputs as shown in Figure 3. 

 

 

Fig. 3 Linear model. 

The output signal 𝑦(𝑡)is 

𝑦(𝑡) = ∑ 𝐺𝑘𝐴𝑘𝑠𝑖𝑛(𝜔𝑘𝑡 + φ𝑘
𝑦

)𝑛
𝑘=1      (12) 

where 𝐺𝑘 is the gain of the system at the frequency 𝜔𝑘 and 

φ𝑘
𝑦

 is phase of the output signal.  

The output variance can be calculated as the power of the 

signal as 

𝜎𝑦
2 = ∑ (

𝐺𝑘𝐴𝑘

2
)

2

2𝑛
𝑘=1  ,  𝜎𝑦

2 = ∑
𝐺𝑘

2

2
𝑛
𝑘=1 𝐴2  for  𝐴𝑘 = 𝐴  (13) 

Equation (13) can be rewritten for the multivariable case as 

[

𝜎𝑦1
2

⋮
𝜎𝑦𝑝

2
] =

1

2
[

∑ 𝐺11𝑘
2𝑛

𝑘=1 ⋯ ∑ 𝐺1𝑞𝑘

2𝑛
𝑘=1

⋮ ⋱ ⋮
∑ 𝐺𝑝1𝑘

2𝑛
𝑘=1 ⋯ ∑ 𝐺𝑝𝑞 𝑘

2𝑛
𝑘=1

] [
𝐴1

2

⋮
𝐴𝑞

2
]   

The equation above can be written in compact form as  

[

𝜆1

⋮
𝜆𝑝

] =
1

2
[

𝜓11 ⋯ 𝜓1𝑞

⋮ ⋱ ⋮
𝜓𝑝1 ⋯ 𝜓𝑝𝑞

] [

𝜁1 
⋮

𝜁𝑞

]     Λ = ΨΖ   (14) 

where Λ is a vector containing of the variances of the p outputs 

of the system, Ψ is a matrix where each element has the sum 

of the square gains of the ij-output-input pair for the sequence 

of frequencies 𝜔𝑘, and  Ζ is a vector with the square of the 

amplitude of multi-sine sequences of the q inputs.  

Notice that in the multivariable case each multi-sine 

excitation signal must have a different frequency distribution 

sequences [𝜔1, 𝜔2 … 𝜔𝑘]. This must be taken into account if 
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the multivariable system will be excited at the same time in 

all the inputs with multi-sine signals.  

The amplitude of the inputs can be obtained as a solution of 

the eq. (14). This is finding a minimum of a constrained 

multivariable function as follows 

 J =
arg 𝑚𝑖𝑛

ζ
(Ζ(𝜁))

𝑇
Ζ(𝜁)     (15) 

Subject to: 

−ΨΖ ≤ −Λ          (16) 

Equation (15) attempts to find a constrained minimum of a 

scalar function given by the sum of the output powers.  The 

solution is subject to a set of inequalities with the general form 

(16). This means that the variances of the p-outputs must be 

higher than a threshold Λ = [λ1 … λ𝑝]𝑇  defined a priori, as 

high enough to achieve a persistence of excitation.  

Inequality sets with the form 

−Ψ [

𝐼1 0 0
0 ⋱ 0
0 0 𝐼𝑞

] Ζ ≤ −Λ         (17) 

can be added to guarantee that each input produces enough 

persistence of excitation in all the outputs. For each input 𝑖 
where this is required there will one constraint of the type in 

(17) with  𝐼𝑖 = 1 and 𝐼𝑗 = 0 ∀ 𝑗 ≠ 𝑖.  

Once Ζ = [𝜁1 … 𝜁𝑞]𝑇 is obtained as solution of (15). The 

amplitude 𝐴𝑖 of the multi-sine inputs can be calculated as 

follows 

𝐴𝑖 = √𝜁𝑖 .         (18) 

Finally, the variance of the excitation signals are 

𝜎𝑢𝑒𝑥𝑖

2 = 𝑛
𝜁𝑖

2
= 𝑛

𝐴𝑖
2

2
       (19) 

Thus, the input design is characterized by the variance of the 

excitation signals (19) and their frequency ranges. These input 

signals can be applied to the process as multi-sine signals or 

other excitation signals, for example a PRBS, which must 

have the variance obtained in (19). In the last case, the PRBS 

amplitude must switch between two levels ±𝐴𝑃𝑅𝐵𝑆, this value 

is defined as the square root of the variance, as is shown below  

𝐴𝑃𝑅𝐵𝑆𝑖
= √𝜎𝑢𝑒𝑥𝑖

2        (20) 

In a case when excitation signals are applied at the same time 

in a multivariable process, it is important to have a low cross-

correlation between the excitation signals. This can be 

accomplished by different initializations of the shift register 

of the PRBS. This is equivalent to apply a delayed single 

PRBS signal in each excitation input [1,13]. 

III. CASE STUDY 

The Wood & Berry distillation column was considered as 2-

inputs-2-outputs process model for testing the procedure. The 

distillation column model in [14] is given by 

 

𝐺(𝑠) = [

12.8

16.7𝑠+1
𝑒−𝑠 −18.9

21𝑠+1
𝑒−3𝑠

6.6

10.9𝑠+1
𝑒−7𝑠 −19.4

14.4𝑠+1
𝑒−3𝑠

]       (21) 

 

The process was controlled with a discrete time MPC (Matlab 

toolbox) with sampling interval 𝑇𝑠 = 1 and a white noise with 

a variance of 0.1 was added at each output. Figure 4 shows 

the frequency response of the process in open loop (blue) and 

the output sensitivity function (red). 

 
Figure 4. Frequency response of process (blue), output 

sensitivity function (red). 

 

Table 1 shows the variance of the outputs in closed loop 

before applying the identification signals. 

 

Table 1 Variances in the outputs and inputs in closed loop 

 CV1 CV2 MV1 MV2 

𝜎2  0.131 0.123 0.057 0.027 

 

Based on these output variances in closed-loop were defined 

as 𝜎𝑦
2 = 0.2, the increment in the output variances required 

for the identification proposes.  

 

A. Frequency specifications 

The procedures in section II-A, were used to determine the 

frequency range. The time constants and the time delays for 

the open loop process were obtained directly from (21) here. 

Estimates of the closed loop rise time was obtained from 

simulations. The results are summarized in Table 2. 
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Table 2 Frequency range obtained 

 𝜔𝑙𝑜𝑤  [rad/s] 𝜔ℎ𝑖𝑔ℎ [rad/s] 

Open- loop 0.01 0.125 

Closed-loop -- 0.182 

 

The upper frequency that will be used below is obtained using 

the closed-loop information (0.182 rad/s). However, the 

approximated upper frequency calculated using the open loop 

information is reasonable good compared with the closed-

loop value. 

B. Amplitude specifications 

The procedure in section II-D, was used to determine the 

excitation signal amplitude. Here we used a multi-sine signal 

with 10 frequencies logarithmically spread from 𝜔𝑙𝑜𝑤 = 0.01 

to 𝜔ℎ𝑖𝑔ℎ = 0.182. The excitation was required to generate an 

additional output variance of 𝜎𝑦1
2 = 0.2 and 𝜎𝑦2

2 = 0.2. The 

optimization problem in (15) - (17) then gave the variances 

for the excitation signals 𝜎𝑢𝑒𝑥1
2 = 0.095 and  𝜎𝑢𝑒𝑥2

2 = 0.055. 

C. Simulation Results 

Table 3 shows the increments in the output variances when 

the excitation signals are applied on the closed loop simulated 

process. The first row shows the expected theoretical value. 

The second row shows the incremental variance in the outputs 

obtained in the simulation using a multi-sine as excitation 

signals. Finally, the third row shows the incremental variance 

when the PRBS signal is applied. 

 

Table 3. Obtained additional variances  
 𝑢𝑒𝑥1 ≠ 0, 

𝑢𝑒𝑥2 = 0 

𝑢𝑒𝑥1 = 0, 
𝑢𝑒𝑥2 ≠ 0 

𝑢𝑒𝑥1 ≠ 0, 
𝑢𝑒𝑥2 ≠ 0 

Theore-

tical 

variance 

𝜎𝑦1
2 = 0.20 

𝜎𝑦2
2 = 0.206 

𝜎𝑦1
2 = 0.20 

𝜎𝑦2
2 = 0.693 

𝜎𝑦1
2 = 0.40 

𝜎𝑦2
2 = 0.900 

Multi-

sine 
𝜎𝑦1

2 = 0.206 

𝜎𝑦2
2 = 0.20 

𝜎𝑀𝑉1
2 = 0.009 

𝜎𝑀𝑉2
2 = 0.001 

𝜎𝑦1
2 = 0.204 

𝜎𝑦2
2 = 0.845 

𝜎𝑀𝑉1
2 = 0.004 

𝜎𝑀𝑉2
2 = 0.010 

𝜎𝑦1
2 = 0.435 

𝜎𝑦2
2 = 1.174 

𝜎𝑀𝑉1
2 = 0.016 

𝜎𝑀𝑉2
2 = 0.028 

PRBS 𝜎𝑦1
2 = 0.266 

𝜎𝑦2
2 = 0.241 

𝜎𝑀𝑉1
2 = 0.034 

𝜎𝑀𝑉2
2 = 0.002 

𝜎𝑦1
2 = 0.239 

𝜎𝑦2
2 = 1.056 

𝜎𝑀𝑉1
2 = 0.008 

𝜎𝑀𝑉2
2 = 0.0279 

𝜎𝑦1
2 = 0.450 

𝜎𝑦2
2 = 1.152 

𝜎𝑀𝑉1
2 = 0.043 

𝜎𝑀𝑉2
2 = 0.027 

 

It can be observed in Table 3, that each output variance pass 

the threshold defined initially 𝜎𝑦
2 = 0.2. This is because that 

was defined as constraint in the optimization process (15)-

(17). It can also be noticed that simultaneous excitation in 

both inputs increases the output variance more than needed. 

The generated signals have been tested for excitation in closed 

loop. The process inputs and outputs were used for 

identification using Matlab’s System Identification toolbox 

which provided, as expected, an accurate model.  

IV. CONCLUSION 

This paper proposed a simple approach to determine how a 

multivariable model can be excited during an experiment to 

update the controller model. The method relies on that there 

exists some, no longer ideal, model for control of the process. 

The method is oriented for practitioners and operators using 

basic concepts. Also, it can be easily coded in the control 

system. 

The method proposes a frequency range and variances of the 

excitation signals. This information was used in the example 

for designing PRBS signals, however, other signals like 

multi-sine functions can also be calculated. Further, this 

method can be straightforward applied to non-square 

multivariable systems. The mathematical support of the 

method is not limited for square systems. 
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Experiment Designs to Obtain Uncorrelated Outputs in MIMO System Identification 
Kurt-Erik Häggblom 
Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Åbo (Turku), Finland 

A problem in open-loop identification of multiple-input multiple-output (MIMO) systems is that 
standard designs using uncorrelated inputs [1, 2] tend to produce correlated outputs. If the system 
is ill-conditioned, this correlation may be very strong. Such a correlation reduces identifiability and 
may even result in a model with different controllability properties than the true system. 

To tackle this problem, a design method based on an estimate of the steady-state gain matrix was 
proposed in [3]. The idea was to explicitly excite all gain directions of the system. An overview of 
various aspects of the design procedure is given in [4]. Because of dynamics, the excitation goal is 
not necessarily achieved, however. This has motivated experiment designs, where (estimated) 
dynamics are explicitly considered [5, 6, 7]. 

A result of the above design methods, which require complicated optimizations, is nearly 
uncorrelated outputs. In [8], a design procedure that directly addresses the output distribution 
was proposed. The aim is to produce uncorrelated outputs to maximize identifiability. This is 
achieved by designing inputs that maximize the minimum singular value, or the determinant, of 
the covariance matrix of the output data with suitable constraints. The problem is formulated as 
a convex optimization with linear matrix inequalities (LMIs) as constraints. The user can select the 
type of input perturbation, e.g., random binary signal (RBS), pseudo-random binary sequence 
(PRBS), or multi-sinusoidal signal. 

In [8], an approximate covariance model obtained from a discrete-time state-space model was 
used as a linear constraint in an iterative optimization. Here, two other formulations are 
presented: one that uses the state-space model directly, which results in a more complicated 
optimization problem with a bilinear constraint; one that further simplifies the covariance model 
to a relationship between input and output covariances (i.e., state variables are not considered), 
which results in a simpler iterative optimization problem. It is shown that the simplest formulation 
can handle the experiment design of many examples previously used in identification studies. 
However, there are also examples that require the approximate covariance model presented in 
[8], or even the full state-space formulation presented here. 
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1 Introduction

The task of finding “effective data-based nonlinearity tests for dynamical sys-
tems” is recognized as a key challenge within the field of system identification
Ljung [2010]. Indeed, such tests have great practical value, since nonlinear em-
pirical modeling requires the user to choose regressors, i.e., inputs, outputs,
prediction errors, etc., and the orders and delays for each regressor, in addition
to a computationally demanding nonlinear optimization by, e.g., training an ar-
tificial neural network to fit the data. Finally, once a model has been developed,
a data-based nonlinearity test is still needed to determine whether or not the
nonlinear aspects of interest are captured by the model.

In this presentation, testing for nonlinearity in data from dynamical systems
addresses the following question: Is there evidence in the data that motivates
the use of nonlinear dynamical models? Applied to model validation by residual
analysis, the question becomes: Is there evidence in the residuals for nonlinear
predictability?

These questions are addressed by presenting two approaches that can be
used for data-based detecting of nonlinearity within system identification.

1. Estimating nonlinear distortion in the frequency domain, see, e.g., Pin-
telon and Schoukens [2012] or Schoukens et al. [2016] for a recent survey.

2. Using Fourier-based surrogate data (FSD), developed in a recent article
Waller [2017].

In the recent article, extensive simulations are used to show how Fourier based
surrogate data, with modest computational efforts, can be applied to an array of
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nonlinear systems and how it can detect some nonlinearities that the nonlinear
distortion approach cannot. Some of these results are presented here. In addi-
tion, the article Waller [2017] reviewed the use of nonlinear correlation functions,
see, e.g., Billings [2013], and concluded that the use of nonlinear correlations is
not a reliable alternative for data-based detection of nonlinearity.

2 Surrogate data

Surrogate data is, on a very general level, data that shares some specific (but
not all) properties with the original data, such as mean, variance and power
spectrum. Different statistics can then be calculated for the original and the
surrogate data and can possibly be used to distinguish features specific to the
original data. The concept has been developed and established within the frame
of nonlinear time series analysis Theiler et al. [1992], Schreiber and Schmitz
[2000], Small et al. [2001], Kantz and Schreiber [2004], Kugiumtzis [2008], where
surrogate data is typically used for testing for nonlinearity in the presence of
noise and where determinism might be weak. Since such conditions often oc-
cur in system identification, surrogate data seems suited for use in nonlinear
identification. Although some publications within the field of identification and
control use surrogate data for discriminating between stochastic characteris-
tics and nonlinear dynamics Coca et al. [2000], Barnard et al. [2001], Waller
and Saxén [2003], Jemwa and Aldrich [2006], Choudhury et al. [2008], surro-
gate data is still rarely used in nonlinear system identification. Thus, surrogate
data is not mentioned in books on (nonlinear) system identification (e.g., Nelles
[2001], Isermann and Münchhof [2011]). One possible explanation for this is
that even the articles mentioned discuss the time series case, i.e., there is no
(manipulatable) control signal. An appropriate framework for using surrogate
data within system identification is briefly summarized in this Section.

2.1 Different surrogates

Two approaches for creating surrogate data are often distinguished in the lit-
erature Theiler et al. [1992], Small et al. [2001], Kantz and Schreiber [2004],
Kugiumtzis [2008]:

1. Fitting a model and simulating the model to obtain surrogate data, i.e., a
Monte Carlo method also known as the typical realisations approach.

2. Transforming the data, retaining some aspects and randomizing others
and then using an inverse transform to obtain surrogate data. Typically,
such surrogates are based on the Fourier transform.

2.1.1 Typical realisations approach

The approach of typical realisations fits a model to the data and then uses
“typical simulations” to create surrogate data. The fundamental question of

2
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the present study is whether the data can be adequately described within a
general linear-type model of the form Ljung [1999],

y(k) = G(q)u(k) +H(q)e(k) (1)

and not only some model of Eq. (1), i.e., a model with fixed orders. Such a
hypothesis is called composite. If a typical realisations approach is applied to
a composite hypothesis, the statistic used for the test must be pivotal Theiler
and Prichard [1996]. Although the correlation dimension has been widely used
and advocated as a pivotal statistic in a variety of tests in nonlinear time se-
ries analysis (see, e.g., Small and Judd [1998a,b], Small et al. [2001]), it seems
that correlation dimensions have not been expressed for dynamical systems with
manipulatable inputs. Furthermore, it is not trivial to estimate a correlation
dimension and there is, apparently, no consensus on a suitable pivotal statis-
tic that is easy to estimate, reliable and robust Schreiber and Schmitz [2000],
Kugiumtzis [2008]. For these reasons, the typical realisations approach is not
considered in this presentation.

2.1.2 Fourier-based surrogates

In order to explain and motivate the use of Fourier-based surrogate data for
nonlinearity testing, it can be noted that a general linear dynamical system of
Eq. (1), where u(k) is the input and e(k) is white noise, can be expressed in the
frequency domain by Ljung [1999]

Φyu(ω) = G(eiω)Φuu(ω) (2)

where Φuu(ω) is the power spectrum for u, Φyu(ω) is the cross-power spectrum
between y and u, and G(ejω) is the frequency response function for the linear
system G(q). Given the existence of the Fourier transforms of u and y, denoted
U(ω) and Y (ω) respectively, the power spectrum for u can be determined by1

Φuu(ω) = U∗(ω)U(ω) (3)

where U∗(ω) denotes the complex conjugate of U(ω). Similarly, the cross-power
spectrum can be determined by

Φyu(ω) = Y ∗(ω)U(ω) (4)

In practice, the estimate of Y (ω) and (possibly) U(ω), denoted Ŷ (ω) and Û(ω),
will include contributions from the (filtered) noise sequence H(q)e(k). However,
for the method introduced in this paper, no attempt to estimate, e.g., G(eiω)
from Φyu(ω) and Φuu(ω) is made. Therefore, the influence of (linear) noise on

the estimate Ŷ (ω) does not impose problems.

1To express the power spectrum of a stochastic signal as the Fourier transform of the
autocorrelation would render the treatment more general, but not as useful for explaining the
basic ideas behind FSD for input-output systems. Correspondingly, Eqs. (2)–(4) should in
this paper be considered only as explanatory.

3
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Instead, the general idea behind FSD is to introduce randomness in the

phases of Ŷ (ω) and Û(ω) Ûs(ω) = |Û(ω)|ej∠(Û(ω)+η) and Ŷs(ω) = |Ŷ (ω)|ej∠(Ŷ (ω)+η)

where η is the same for Ûs(ω) and Ŷs(ω). Also, η is uniformly distributed in
[0, 2π) and constrained in order to preserve the conjugate symmetry in the
Fourier transform of a real signal. Clearly, this randomness will not affect any
of Eqs. (2)–(4). The surrogate data thus created will have the same power spec-
tra as the original data. Since the power spectra Φ̂yy(ω) and Φ̂yu(ω) also are the
Fourier transform of the auto- and cross-correlation functions respectively, the
original and surrogate data will share the auto- and cross-correlation functions.
What is not defined by the auto- and cross-correlations, e.g., any correlations
not linearly described is, on the other hand, lost by introducing the random
phases. In other words, the original and surrogate data will exhibit the same
linear characteristics and can be expressed by similar linear dynamical models,
i.e., Eq. (1), while nonlinear structures are lost.

3 Fourier-based surrogates and testing for non-
linearity

Together with the original data, the collection of surrogate data is subjected to a
statistical test that, for a level of significance, can reveal features in the original
data that cannot be described by linear correlations and by distributions. The
choice of test is central, since the test will define the discriminating features of
the approach. Still, there seems to be no consensus regarding an “optimal” test,
and different measures have been suggested, e.g., correlation dimensions, time
reversibility, Poincaré maps, etc.

Since surrogate data is to be used in system identification, it seems moti-
vated to apply a simple test that, in some sense, assesses the very goal of system
identification. Often, a convenient measure of the purpose of the modeling can
be expressed as the ability to predict the (short-term) behavior of the system:
a predictive model is well suited for simulations and for supervisory as well as
control purposes. Therefore, assessing the possibilities for improving predictions
with nonlinear models seems like an appealing choice for a discriminative test.
However, one reason to test for nonlinearities in the data is to avoid an unwar-
ranted and cumbersome fitting of a nonlinear model to the data, and therefore
a simple test is required. One such (model-free) predictor is given in Eq. (7).

A general predictive description is given by

ŷ(k) = g(ϕ(k − 1)) (5)

where g(·) is a mapping (the predictive model) from the regressors, ϕ(k− 1), to
the predicted output, ŷ(k), at sampling k. The one-step-ahead prediction error
is defined by the difference between measured and predicted outputs, ε(k) =
y(k)− ŷ(k).

Although choosing appropriate regressors is a challenge in system identifi-
cation, a simple test naturally requires a simple approach. Consequently, the

4

21st NPCW, 18–19 January 2018, Åbo, Finland 80



components of the regressors are chosen from the set of data, ZN , i.e., the N
observations of inputs and outputs. For a SISO system the vector of regressors
can thus be expressed

ϕ(k − 1) = (y(k − 1) · · · y(k − p)
u(k − L− 1) · · · u(k − L−m)) (6)

where p and m are the orders with respect to the outputs and inputs respectively
and L is the delay from input to output. For the SISO-case, ϕ(k − 1) ∈ Rp+m

while for a general ny × nu MIMO-system ϕ(k − 1) ∈ R
∑ny
i=1 pi+

∑nu
j=1mj .

A model-free, intuitively appealing predictive scheme is the nearest neighbor
approach Lorenz [1969]. The nearest neighbor approach to prediction is based
on finding the regressor ϕ(l−1) closest to ϕ(k−1), i.e., ‖ϕ(k−1)−ϕ(l−1)‖ ≤ εmin

where εmin is the smallest value for ‖ϕ(k−1)−ϕ(l−1)‖ for all l ∈ N , l 6= k. The
prediction for y(k) is then given by ŷ(k) = y(l). In order to make the method
less sensitive to specific noise characteristics, a collection of nearest neighbors
can be used, resulting in the prediction Kantz and Schreiber [2004]

ŷ(k) =
1

|Uε(ϕ(k − 1))|
∑

ϕ(l−1)∈Uε(ϕ(k−1))

y(l) (7)

which is an average of the outputs y(l) corresponding to the regressors in the
neighborhood Uε(ϕ(k− 1)), i.e., the number of regressors satisfying the criteria
‖ϕ(k − 1) − ϕ(l − 1)‖ < ε for all l ∈ N , l 6= k. This integer is denoted by
|Uε(ϕ(k − 1))|. By varying ε, a suitable number of neighbors can be found.

The extension of the simple predictive scheme to MIMO systems is trivial.
It can also be noted that the methodology is not restricted to square systems,
e.g., no restrictions on the number of inputs are made. Numerical tools for
generating surrogate data and predictions using the simple scheme described
above are also readily available Hegger et al. [1999].

3.1 Algorithm for nonlinearity testing

The algorithm for data-based test for nonlinearity based on Fourier surrogates
can be summarized as follows:

1. Choose a level of significance, (1−α), for the discriminative test based on
the probability of a false rejection, α.

2. For an ny × nu MIMO system, use the set of outputs yi (i = 1, . . . , ny)
and inputs uj (j = 1, . . . , nu), y1(1) . . . yny (1) u1(1) . . . unu(1)

...
. . .

...
...

. . .
...

y1(N) . . . yny (N) u1(N) . . . unu(N)

 (8)

5
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and generate a collection of surrogate data, i.e., Q = 2/α − 1 sets for a
two sided test: e.g., 39 sets for a minimal significance requirement of 95%
are needed.

3. Choose orders and delays pi, mj and Lj so that the regressors for the
simple predictor of Eq. (7) can be determined. Some arbitrary default
choices are recommended, e.g., pi = mj = 2–4 for all i and j, since, e.g.,
optimizing pi, mj for the original data is an erroneous approach because
this can render the statistical test biased. Rough estimates of the delays,
Lj , are also needed and can be based on, e.g., prior knowledge of the
system or on visual inspection of simple experiments. Alternatively, if
the delays are unknown, a more exhaustive numerical exploration can be
applied merely by adding shifted input vectors as columns to the data set.

4. Calculate predictions of the outputs by Eq. (7). Compare the variance of
the prediction errors for the original set as well as for all surrogate sets.
If the variance of the prediction error for an output yi is either smaller or
larger for the original set than for all surrogates, there is, on the chosen
significance level, statistical evidence of nonlinear predictability of yi in
the original data set.

Clearly, MIMO systems are handled as easily as SISO systems, as only ny
prediction errors need to be evaluated. Also, there is no need for the systems
to be square so, for example, even a large collection of unclassified data from
an industrial plant could be subjected to a nonlinearity screening using the
presented approach. Furthermore, the outputs yi are simply replaced by the
corresponding residuals εi (one-step ahead prediction errors) for the case of
model validation.

4 Simulations

In order to illustrate the results of the nonlinear distortion in the frequency
domain and the surrogate data approaches for nonlinearity detection, some sim-
ulated examples are used.

The first example considered is

x(k) = sin(x(k − 1)) + u(k − 1)

y(k) = x(k) + e(k)
(9)

Results using the nonlinear distortion approach are illustrated in Fig. 1. For the
figure, urms = 0.5 was used for the multisines needed for the frequency domain
identification and the standard deviation of the added Gaussian noise e was
set to urms/10. As the figure reveals, the approach provides an estimate of the
best linear approximation (BLA) as well as an indication of the improvement
that can be achieved by nonlinear considerations, i.e., the nonlinear distortion.
For the example, the significant linear approximation is clearly seen in the figure
and, interestingly, it can be noted that the nonlinear distortion is approximately

6

21st NPCW, 18–19 January 2018, Åbo, Finland 82



Figure 1: Frequency response functions for the model of Eq. (9)—BLA, (solid
black), nonlinear distortion (dashed blue), noise (dotted red). The panel illus-
trates averaged results for 6 independent simulations of 2 consecutive periods
of multisines with 1000 observations for each period, i.e., the total number of
observations used to produce the results are N = 12000.

15dB under the BLA. This coincides very well with the model: given the first two
terms in the expansion of the nonlinear function, i.e., sin(x) ≈ x−x3/3!, the level
of nonlinear distortion is approximately given by the ratio std(x3/3!)/std(x).
The standard deviation of x3 can be determined from the variance, E{(x3 −
E{x3})2}. For normally distributed x with zero mean and variance δ2, E{(x3−
E{x3})2} = 15δ6, thus yielding std(x3/3!)/std(x) = δ2

√
15/3!. For the case

illustrated in Fig. 1 with urms = 0.5, this gives δ ≈ 0.5 and std(x3/3!)/std(x) ≈
−16 dB. Fig. 1 also illustrates the fact that nonlinear distortion is typically
detected by visual inspection.

Using surrogate data only provides a binary answer of whether or not an
output exhibits (predictable) nonlinear features. For the model of Eq. (9), the
result for the surrogate data approach is, with a 5% statistical error margin,
simply a list of 40 numbers, i.e., the variance of the prediction errors using
the predictive model of Eq. (7) for the original data set as well as for the 39
surrogate sets. Since the variance of the prediction errors is smaller for the
original data set than for all surrogates, there is evidence of nonlinearity in the
data. For this example, the two approaches are apparently qualitatively quite
different but seem, with respect to data-based nonlinearity detection, similar.

The second example studied is a MIMO systems originally presented in
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Billings and Zhu [1995] and is given by

y1(k) = 0.5y1(k − 1) + 0.1y2(k − 1)u1(k − 1)

+ u1(k − 2) + 0.2y1(k − 2)e1(k − 2)

+ 0.5e1(k − 1) + e1(k)

y2(k) = 0.9y2(k − 2) + 0.2y2(k − 1)u2(k − 2)

+ u2(k − 1) + 0.1y2(k − 1)e1(k − 2)

+ 0.5e2(k − 1) + e2(k)

(10)

with std(u1) = std(u2) = 1.0 and std(e1) = std(e2) =
√

0.04. The surro-
gate data approach needs approximately 5000 observations in order to reliably
indicate that the simulated system is nonlinear. Among the large number of
simulations reviewed in Waller [2017], this example is among the ones that re-
quire the greatest number of observations for the surrogate data approach to
yield reliable results. For most examples studied, 500–1000 observations are
sufficient.

Results for the nonlinear distortion approach for the model of Eq. (10) are
provided in Fig. 2. The figure clearly shows that the approach detects the
nonlinearity. Moreover, the linear dependence from u1 to y1 is most clearly
visible (upper left panel) and to a lesser extent from u2 to y2 (lower right
panel). The other transfer functions, from u2 to y1 (upper right panel) and
from u1 to y2 (lower left panel) are mainly nonlinear as the estimated BLAs are
at the level of, or lower than, the nonlinear distortion. This is also consistent
with the model. As the figure reveals, the nonlinear distortion approach can be
a powerful tool for detecting and quantifying nonlinearity in data.

A third example uses the well-known logistic map

w(k) = µw(k − 1)(1− w(k − 1)) (11)

with µ = 4 to provide as a basis for determining a state variable observed
through a linear filter,

y(k) = ay(k − 1) + w(k − 1) + bu(k − 1) + e(k) (12)

with urms = 0.5 and the standard deviation of e set at urms/10 for the simula-
tions. For this model, the method for estimating nonlinear distortion classifies
the input-output relationship from u to y as linear. Since the chaotic state w
is not directly observable through the input-output relationship, the method
cannot detect the nonlinearity, even without any added Gaussian noise e. The
estimated BLA and nonlinear distortion are illustrated in Fig. 3 and the nonlin-
ear distortion cannot be distinguished from the stochastic noise. The nonlinear
distortion approach will also fail for other examples with noise-related nonlin-
earity, e.g.,

y(k) = u(k − 1) + e(k − 2)e(k − 5) + e(k) (13)

and
y(k) = u(k − 1) + u(k − 2)e(k − 5) + e(k) (14)

8
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Figure 2: Frequency response functions for the model of Eq. (10): BLA, (solid
black), nonlinear distortion (dashed blue), noise (dotted red). The figure il-
lustrates averaged results for 6 independent simulations, each consisting of 2
consecutive periods with 1000 observations, i.e., the total number of observa-
tions used to produce the results are N = 12000. From u1 to y1 in the upper
left panel, from u2 to y1 in the upper right panel, from u1 to y2 in the lower left
panel and from u2 to y2 in the lower right panel.

both originally presented in Billings and Woon [1986]. For one-step-ahead pre-
diction and related applications, this disadvantage of the frequency domain
approach for detecting nonlinearity should be duly noted.

The surrogate data approach, on the other hand, reliably detects the non-
linearity in the model of Eqs. (11)–(12), already for N = 1000. This is also true
for the models of Eqs. (13)–(14).

Given these examples, the surrogate data approach appears to be the most
reliable alternative for detecting nonlinearity in data from general nonlinear
dynamical systems.

9
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Figure 3: Illustrated results for the model of Eqs. (11)–(12). BLA (solid black),
nonlinear distortion (dashed blue) and noise (dotted red). The figure illustrates
averaged results for 6 independent simulations of 2 consecutive periods, each
period consisting of 1000 observations, i.e., the total number of observations
used to produce the results are N = 12000.

5 Conclusions

The use of Fourier-based surrogate data with a simple predictive scheme seems
to be a powerful data-based nonlinearity test for dynamical systems and can
thus be used to determine whether or not the data motivates nonlinear modeling.
For detecting nonlinearity in data from general nonlinear systems, the presented
method apparently outperforms alternative methods. As such, the method may
be of significant importance within system identification.

A disadvantage of the surrogate data is that only a binary answer of whether
or not an output exhibits (predictable) nonlinear features. An appealing pos-
sibility could therefore be to combine the power of the nonlinear distortion in
the frequency domain approach for quantifying nonlinearity with the reliability,
i.e., that no nonlinearities go undetected, of the surrogate data approach.
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Identification of low order output-error models

Mikael Manngård∗, Jari M. Böling, Hannu T. Toivonen
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Abstract

We show that low order output-error models can be identified from input-output data
by parametrizing the model in terms of it’s impulse response, and constraining the rank
of the corresponding Hankel operator. The problem is formulated as a rank constrained
optimization problem, which is relaxed using the nuclear norm [1]. This formulation
results in convex optimization problem which can be solved efficiently using any gen-
eral purpose convex optimization software, such as CVX [2] and Mosek 7.1 [3]. Given
a low-rank solution, a minimal partial state-space realization of the same order can be
obtained by applying the Ho-Kalman algorithm [4]. The proposed method have been
validated on benchmark datasets, and is compared to other state-of the art output-error
system identification methods.

Keywords: Output-error identification, nuclear norm, impulse response models
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One of the major limitations in the biochemical industry is the multitude of disturbances that 

each process is subjected to. Large segments of the industry operate in a heuristic recipe-

driven way, dependent on rule-of-thumb experience which results too often in batch-to-batch 

discrepancies. These difficulties can be mitigated by an appropriate monitoring strategy and 

model building comes as an integral part of such a strategy. Models supply a representation of 

the underlying physical/chemical phenomena, allowing for the estimation of both measured 

and unmeasured states, enabling subsequent control decisions. 

From development to optimization of established processes, model-based monitoring and 

control strategies are crucial in a product/process life-cycle. They enable us to address a large 

number of objectives such as process understanding, troubleshooting, real-time control 

actions and continuous process optimization. 

Our work studies the application of two distinct classes of observers (Luenberger-based and 

Bayesian) in a biochemical toy case, for different test-scenarios. The challenge of employing 

the observer structures, which update key performance indicators (KPI) forecast, as new 

quality data is supplied, is highlighted. This allows scenarios of real industrial value such as 

estimating unmeasured states or identifying parameters. Insights on the properties of the 

different observers in a biotech context are presented. 

_____________________ 
*Corresponding author; Ricardo F. Caroço, Department of Chemical and Biochemical Engineering, Technical
University of Denmark, Søltofts Plads2800, Denmark. E-mail: rcar@kt.dtu.dk
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Control strategy based on radial basis function for an Ibuprofen batch 

crystallization process under upstream uncertainty 
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Due to its process flexibility, crystallization is one of the most commonly used processes in the 

pharmaceutical industry. Although continuous crystallization is becoming more common, batch 

operation is still the most frequent option, as it easily allows the production of different API through 

different batches. However, crystallization is a highly non-linear process and therefore difficult to 

model and simulate. Moreover, uncertainty in process parameters and previous process outputs 

has an important and critical influence on the control strategy used for the same process. 

In order to study the design space and overcome such uncertainties, a two dimensional population 

balance model of ibuprofen batch crystallization is used, with uncertainty from previous synthesis 

steps included [1,2] and uncertainty from process parameters as reported in the literature [3,4]. A 

nonlinear control strategy is then applied, comparing different radial basis functions (quadratic, 

cubic, Gaussian…)[5], in order to minimize the formation of off-spec API crystals by manipulating 

and updating the cooling profile of the same process. 

The resulting three operation strategies are benchmarked with respect to key performance metrics 

(setpoint deviation and input variation): open-loop, open-loop strategy under process uncertainties, 

and closed loop operation subject to process uncertainties. The final CSD is reported as a 

confidence interval, in order to be used for further downstream processing. 

[1] - V. Elango, M. Murphy et al., 1991, USA 4.981.995

[2] – F. Montes, K. Gernaey, G. Sin, ESCAPE 27, Barcelona, 2017

[3] - A. Rashid, E.T. White et al., Proc. Chemeca, Adelaide, 2010

[4] - A. Rashid, E.T. White et al., Proc. Chemeca, Perth, 2009

[5] – M. Pottman, D. E. Seborg, Comp. Chem. Eng., 1997
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Abstract 

Prehydrolysis kraft process adds a separate prehydrolysis stage prior to traditional kraft 

batch cooking cycle in order to selectively remove  portion of the wood hemicelluloses. 

The removal of hemicellulose is unavoidably accompanied by adverse reactions, most 

importantly partial hydrolysis amorphous alpha-cellulose and release of condensation 

prone acid soluble lignin. On-line monitoring of the reactions is missing, and only 

available signals from the digester are the temperature and pressure profiles. This paper 

presents a mechanistic dynamic model for the prehydrolysis stage, which approximates 

the progression of the unmeasured reactions based on the energy and component balances 

determined for individual digester sub-sections. Energy balance is determined for solids, 

liquid fraction and the walls inside each section, while the reaction rates are modelled for 

liquid and solid fractions in each section using second order kinetics. The model can be 

used directly for the control and optimization of the process or for the development and 

testing of soft sensors and novel control strategies. 

Keywords: autohydrolysis, batch digester, mechanistic model, dynamic model  

1. Introduction 

The demand for hemicellulose lean dissolving pulp has been increasing rapidly, due to 

constantly growing textile market, which cotton cultivation is no longer able to saturate 

(Hämmerle, 2011). Removal of hemicelluloses by continued cooking cannot be 

accomplished without sacrificing selectivity. Therefore, a separate acidic prehydrolysis 

stage with mineral acid or autohydrolysis is required. Here autohydrolysis is considered, 

where the prehydrolysis is conducted simply with water or steam: heating of the digester 

up to 160 – 180 °C results in the cleavage of native acetyl groups as acetic acid. The 

increased acidity and high temperature drive the hydrolysis reaction, which results in the 

dissolution of wood hemicelluloses. Amorphous alpha-cellulose and lignin are similarly 

susceptible for acid hydrolysis: the partial hydrolysis of cellulose decreased pulp viscosity 

and cooking yield, while the highly reactive acid soluble lignin limits the recovery of 

sugars from the prehydrolyzate. The main quality parameters—e.g. viscosity, alpha-

cellulose content and kappa number—are measured off-line and the process is optimized 

on a batch-to-batch basis. No chemicals are added during the autohydrolysis stage and 

therefore the control problem consists of simply determining the suitable P-factor—which 

incorporates combination of time and temperature—that results in the desired pulp 

quality.  

   Temperature and pressure are the only monitored variables during the prehydrolysis 

stage, which limits the on-line estimation of the quality parameters. Reaction kinetic 

models can be used for determining the relationship between the acidity and temperature 

and the rate of the unobservable reactions. The complex and inhomogenous structure of 

the lignocellulose matrix limits the accessibility and reactivity of wood biopolymers 
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towards to hydrolysis reactions, leading to fractions with different reactivity. Conner, 

(1984) successfully modelled xylan removal using pseudo first order kinetics by dividing 

the wood xylan into fast and slow reacting fractions, with different activation energy and 

frequency factor. Later Borrega et al. (2011a, 2011b) showed that the same model 

structure can be used for simulating the degradation of lignin and cellulose fractions. A 

more recent model by Ahmad et al. (2016) uses second order kinetics, which requires 

modelling of deacetylation and mass transfer phenomena, but offers more realistic results 

especially in lower temperatures, where the deacetylation is slower, leading to slower 

development of acidity. 

   The aforementioned kinetic models assume even temperature profile and are 

normalized to isothermal conditions. As the reaction rates are depend exponentially on 

the temperature according to the Arrhenius equation, accurate modelling of the digester 

energy balance offers more realistic framework for the modelling of the wood degradation 

reaction kinetics and can lead to insight regarding in batch variation. Consequently, 

modelling of the PHK-process for process control requires a comprehensive model which 

captures the dynamics of the entire digester and allows estimation of control actions on 

the process. 

  This paper presents a dynamic mechanistic model for the water phase autohydrolysis 

inside a simple circular flow batch digester system consisting of reactor vessel, heat 

exchanger and the required piping. The process model is described in Chapter 2, while 

the conclusions are drawn in Chapter 3.  

2. Dynamic model for the PHK-process in batch digester 

The reactor vessel, the outflow pipe, the heat exchanger and the inflow pipe are divided 

into N, M1, H and M2 sections. Perfect mixing and isothermal conditions are assumed 

inside each subsection. The energy balances for each section (Fig. 1) are:  

 

𝑄̇𝐿,𝑛 = 𝑄̇𝐹,𝑛 − 𝑄̇𝐿𝐶,𝑛 − 𝑄̇𝐿𝑊,𝑛 (1) 

𝑄̇𝐶,𝑛 = 𝑄̇𝐿𝐶,𝑛 + 𝑄̇𝑅,𝑛 (2) 

𝑄̇𝑊,𝑛 = 𝑄̇𝐿𝑊,𝑛 − 𝑄̇𝐶𝑊𝐴,𝑛 − 𝑄̇𝑅𝑊𝐴,𝑛 (3) 

 

Where 𝑄̇𝐿,𝑛, 𝑄̇𝐶,𝑛 and  𝑄̇𝑊,𝑛 are the n:th liquid, chip and wall fraction energy balances, 

consisting of the advection flux (𝑄̇𝐹), the convection from wood to chips (𝑄̇𝐿𝐶), and walls 

(𝑄̇𝐿𝑊) and from walls to ambient by convection (𝑄̇𝐶𝑊𝐴,𝑛) and radiation (𝑄̇𝑅𝑊𝐴,𝑛) and the 

heat of reactions (𝑄̇𝑅,𝑛). Determining of the convective heat fluxes 

(𝑄̇𝐿𝑊, 𝑄̇𝐿𝐶, 𝑄̇𝑊𝐴 𝜖 𝑄̇𝑐𝑜𝑛𝑣) equals to finding the average overall heat transfer coefficients 

ℎ̅𝑐𝑜𝑛𝑣,𝑛 (Incropera et al., 2007). The flux is then linearly proportional to the temperature 

gradient (Δ𝑇𝑐𝑜𝑛𝑣). The convection term 𝑄̇𝐿𝑊,𝑛, 𝑄̇𝐿𝐶,𝑛 and 𝑄̇𝐶𝑊𝐴,𝑛 can be approximated as 

internal flow inside a circular pipe, liquid flow through packed bed and as free convection 

of air respectively or coefficients can be determined experimentally.  The radiative term 

(𝑄̇𝑅𝑊𝐴,𝑛), can be computed from Stefan-Boltzmann constant (𝜎), surface emissivity (𝜀𝑊), 

ambient wall area (𝐴𝐴), ambient temperature (𝑇𝐴) and wall surface temperature (𝑇𝑊). The 

advection term (𝑄̇𝐹,𝑛) is function of the volumetric flow rate (𝐹̇) and the specific heat 

capacity (𝐶𝐿), density (𝜌𝐿) and temperature (𝑇𝐿  ) of the adjacent liquid fractions. The heat 
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released by reactions 𝑄̇𝑅,𝑛 is summation over the reaction rate of 𝑛𝑅 reactants [𝑅𝑖
̇ ] 

multiplied by heat of the corresponding reaction 𝜆𝑖 

 

𝑄̇𝑐𝑜𝑛𝑣,𝑛 = ℎ̅𝑐𝑜𝑛𝑣,𝑛Δ𝑇𝑐𝑜𝑛𝑣   (4) 

𝑄̇𝑅𝑊𝐴,𝑛 = σεW,n(TW,n
4 − 𝑇𝐴

4) (5) 

𝑄̇𝐹.𝑛 = 𝐹̇(𝐶𝐿,𝑛−1 𝜌𝐿,𝑛−1𝑇𝐿,𝑛−1 − 𝐶𝐿,𝑛𝜌𝐿,𝑛𝑇𝐿,𝑛)   (6) 

𝑄̇𝑅,𝑛 =  ∑ 𝜆𝑖[𝑅̇𝑖,𝑛]
𝑛𝑅
𝑖=1   (7) 

 

 

Figure 1. Circulation of the liquid fraction inside the reactor system and the heat fluxes simulated 

in the energy balances of the dynamic model.  

 

The component balances are determined for the cellulose [𝐶], xylan [𝑋], lignin [𝐿], 
glucomannan [𝐺], acetyl groups [𝑂𝐴𝑐] and acetic acid [𝐴𝑐𝑂𝐻] using second order 

kinetics (Eq. 8,9).  

 

𝐻2𝑂 ⇄ 𝐻+ + 𝑂𝐻−  (8) 

𝑅𝑂𝐴𝐶 + 𝐻+ → 𝐴𝑐𝑂𝐻 + 𝐻+  (9) 

𝐴𝑐𝑂𝐻(𝑎𝑞) ⇄ 𝐴𝑐𝑂−(𝑎𝑞) + 𝐻+(𝑎𝑞)  (10)  

𝐶(𝑠) + 𝐻+ → 𝐶𝑂𝑆(𝑎𝑞) + 𝐻+  (11) 

X(𝑠) + 𝐻+ → 𝑋𝑂𝑆(𝑎𝑞) + 𝐻+  (12) 

𝐺(𝑠) + 𝐻+ → 𝐺𝑂𝑆(𝑎𝑞) + 𝐻+  (13) 

𝐿(𝑠) + 𝐻+ → 𝐿(𝑎𝑞) + 𝐻+  (14) 

𝐿(𝑎𝑞) + 𝐻+ → 𝐿𝐶(𝑠) + 𝐻+  (15) 
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Water autohydrolysis and acetic acid equilibrium are calculated each step using 

equilibrium constants in corresponding temperature. Diffusion of acetic acid and 

solubilized lignin from the wood chips into the bulk liquid is approximated by Fick’s law 

of diffusion in order to eliminate the need for rigorous modelling of multiple ionic species. 

  

[𝑅̇𝑖,𝑛] = −𝑘𝑅𝑖
[𝑅𝑖,𝑛][𝐻𝑛

+]  (16) 

[𝑅̇𝐶,𝑛] = −𝐷𝐶𝐿( [𝑅𝐶,𝑛] − [𝑅𝐿,𝑛])  
  

(17) 

3. Preliminary testing  

The model was tested using parameters obtained from literature: the kinetic parameters 

for acetyl group cleavage and lignin reactions were obtained from (Ahmad et al., 2016), 

while the degradation kinetics of xylan were adapted from (Borrega et al., 2011b). The 

diffusion of solubilized lignin and acetic acid from the entrapped liquid into the bulk 

liquid was modelled with diffusion coefficients obtained from (Haynes et al., 2017) 

multiplied with effective capillary cross sectional area of 0.1 (Inalbon et al., 2017). The 

heat transfer coefficients of the liquid-solid, liquid-wall and wall-ambient interfaces were 

approximated as 200, 500 and 37 W/(m2K) respectively.  

 The temperature profile of the solid fraction—where the reactions are taking place—is 

lagging behind the liquid fraction—where the temperature is measured—by 

approximately 10 ºC, and the overshoot in temperature control is much less significant. 

The cleavage of acetyl groups progresses gradually during the first 60 minutes: as the 

reaction rate depends linearly on hydrogen ion concentration, the reaction rate will be 

time dependent long after the reactor reaches the temperature set point. The removal of 

lignin is much slower in comparison with (Ahmad et al., 2016), which may be the result 

of large uncertainty in the parameters, while the removal of xylan closely resembles that 

simulated by (Borrega et al., 2011b). Therefore, further experimental work is still required 

for the estimation of the kinetic parameters developed here.  

  

 

Figure 2. Temperature profile and component balances simulated by the model. 

21st NPCW, 18–19 January 2018, Åbo, Finland 95



4. Conclusions 

Dynamic mechanistic model was developed for the autohydrolysis stage in the 

prehydrolysis kraft process in a batch digester. The model—consisting of energy and 

component balances defined for separate reactor system sections individually—offers a 

more realistic framework for simulating effect of different control actions. Therefore, the 

model allows further development and testing of soft sensors and novel control strategies 

for the prehydrolysis process. However, acquisition of accurate model parameters for the 

heat transfer coefficients and reaction rates requires additional experimental work. The 

experimental data will be used for further testing and validation of the developed model 

in near future. 
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Abstract:  

Industrial processes are often subjected to faulty operations, which can easily propagate via the 

process units and elements along material or information flows. Oscillatory disturbances are one of 

the most common disturbances which affect the control loops of a process leading to poor control 

performance and excessive energy consumption. Early detection and diagnosis of abnormal events 

can assist in minimizing the production losses and impede fault progression. Establishing causal 

dependencies among process measurements has a key role in fault detection analysis due to its 

ability to identify the root cause of a fault and its propagation path. This study proposes a non-linear 

causality estimator based on Nonparametric Multiplicative Regression (NPMR) for identifying the 

propagation of oscillation in control loops. NPMR-based estimator offers several advantages over 

the traditional causality methodologies:  it is nonparametric, i.e., it does not rely on estimation of 

any type of parametric model. It can be applied to both linear and non-linear processes and there is 

no restriction on the order of nonlinearity that can be estimated. Furthermore, the method can be 

used for both pairwise and multivariate analysis without any modifications. In order to facilitate the 

analysis, the process connectivity information is automatically integrated into the analysis using a 

unique depth-first search algorithm. The process connectivity information is extracted in the form 

of a connectivity matrix, which is captured from an XML scheme using AutoCAD P&ID. The 

search algorithm mainly serves to determine the type of directionality between two control elements. 

Accordingly, the bivariate NMPR-based causality estimation is calculated for all paths which are 

considered as direct based on the connectivity information while the conditional (multivariate) 

NPMR-based causality is calculated for each indirect path. This type of approach enables to tackle 

efficiently complex systems with a high level of connectivity and thereby enhance the quality of the 

results. In particular, this approach is highly beneficial when analyzing complex systems with 

several recycle streams or bidirectional connectivity. Moreover, the possibility for an automatic 

extraction of the process connectivity information and integrating it with data-based analysis 

generates an enhanced and powerful diagnostic tool. This methodology is exemplified using a case 

study of an industrial board machine with multiple oscillating control loops due to valve stiction. 

This highly inter-connected system serves to illustrate the effectiveness and the advantages of the 

proposed methodology. 
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1. Introduction 

 

Recently, a new causality estimator based on Non-Parametric Multiplicative Regression (NPMR) was proposed by 

Nicolaou & Constandinou (2016). The concept of NPMR originates from the field of ecology and was first introduced by 

MacCune (2006; 2011) in the context of habitat modeling. In their thorough review of existing causality estimators, 

Nicolaou & Constandinou (2016) showed how NPMR-based estimator addresses the limitations of other methods. For 

instance, this type of estimator offers several advantages over the traditional causality methodologies:  it is nonparametric, 

i.e., it does not rely on estimation of any type of parametric model. It can be applied to both linear and non-linear processes 

and there is no restriction on the order of nonlinearity that can be estimated. Furthermore, the method can be used for 

both pairwise and multivariate analysis without any modifications (Nicolaou & Constandinou, 2016). The inherent 

features of NPMR eliminate any overfitting issues, a problem which often leads to detection of spurious causalities when 

using many current nonlinear methods (Palus & Vejmelka, 2007). The statistical significance can be tested using surrogate 

data and the sensitivity measure Q can be used to evaluate the contribution of particular parameters within the model 

(Nicolaou & Constandinou, 2016). 

In this study, we propose to combine a causality estimator based on NPMR with the information on process connectivity 

in order to provide a powerful diagnostic tool which can efficiently tackle complex industrial processes. A number of 

recent studies suggest that the results of the data-based methods should be combined with qualitative information, e.g., 

expert knowledge or validated by P&ID (Thambirajah, et al., 2007; Landman, et al., 2014; Duan, et al., 2014; Yang, et 

al., 2012).  In particular, this approach is highly beneficial when analyzing complex systems with several recycle streams 

or bidirectional connectivity (Landman & Jämsä-Jounela, 2016). Moreover, the possibility for an automatic extraction of 

the process connectivity information and integrating it with data-based analysis generates an enhanced and powerful 

diagnostic tool (Duan, et al., 2014; Thornhill & Horch, 2007). The process connectivity information is extracted in the 

form of a connectivity matrix, which is captured from an XML scheme using AutoCAD P&ID (Thambirajah, et al., 2009; 

Landman, et al., 2014). 

The combination of the connectivity information with NPMR estimator is automated by means of a unique search 

algorithm based on a depth-first search (Thambirajah, et al., 2009). The search algorithm mainly serves to determine the 

type of directionality between two control elements. Accordingly, the bivariate NMPR-based causality estimation is 

calculated for all paths which are considered as direct based on the connectivity information while the conditional 

(multivariate) NPMR-based causality is calculated for each indirect path. 

This procedure offers an enhanced and efficient diagnostic tool for identifying the source of oscillation and its propagation 

path. This methodology is exemplified using a case study of an industrial board machine with multiple oscillating control 

loops due to valve stiction. This highly inter-connected system serves to illustrate the effectiveness and the advantages of 

the proposed methodology. 

2.  The NPMR-based causality analysis framework 

 

The study aims to identify the propagation path of oscillations through control loops. The analysis consists of the 

following steps: first, the search algorithm searches for feasible propagation paths between two control loops. Then, if 

such paths exist, the search algorithm checks whether the controllers are connected directly or via other controllers. If 

two controllers are directly connected, the bivariate NPMR-based causality is estimated while if the controllers are 

connected indirectly, the conditional (multivariate) NPMR-based causality is calculated for all indirect paths and the 

maximum value is taken. Finally, all the estimations undergo a statistical significance test using surrogate data. The logic 

of the overall analysis is illustrated in Figure 1. 
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Figure 1 : The logic of the NPMR-based causality analysis 

3. NPMR-based causality estimator 

Consider a response variable Y  with N samples 𝑌 = [𝑦1, 𝑦2 , … 𝑦𝑁] and consider a matrix X with  m   predictors  

        𝑋 = (

𝑥1,1 ⋯ 𝑥1,𝑚

⋮ ⋱ ⋮
𝑥𝑁,1 ⋯ 𝑥𝑁

)                                  (1) 

Next, a response surface of  y  is built from its m predictors using a multiplicative kernel smoother (McCune, 2006). This 

is achieved by estimating each value  𝑦𝑛 from its local neighborhood corresponding to the predictor space 𝑋𝑛 =

[𝑥𝑛,1, 𝑥𝑛,2,….,𝑥𝑛,𝑚]. The influence of each predictor 𝑋𝑗, (𝑗 = 1, … , 𝑚) on the estimation is defined by its corresponding 

tolerance of the kernel smoother, 𝑠𝑗, which is a unique feature for NPMR. In this study, the local neighborhood is defined 

as the weighted mean and the weights are estimated using a Gaussian weighing function. The weights are the distances 

of each of the m predictors from a target point  𝑋𝑛 scaled by the standard deviation (tolerance) of each predictor (Nicolaou 

& Constandinou, 2016). 

 

𝑤𝑖,𝑗=𝑒
 −1/2[

𝑥𝑖,𝑗−𝑥𝑛,𝑗

𝑠𝑗
]
2

                                            (2) 
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Thereupon, the estimation of target point n of y can be obtained as follows: 

𝑦̂𝑛=

∑ 𝑦
𝑖
(∏ 𝑤𝑖,𝑗)

𝑚
𝑗=1

𝑁
𝑖=1,𝑖≠𝑛

∑ (∏ 𝑤𝑖,𝑗)
𝑚
𝑗=1

𝑁
𝑖=1,𝑖≠𝑛

                              (3) 

The estimate is the mean value of the observations where each observation is weighted according to its distance from the 

target point in the predictor space with the weights being the product of the individual weights. By omitting the target 

point n from the estimation, overfitting is reduced and error estimates are more realistic (McCune, 2006). Nicolaou & 

Constandinou (2016) extended the basic idea of NPMR in the context of causality estimation by extending the predictor 

space to include past information as additional predictors. For time instance n, the embedded vector 𝑥𝑛 is defined as  

𝑥𝑛 = [𝑥𝑛,, 𝑥𝑛−𝜏,….,𝑥𝑛−(𝑑−1)𝜏] where d is the embedded dimension and 𝜏 is the embedding time delay. The bivariate NPMR-

based causality estimator is defined as follows: 

𝐶𝑁𝑃𝑀𝑅(𝑋𝑗 → 𝑌) = log (
𝜎2(𝑌, 𝑌̅)

𝜎2 (𝑌, (𝑌,̅ 𝑋𝑗̅))
)      (4) 

where 𝑋𝑗 is the 𝑗𝑡ℎ predictor and 𝜎2(𝑌, 𝑌̅)  𝜎2 (𝑌, (𝑌,̅ 𝑋𝑗̅)) and are the error variances when past values of Y are used as 

predictors and when both past values of Y and X are used as predictors, respectively. Likewise, the conditional 

(multivariate) 𝐶𝑁𝑃𝑀𝑅 is defined as: 

𝐶𝑁𝑃𝑀𝑅(𝑋𝑗 → 𝑌/𝑍) = log (
𝜎2(𝑌, 𝑌,̅ 𝑍)

𝜎2 (𝑌, (𝑌,̅ 𝑋𝑗 ̅̅̅̅  , 𝑍))
)      (5) 

where Z  corresponds to the intermediate variables, excluding 𝑋𝑗. Negative  𝐶𝑁𝑃𝑀𝑅 values imply that including the past 

information on the predictors resulted in worse model fit, i.e., there is no causal dependency among the time series 

(Nicolaou & Constandinou, 2016). 

4. Process case study 

The process case study involves a large-scale board machine (BM) which produces a three-layer liquid packaging and 

board cups. In particular, the analysis is focused on the drying section of the machine where the remains of the excess 

water in the web are removed to achieve the desired moisture content. The drying section is consists of six drying groups 

(DGs) wherein each drying group includes a steam group (SG) containing steam filled cylinders and its corresponding 

condensate tank (CT) where the condensate is collected by syphons and separated into water and steam. Each DG has 

three types of controllers. Pressure controllers which provide steam for each SG using 5 and/or 10 bar pressurized steam 

headers. Pressure difference controllers which are used to manipulate the steam outlet of the CTs in order to maintain the 

proper pressure difference between each of the SG and its CT to allow an efficient condensate removal. In addition, level 

controllers are used to maintain the appropriate condensate level in the CTs by regulating their outlet flow.  The entire 

drying section is illustrated in Figure 2. The case study involves a valve stiction in the pressure controller PC1652. The 

cycling nature of the stiction typically manifests as an oscillatory behavior of the control loops since the stiction delays 

the valves movement while the process inputs remain the same. Oscillations generated by valve stiction easily propagate 

among control loops and eventually deteriorate the overall control performance. (Pozo Garcia, et al., 2013) The time 

series used for the investigation are corresponding to the process measurement (PVs). 1000 samples measured with a 

sampling interval of 10 s were used for the analysis. Prior to the investigation, the series were normalized by removing 

the mean and scaling to a unit standard deviation. Due to the oscillatory behavior of the time series, the power spectra of 

the series was used in order to detect measurements with a similar spectral behavior. The control loops which share this 

common oscillation frequency are: PC1653, PC651, PC652, PC653, PC670, LC652, PC1652, PC671, LC653 and PC673. 

The time delay 𝜏 was estimated as the time when the auto-correlation function reaches 1/𝑒 (Nicolaou & Constandinou, 

2016) and was chosen as 3. Next, the embedding dimension was evaluated according to the method presented by Cao 

(1997) and was selected as d=4. Finally, the kernel tolerance 𝜎 was tuned for each pair of series. Using 𝜏 =3 and d=4, the 

model fit was calculated for  𝜎 = 0.2, 0.4, 0.6, … 2. The tolerance which produced the best model fit (Nicolaou & 

Constandinou, 2016) for each pair was selected. There was a slight variation in the optimum value of 𝜎 for each pair of 

series (0.2<𝜎 <0.8), hence, an optimum value was set individually for each pair.  
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Figure 2: The drying section of the BM. PC=Pressure Controller, C=Condensate tank, LC=Level Controller, PI=Pressure 

Indicator    

5. Results  

The causality matrix with the 𝐶𝑁𝑃𝑀𝑅(𝑋𝑖 → 𝑋𝑗) for each (𝑖, 𝑗)𝑡ℎ pair of controllers is shown in Table 1 (to the left) . Empty 

cells indicate either on lack of physical connectivity or 𝐶𝑁𝑃𝑀𝑅 values which are lower than their significance level. In 

addition, negative values of 𝐶𝑁𝑃𝑀𝑅 were excluded. Table 1 (to the right) presents the connectivity information according 

to the search algorithm: empty cells indicate on lack of physical connectivity, circles denote indirect paths  
 
 

 

Table 1: The causality matrix to the left an circles indicating on indirect/direct connectivity to the right (empty circles 

denote indirect paths while filled circles denote direct paths 

 

and filled circles denote direct paths between the row and column controllers.  According to the results, all the paths 

which were identified as indirect by the search algorithm were also verified as indirect according to their 𝐶𝑁𝑃𝑀𝑅 values. 

The majority of the paths which were identified as direct by the search algorithm were also confirmed as direct by their 

𝐶𝑁𝑃𝑀𝑅 values. In this study, two possible scenarios could lead to misidentification of direct causality: causality might 

exist but on a very low level (e.g., LC652 → PC1653) or there is a direct physical path but there is no information transfer 

due to closed valve. The latter scenario could be the case for PC673 → PC653 and PC673 → PC670. This exemplifies 

that physical connectivity does not necessarily imply on causality.    

 

The causal mode is shown in Figure 3. The paths which are suspected as indirect are denoted as dashed arcs. The path 

PC1652 → LC653 is initially suspected as indirect according to the captured topology; however, according to the search 

algorithm the path is direct since the steam condensate from SG3 is transferred directly to C4. Moreover, the high 

𝐶𝑁𝑃𝑀𝑅 value  implies on a high level of interaction between PC1652 and LC653. The paths from LC653 to controllers 

PC651 and PC652 is recognized as direct, however, the search algorithm reveals that the direct path from LC653 to 

PC651 and PC652 is via C3 whose one of the steam outlet streams flows directly into SG1. However, since the bottom 

 PC1653 PC651 PC652 PC653 PC670 LC652 PC1652 PC671 LC653 PC673 

PC1653           

PC651   0.053        

PC652 0.065 0.172         

PC653     0.303      

PC670  0.036 0.078 0.156  0.100     

LC652  0.102 0.058        

PC1652       0.190 0.498   

PC671    0.094 0.134  0.090 0.234   

LC653  0.108 0.249   0.135     

PC673           

 PC1653 PC651 PC652 PC653 PC670 LC652 PC1652 PC671 LC653 PC673 

PC1653           

PC651 
 

 
 

       

PC652 
  

        

PC653 
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LC652 
   

       

PC1652 
      

 
  

 

PC671 
       

 
 

 

LC653 
      

    

PC673 
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flow outlet of C4 initially alters the level in C3, it is reasonable to assume that LC652 is primarily affected by LC653. 

Consequently, the 𝐶𝑁𝑃𝑀𝑅 values of LC653 →PC652 and LC653 →PC651 via intermediate controller LC652 are 

calculated. The values of 𝐶𝑁𝑃𝑀𝑅 (LC653→ LC652 →PC651)=0.051 (0.093) and 

 𝐶𝑁𝑃𝑀𝑅 (LC653→LC652 →  PC652)=0.138 (0.011) (The second number refers to the significance level) suggest that the 

causality from LC653 to PC652 is direct whereas the causality from LC653 to PC651 can be considered as indirect. 

 

 

 

 

 

 

 

 

 

6. Summary and Conclusions 

This study introduced a unique methodology for retracing the propagation path of a fault using a nonlinear nonparametric 

causality estimator. The methodology was successfully demonstrated on industrial case study involving valve stiction in 

a board machine. Formerly, the NPMR-based causality estimator has been applied in habitat modeling (McCune, 2006; 

McCune, 2011) and on physiological data (Nicolaou & Constandinou, 2016) while this study extends its application to 

industrial processes. The numerous advantages of NPMR estimator make it highly efficient and practical compared with 

other causality estimators (Nicolaou & Constandinou, 2016). 

Overall, the analysis proved to be highly efficient and accurate in identifying the propagation path. Misdetection might 

be attributed to the parameters selection, especially tunning the kernel tolerance. When tunning 𝜎 we observed that even 

a small variation in 𝜎 lead to a significant difference in the corresponding  𝐶𝑁𝑃𝑀𝑅  values. Moreover, 𝜎 has larger influence 

on 𝐶𝑁𝑃𝑀𝑅 than d and 𝜏. Therefore, optimization of the tolerance remains a challenge for further investigations. On the 

other hand, although we found that parameters tunning is essential to obtain adequate results, several estimations with 

different parameters revealed that the causality pattern remains similar and only the amplitude of 𝐶𝑁𝑃𝑀𝑅  changes which 

results in more false positive results. When applying the same analysis but using fixed initial parameters (𝜏 = 1, 𝑑 = 4,

𝜎 = 1), the results demonstrate that the causality pattern is almost unaltered, however, it is expected to obtain more false-

positive results.  
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ABSTRACT: This paper presents a two-layer control scheme for solution purification process. Based on the 
characteristics of the process, two concepts, including additive utilization efficiency (AUE) and impurity removal ratio 
(IRR), are designed. By using the two concepts, a gradient optimization approach is proposed. The gradient optimization 
approach transforms the economical optimization problem into finding an optimal decline gradient of the impurity ion 
concentration along the reactors. A robust adaptive controller is designed to track the optimized system states in the 
presence of process uncertainties. The ability of the scheme is illustrated with a simulated case study. 
KEY WORDS: solution purification process, hydrometallurgy, gradient optimization 

1 INTRODUCTION 
        A hydrometallurgy process is composed of leaching, purification and electrowinning [1,2]. The raw ore is first treated 
in the leaching process, in which the valuable metal in the solid state ore is extracted and converted into soluble salts in 
liquid solution. As leaching process is not completely selective, the leaching solution inevitably contains undesirable 
impurity ions. The presence of these impurity ions would decrease the current efficiency in the subsequent electrowinning 
process in which pure metal is recovered, resulting in energy waste and downgrade of product quality. Therefore, the 
leaching solution is processed in solution purification process to remove the impurity ions gradually. A solution 
purification process is composed of several sub-steps each of which is tailored to remove a particular type of impurity 
under specific reaction conditions. The control objective of an impurity removal process is to use the least amount of 
additives to remove the impurity ions such that after removal concentration of the impurity ions is no larger than a 
predefined value. 
        Determination of additive dosages of each reactor is an essential problem in the control of solution purification 
process. An excessive amount of additive is a waste of costly material, while an insufficient amount fails to remove the 
impurity adequately. This paper develops a control scheme for multiple reactor system based on its characteristics. The 
concepts of Additive Utilization Efficiency (AUE) and Impurity Removal Ratio (IRR), are proposed based on an indepth 
analysis. By using these two concepts, the control of multiple reactor system is decomposed into two problems, i.e., 
estimated additive dosage optimization and robust adaptive tracking control of the optimized operation point. 
Correspondingly, the proposed control scheme is composed of two layers. The upper layer works on a slow time scale. 
The additive dosage optimization, which has an economic objective function subject to constraints on purification 
performance and process stability, is transformed into finding an optimal decline gradient of impurity ion concentration 
along the reactors. The lower layer works on a fast time scale. A robust adaptive controller is designed to track the 
optimized impurity ion concentrations in the presence of model uncertainties. 

2 PROBLEM ANALYSIS AND FORMULATION 
        An impurity removal process is composed of )Z,1( ∈≥ NNN  consecutive reactors and a thickener in which the 
liquid-solid separation takes place. Assume the fluid in each reactor is perfectly mixed, and the contents are uniform 
throughout the reactor volume. Then according to the mass balance principle, the dynamics of the process can be described 
by following equations: 

iii
i

i
ii xkxfxf

dt
dx −−= −

−

VV 1
1    (2) 

in which Ni ,,2,1 = , V  is the volume of the reactor, 1−if , 1−ix  and ik  are the outlet flux, outlet impurity ion

concentration and reaction rate of the ith reactor respectively, while if  and ix  are the inlet flux, inlet impurity ion

concentration of the ith reactor respectively. The dynamics of reaction rate ),( iii ugk θ=  is a function of additive

dosage iu  and reaction conditions iθ . The control objective is to determine the best combination of the additive dosages 
of each reactor according to current inlet conditions and reaction status such that the technical index(the outlet impurity 
ion concentration of the N th reactor) is satisfied while the economical index(total additive consumption of the reactors 
in a certain period of time) is optimized:  

index
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ττu          (3) 

where ],,,[ 21 Nuuu =u , indexx is the upper limit of Nx ,  ],[ 0 ftt  is the interval of interest.

21st NPCW, 18–19 January 2018, Åbo, Finland 104

http://kepo.hut.fi/index.php?current_page_1=Personnel&current_page_2=Teaching%20Personnel&current_page_3=Sirkka-Liisa%20J%C3%A4ms%C3%A4-Jounela&id=5
mailto:sirkka-liisa.jamsa-jounela@aalto.fi
mailto:ychh@csu.edu.cn


3 A TWO-LAYER GRADIENT OPTIMIZATION APPROACH 
        Due to the absence of a unified control approach for complex industrial systems, the realization of optimization and 
control objective relies on a subtly designed control scheme. In this section, based on two intuitional concepts derived 
from the process characteristics, a two-layer gradient optimization scheme is developed. The original control problem of 
Eq. (3) is decomposed to two layers. 
 
3.1 Additive utilization efficiency 
        A major problem in deciding the additive dosage is that not all the additive involved in reaction (1). According to 
the mass balance principle, the proper amount of additive to be fed into the reactor depends on its efficiency in removing 
the impurity[4]. Consider a certain period of time, Additive Utilization Efficiency (AUE) is the ratio of additive practically 
involved in impurity removal when a certain amount of additive is added into the reactor: 

u
ureal=µ                                                                            (4) 

where u  is the amount of additive added, realu  is the amount of additive involved in impurity removal. 

        Consider a block of solution with volume V , for reactor i , denote iµ  as its AUE, 1−ix  and ix  as the impurity ion 

concentration before and after its retention in the reactor, assume iµ , 1−ix  and ix  are constant during the retention, then 
the required additive dosage is: 

)(V
M
M

1
B

A1
iiii xxu −= −

−µ                                                             (5) 

where AM  and BM  are the atomic weight of additive and impurity. 
 
3.2 Impurity removal ratio 
        The retention of solution in multiple reactor system is essentially a gradually decline process of the impurity ion 
concentration along the reactors. For reactor i , the Impurity Removal Ratio (IRR) is the ratio of impurity ion removed in 
it: 

0

1

x
xx ii

i
−= −λ                                                                         (6) 

IRR of each reactor need to be optimized in order to achieve the required purification performance. 
 
3.3 Optimization strategy 
        Using the two concepts, consider the time interval ],[ 0 ftt , the original optimization problem could be reformulated 
as following: 
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where iminλ and imaxλ  are the predefined lower and upper bounds of IRR of  the i  th reactor. 
        Solving Eq.(8), which would obtain the optimized IRR of each reactor, equals to finding the optimal setting values 
of the effluent impurity concentration of each reactor, or in other words, finding a best decline gradient of impurity ion 
concentration along the reactors (Fig. 1). However, due to the process uncertainties, a two-layer gradient optimization 
approach is designed. The upper layer, which works on a slow time scale, solves the estimated economical optimization 
problem in a receding horizon manner. The AUE estimator could be constructed by applying data-driven modeling 
approaches, e.g., RBFNN(Radial Basis Function Neural Network). The lower layer, which works on a fast time scale, 
handles the model uncertainties by using a robust adaptive controller (Fig. 2). 
 

 
Figure. 1. Gradient optimization along reactors 

 
 Figure. 2. Two-layer control framework
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3.3 Robust adaptive system state tracking controller 
        Take the first reactor as an example, its dynamics could be presented and augmented as following: 
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where inθ is the inlet condition, )(1 td  is the time-varying disturbance, 111 kxh = , ω  is an auxiliary control to be 

determined. The bound of )(1 td  is denoted as 1D  which is not assumed to be known. If make following coordinates 
transformation: 
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where r1x  is the optimized setting value of 1x , 1α  is a virtual control law to be designed. By applying Lyapunov stability 
theorem and backstepping technique [5,6], following theorem could be established. 
        Theorem 1.: For multiple reactor system described by Eq.(9), it is global asymptotically stable by applying the 
control law with : 
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        Then consider the ‘reaction rate-additive dosage’ system: 

),( 111 θugk =                                                                     (12) 
 

        Design an auxiliary approximation system: 
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in which,  )()( 1011 1
uxufv µζ −= , 31321 ,,,, ηηccc  are positive design parameters, 113 k̂kz −=  is the 

approximation error, 1D̂  is the estimate of 1D , which is the bound of )(td , 3D̂  is the estimate of 3D , which is the 

bound of uncertainties in Eq(12), function )( 3zsgv  and )( 3zsat  are defined as: 
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in which, vc  is a positive design parameter. 
 
        Theorem 2.: For the ‘reaction rate-additive dosage’ system described by Eq.(12), by using following control policy, 

the tracking error converges asymptotically to }||:{ 55 vczz ≤=ξ : 

])(ˆ)([1
441333301

11
1 zckzsatDzsgvcxu r −−++= ζ

µζ
                               (15) 

in which, 114 k̂kz r


 −= , 115 kkz r −= , 4c  is a positive design parameter, 1rk  is the desired value of 1k . 
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        The proofs of Theorem 1 and Theorem 2 follow the same lines of reasoning as in the proofs of [2], Th. 1 and Th. 2. 
In addition, the control law for the other reactors could be deduced using the same formulation by changing the subscripts. 
The control result is shown in Fig. 3. It is indicated that, by using the two-layer control scheme: 1) The final impurity ion 
concentration always satisfies the purification requirement; 2) The impurity ion concentration of each reactor can track 
their reference trajectories well; 3)There is no large fluctuation and excessive increment in the additive dosage. 
 

 
Figure. 3. Tracking performance of the impurity concentration of each reactor 

 
4 CONCLUSION 
This paper proposed a two layer control scheme for solution purification process. The idea of gradient optimization was 
derived based on two concepts (AUE and IRR) extracted from the common characteristics of solution purification process. 
The desired trajectories of effluent impurity ion concentration of each reactor were tracked by controlling the additive 
dosages. The feasibility of the proposed scheme was proved and illustrated through a simulation study. However, there 
are still some drawbacks of the proposed scheme. The performance of this scheme is affected by the accuracy of the 
process model and selection of the design parameters. It is suggested to determine these design parameters at the 
development stage. If the accuracy of the process model is not sufficient or the user is lack of experience in tuning the 
design parameters, the performance of the scheme may deteriorate. Thus model free controller design approach, and more 
precise and comprehensive process modeling method still need to be studied to increase the ability of the scheme in the 
future. 
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Abstract

Microbiological quantification is an important aspect in food and medical industry
for quality and safety control. It is traditionally determined with standard plate count
method in biology. This method, however, is laborious, time-consuming and requires at
least over-night incubation to assess the bacterial contamination in the samples.

This work aims to determine the possibility of monitoring growing phases of bacteria
and quantifying them in liquid samples (suspension) using spectroscopy and multivariate
analyses. The spectroscopic method is based on attenuation of light owing to absorption
and scattering when propagating through a mixture. Absorption refers to light being ab-
sorbed by the sample and converted to a different form of energy. Scattering explains that
the incident light is redirected into different directions by the particles in its transmit-
ting medium. These effects result in spectra similar to ones illustrated in Figure 1. Two
multivariate statistical techniques, principal component analysis (PCA) and partial least
square regression (PLS), are used for analysing the data. PCA plays a role of finding suit-
able wavelengths for spectral analysis whereas PLS identifies the relation between spectra
and the concentration of analytes. Absorbance spectra are acquired at different samples
corresponding to different concentrations of bacterial suspensions using a spectroscope.
Then they are subjected to PLS for developing a prediction model. This model can be
applied in quantifying bacteria in other suspensions with known spectra. This approach,
hence, promises an on-line application for monitoring and estimating the concentration of
microbes in aqueous samples.

Figure 1: Absorbance spectra of bacterial suspensions with different concentrations.

Additionally, for further applicability, it would be beneficial to determine the asso-
ciation between the dose of indocyanine green (ICG) and near-infrared (NIR) light in
photodynamic therapy (PDT) with the growth of bacteria. Indocyanine green (ICG) is a
photosensitiser with low toxicity. Under decomposition effect of NIR light in PDT, ICG
can excite oxygen from the environment leading to production of singlet oxygen which is
acutely lethal to microbial organisms.

1
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Abstract 

Today’s electrical infrastructure is at the edge of a major change. Current trends show that the 
conventional thermal power based power generation is to be augmented by sustainable power 

production based on renewables, mostly wind and solar power. The breakthrough of renewable 
power introduces a major challenge for the balance control between electric power supply and 

demand within the power-grid, due to the volatile and intermittent nature of the renewable 

sources.    

In case an imbalance occurs between supply and demand, regulating power up or down 

(depending on the frequency conditions of the grid) is used to restore the (balanced) nominal 
conditions.  Renewables increase the production uncertainty so as the need for up/down 

regulating power.  Regulating power can be provided by means of controlling the demand within 
the grid. This requires the application of demand side management which controls and/or 

(re)schedules the load pattern. Demand side management has a great potential focusing on 
industrial refrigeration systems applied in grocery stores and cold storages/warehouses due to 

the facts that: (1) industrial refrigeration systems have considerable regulating power potential 

and (2) thermal capacity of the refrigerated goods/food items can be exploited to modify the 

pattern of electric energy consumption, thus to provide up/down regulating power.  

This paper develops a dynamic model based estimator of the regulating power potential of the 
grocery store S-market Tuira, located in Oulu, Finland. First, the development of the 

mathematical model of the vapor compression cycle of the grocery store is considered which 

aims to describe the dynamic–behavior of the refrigeration system and estimate the related 

electric power consumption. The developed model is comprised by a nonlinear Hammerstein type 
dynamic and (quadratic) static sub–models. The dynamic sub–model describes the thermal 
behavior of the refrigerator units used in the market, while the static sub–model estimates the 

total electric power consumption of the compressor banks located in the hydrodynamic circuit of 

the vapor compression cycle. Once the mathematical model is obtained, an optimization 

framework (using linear, quadratic programming) is introduced to estimate the regulating power 
potential subject to system’s state, system dynamics, constraints and lookahead horizon. 

Simulations regarding up/down regulating power scenarios for the case store are provided. 
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Methods and Software for Solving Convex Mixed Integer Nonlinear 
Programming Problems 
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Mixed-integer nonlinear programming (MINLP) is a branch of optimization that deals with 
optimization problems containing both continuous and integer variables as well as linear and 
nonlinear functions. The combination of integer variables along with nonlinear functions gives a 
great flexibility in modeling, and there are a vast number of applications in areas such as 
engineering, computational chemistry, molecular biology and finance [1]. 

 
An MINLP instance is usually defined as convex if an integer relaxation results in a convex 
nonlinear programming (NLP) instance. Many methods for solving nonconvex MINLP relay on 
the ability to solve a sequence of convex MINLP instances. Therefore, the ability to efficiently 
solve convex MINLP is of utter importance for complex real world problems. Currently there are 
several methods available for solving convex MINLP instances, e.g. , the extended cutting plane 
(ECP) method, the extended supporting hyperplane (ESH) method, outer approximation (OA) 
and branch and bound techniques [2,3,4]. 
 
A short introduction to some of the concepts used for solving convex MINLP problems will be 
given here as well as a numerical comparison of the standards software for solving such 
problems. 
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Profile based analysis for automatic feature extraction from 
time series data 

John-Eric Saxén, Jerker Björkqvist, and Hannu T.  Toivonen, Åbo Akademi, Finland 

 

Many machinery companies are today collecting sensor data from their equipment with the objective 

to enable condition-based maintenance, diagnostics or operational optimization. Due to the large 

magnitude of raw sensor data available in modern machinery, it is desirable to detect the events 

from the raw data that may serve as indicators for faults, which in turn can be used as input for 

cloud-based deep learning methods. In order to derive compressed event and performance data, we 

propose a profile-based methodology, where typical time series profile segments are identified and 

added to a library of know time series profiles.  

 

The proposed method extracts the events from raw data based on windowing of time series using for 

example peak detection. Data from windowed time series is used to collect a set of profiles, which 

are representing events of typical operation. In order to discern between different events, k-nearest 

neighbor clustering is applied to group and determine the number of profiles. The obtained raw data 

profiles are compared against a library of known profiles, which is updated adaptively to reflect a 

normal operation state of the machinery. The profiles from the library are optimally aligned with the 

raw data using dynamic time warping or by minimizing the sum of Euclidean distances. In order to 

reduce the influence of noise, signal averaging is applied over several repetitions of the time series to 

obtain the reconstructed profiles. The extracted profiles and the reconstruction error are used to 

calculate scalar and vector features, which serve as input for machine learning.  

 

The method has been applied on real acceleration data from elevator car and doors. From the 

collected profile features, event and performance indicators can be derived for further use 

in diagnostics or condition-based maintenance. 
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A control oriented model for inline deoiling hydrocyclone
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Deoiling hydrocyclone (HC) is a separator that uses cyclonic forces for removing oil from produced water in oil and gas
producing fields. HCs can be placed downstream of 1st or 2nd stage separators, such as three- or two phase gravity separators,
in order to achieve high water purity with very low oil content. Discharged water from HCs is usually further processed before
discarding it into the sea or injection wells. Permissible emission limits on water discharge are in the range of 20−30 ppm [1].
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(a) Schematic of an inline deoiling Hydrocyclone
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Figure 1: Hydrocyclone control structures

HC operation usually relies on automatic control in order to meet the oil emission limits, for which dynamic models are
required. In the literature for HC modeling, data driven approaches have attracted a lot of focus [2]. Data driven models, though
useful, fail to cover a wide range of operating conditions [3]. In the oil and gas fields in which a common separation system
handles a network of wells and tie-in wells, HCs could be subjected to a wide variety of feeds and inlet water quality. In order
to overcome the challenges faced by data driven models, in this work we focus on developing a control oriented mechanistic
dynamic HC model. The HC we consider is an inline deoiling HC as shown in Fig. 1a, in which all the flows are co-current.

Our dynamic model is based on a balance on the oil volume as we do not consider any changes in density. The model is an
extension of the previously developed steady state model [4]. The model establishes a relationship between the oily discharge
flow and the oil in water at the discharge. The oil droplets have specific radial and axial velocities, which are functions of their
size, their radial and axial positions inside the separator and the flow rate. The droplets quickly achieve terminal velocities in the
radial and axial directions, but these velocities have a spatially local validity. We assume that based on HC design the separator
volume can be segmented into two volumes. Droplets that cross the common boundary of these two volumes are going to switch
from one outlet to the other. The larger the droplet, the higher the radial velocity, and therefore, the higher the possibility of them
exiting in the oily discharge. Based on a spatial profile of the local oil fraction, we calculate the oil cut in the two outlets. This
spatial profile will change temporally under transient conditions.

Based on our dynamic model, we propose a control loop from Oil in Water to oily discharge flow as shown in Fig. 1b. This
control structure will be heavily dependent on the reliability, accuracy and the response time of the Oil in Water sensors. [5]
presented some results on the evaluation of Oil in Water sensors for control, which seem promising.
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Abstract 
 
Background: Control of growth and production of microorganisms under intensive culture conditions is a 
requisite for the production of chemicals. In particular, it is necessary in fed-batch bioreactor to have 
adequate  feeding strategies and a control scheme to obtain a reasonable trade-off between biomass 
accumulation and production from the substrate. However, selection of an adequate control strategy (e.g. 
a PID controller) may be difficult, since the process and controller dynamics are often not well understood, 
or are too simplified. Moreover, there is a significant time delay between the intracellular production 
(expression of proteins or formation of metabolites) to the product’s accumulation in the medium or 
downstream.  Several control tuning methodologies were applied previously in industrial processes , for 
instance in baker’s yeast production, ethanol biomass production, wastewater treatment penicillin and 
amino acids production. Since the control requirement varies between processes, the robust, simple and 
versatile PID control is often applied to control feeding and growth rates.  
 
However, the standard commonly applied tuning methods for the  PID control involve the heuristic Ziegler-
Nichols method that often yields too aggressive response and poor performance in systems with 
considerable time delay. The flaws in performance of such heuristic methods restrict the PID control 
applications to simple tasks that can tolerate delays, inverse response, overshoot, steady state biases and 
other undesired responses. Therefore, we need an efficient PID tuning method for the wide range of (fed-) 
batch fermentation processes.    
 
Results: This paper presents a tuning procedure of a PID feedback controller using SIMC rules, 
implemented on bioreactors for the production of chemicals. To derive general expressions to any fed-
batch bioreactor, we employed dimensionless form of the model and the SIMC rules, and then analyzed 
the model robustness. We implemented a simple two-step SIMC procedure (Skogestad, 2003). The 
procedure is general and easily applicable to bioreactors, with the first-order (PI) and/or second-order (PID) 
plus delay model and then deriving the model-based controller strategies. Herein, we show that the SIMC 
tuned PID feedback control yields better performance compared to the PID control tuned with Ziegler-
Nichols.  The results suggest that the present methodology can be implemented in most fed-batch 
biochemical processes to achieve high performance (production, rates and yields). 

 
Conclusion: A good control performance in bioreactors is a first step to a deeper, next level control of 
intracellular pathways of the fermenting microorganisms that will achieve high production levels of 
chemicals.The SIMC feedback control procedure presented here have the potential to enable an easy 
coupling of the micro (intracellular) and macro (feeding and process conditions) control levels for a 
continuous and stable production of desirable chemicals. 
 
Keywords: fermentation process control, white biotechnology, green chemistry. 
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Abstract

When designing a new production or processing facility, the design and choice of a control algorithm is usually
not included at an early stage. Results from preliminary hazards and risk analyses provide important constraints
on how the plant should be operated. However, more insight into opportunities that can be embedded in the
design of control algorithms could also be important when identifying strategies for preventing and responding
to onsite hazards. Unfortunately, the more traditional methods for hazards identi�cation are not well suited
for capturing hazards that stem from the intended and unintended interaction of software intensive safety-
instrumented systems and control systems. Being able to identify, at an early stage, the relationship between
control algorithm performance and design requirements and constraints for safety-instrumented systems, could
reduce costs and improve safety.

Software-intensive systems represent both opportunities, by allowing more �exible functionality and ad-
vanced control algorithms for diagnostics and control, and challenges, by being prone to systematic faults whose
triggering conditions and resulting e�ects can be di�cult or impossible to detect. Software related faults most
often contributes to accidents by giving unsafe commands, or by not issuing a correct command to a plant [2].

The main purpose of this work is to investigate the use of the new hazard analysis tool called Systems-
Theoretic Process Analysis (STPA) [2] to support an early identi�cation of design requirements for control
algorithms, that stem from the analysis of the interaction of safety and control systems. In this work we
propose a framework for combining safety and control, consisting of 3 steps: i) use STPA to identify safety
issues that are solvable by control, ii) design a controller able to solve those safety issues, iii) use STPA on the
controlled system to determine the �nal risk assessment of the system.

The STPA method is based on systems theory rather than reliability theory and treats safety as a control
problem rather than a failure problem, i.e., it considers failures arising from unsafe interactions between non-
failing components [2, Ch.8.8]. One advantage with STPA is that it can be applied early on in the process and
hence drive the decisions, rather than waiting for a design, then review it and potentially change it. We argue
that the choice of a control algorithm should also be implemented at an early stage, as small changes to a design
may have signi�cant e�ects on the controllability of a system [3, Ch.5.1].

Here, we apply our framework to a subsea gas compression system consisting of a scrubber, compressor with
anti-surge line, condensate pump and several valves, see Fig. 1, where we amongst other things consider safe
shut down, disturbance handling, model uncertainties and failures.

Figure 1: Subsea gas compression system. Figure from [1].
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With "classical advanced control" we mean the control structures that are commonly used in industry 

for multivariable control. These structures have been in use for at least 50 years, but surprisingly there 

is little literature published on how to design such structures in a systematic manner to maintain 

optimal operation in the presence of disturbances. We suggest that it is possible to organize the 

available information in a systematic manner to design the regulatory layer using classical control 

structures so that (near)-optimal operation is maintained, also when changing the optimal operating 

point and active constraint region.   

In this work, we present a design procedure to assure optimal operation when active constraint changes 

occur.  When changing active constraint region, we should decide which CVs to keep controlling and 

which to give-up.  In order to do this systematically, we propose the use of priority lists of constraints 

as a core step of the design procedure of the control structure.  In this contribution, we also discuss 

how to maintain optimal operation using advanced control structures such as split range control, 

selectors, and valve position control (input resetting).  

We present two examples. First, we consider optimal operation and a priority list of constraints for a 

cooler with temperature and flow control. We also analyze optimal operation of a simple refrigeration 

cycle.  In both cases, we apply our suggested procedure and evaluate alternative classical advanced 

control implementations.   
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Process plants are operated under a wide variety of operating conditions and product specifications.
In practice, however, only partial information regarding these conditions and specifications is known
exactly. There is significant uncertainty associated with certain parameters that needs to be accounted
for.

Robust Optimization is a relatively recent approach that can be employed to deal with optimization
under uncertainty. The uncertainty model in robust optimization is set-based as opposed to stochastic
with a probabilistic distribution. As such, the goal is to find a solution that satisfies any realization of
the data within the uncertainty set - including the so-called ‘worst-case’ scenario.

Figure 1: Process: Four gasoline feeds blended to make the product

In this work, a gasoline blending process as shown in Figure 1 is considered. The process consists
of 4 gasoline feeds that are blended to make the product. Each of the feed streams has an associated
octane number, benzene concentration and unit price. The aim is to minimize the operational cost i.e.
the cost of the feed stream, subject to certain constraints. The objective function of this optimization
problem can be formulated as:

min J =
4∑

i=1

piṁi

where pi is the unit price of stream i and ṁi is the corresponding mass flow rate. The product mass flow
rate is constrained. There are specifications relating to the octane number and benzene concentration
requirements in the product. Further, certain relative weight fractions of the different streams in the
product are also specified.

This work considers uncertainties in octane numbers and benzene concentrations (process uncertainty)
as well as the unit prices (market uncertainty) of the feed streams. The formulation of the so-called
‘Robust Counterpart’ depends on the shape of the uncertainty set. Robust optimization techniques for
different types of uncertainty sets like the box, ellipsoidal and data-driven uncertainty sets are compared
for the blending process.
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Abstract: This paper is focused on the last stage of fertilizer production, namely the granulation process. The operation of granulation 

plants in an industrial scale is challenging. It is common to operate granulation loops below their maximum design capacity and periodic 

instability may also occur. The typical recycle ratios of granulation loops are varying from 6:1 to 4:1 (recycle/product). These operational 

problems lead not only to reduced product quantity, but also to reduction in product quality. In this study, discussions are made to address 

these problems. Particularly, the focus is placed on the importance and the necessity of developing dynamic models of the process which 

can be used along with model based control strategies for a stable operation of the granulation loop. Emphasis is given on population 

balance modelling. 

Keywords: granulation loop; population balance; granulation mechanisms; dynamic model  

 

1. INTRODUCTION 

Granulation is a particle design process that finds application in a wide range of industries. Batch processes are typically used 

in pharmaceuticals, agricultural, chemicals and nuclear wastes industries, while continuous processes are typically used in 

fertilizer, inorganic salts and detergents industries. Granulation is a particle enlargement process during which fine particles 

and/or atomizable liquids, i.e. solutions or melts, are converted into granules via a series of complex physical processes. The 

main objective is to produce granules with improved properties (e.g., flow-ability, dustiness etc.) compared to their 

ungranulated form and to meet product quality requirements. 

A number of studies have been performed to understand the underlying phenomena occurring during granulation. Among 

others, these include several studies conducted at University of Newcastle, Australia, e.g., Iveson (2002) and University of 

Queensland, e.g. Litster and Ennis (2004) and Wang et al. (2006). Despite the numerous studies that have been performed 

on granulation, industrial granulation processes still operate inefficiently, suffer from high rejection rates in batch processes, 

and from high recycle ratios of off-spec product for continuous processes (Wang et al., 2006). Periodic instabilities are not 

uncommon in granulation loops. An important reason for the oscillations is the process configuration and the recycle in 

particular. The recycle is necessary, but it also affects the dynamics significantly. 

This paper focuses on a granulation loop used for manufacturing fertilizers. The granulation plant operate well below the 

design capacity and suffers from high recycle ratios. It is necessary to control the operation of the granulation process for 

reducing the high recycle ratio and thus improving the efficiency of the plant. A model based control approach can be a way 

to achieve improved operation of the granulation loop. The main objective of this paper is to discuss future directions in the 

development of dynamic models that can be used for control purposes.  

2. PROCESS DESCRIPTION 

A granulation loop consists of a granulator, drier, granule classifier (screens), and a crusher. A typical schematic of a 

granulation process with a recycle loop is shown in Figure 1. The granulator can be of different types such as a drum 

granulator, pan granulator, fluidized bed, and etc. The drying of the granules can be performed simultaneously inside the 

granulator, and/or as a separate unit in the loop. The granulator receives the fines from the external particle feed, as well as 

from the recycled stream. These particle feeds are sprayed with a fresh fertilizer liquid melt (slurry), and granules are formed. 

During this process the properties (e.g., particle size, porosity, moisture content etc.) of the produced particles (granules) are 

changed. Inside the granulator, particles are exposed to complex physical processes, including wetting, layering, 

agglomeration, and drying. A hot air is fed to the granulator to dry the granules. After the dried granules leave the granulator, 

they are sent to screens where the particles are separated into three different classes according to their sizes: product size, 

oversize, and undersize particles. The oversized particles are crushed using a roll-crusher and then added to the undersized 

particle stream and taken back to the granulator as a recycle stream.   
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Fig. 1 Schematic diagram of granulation loop. 

The recycle feed is an integral part of the granulation process. The recycle of the off-spec particles is partly needed to maintain 

the particle enlargement process, i.e., granulation, since granulators inevitably need seeds. The amount of recycle as well as 

its particle size distribution (PSD) are important for the granulation loop. Another reason to have the recycle feed is due to a 

wide PSD of the granules from the granulator outlet. Typically, the PSD of the granules leaving the granulator is wider 

compared to the required PSD of the final product (Fig. 2). The undersized and oversized granules cannot be considered as a 

waste material and discarded from an economic and environmental points of view. Instead, they are taken back to the 

granulator as a recycle stream. 

 

Fig. 2 Particle size distribution (a) obtained after granulation, (b) desired product PSD†. 

3. OPERATIONAL CHALLENGES 

The industrial granulation plant studied in this paper is operated well below design capacity with a typical recycle ratio of 

4:1. This implies a high ratio between the off-spec (undersize and oversize) particles and the required product size particles. 

This high recycle rate leads to instability in operation with cyclic variations in the product quality distribution (particle size 

and shape, bulk density, moisture content and porosity). It has been difficult to obtain a steady narrow particle size distribution 

from the process and the reason for this partially due to a granulation drum itself. However, the instability is linked to the 

entire granulation loop since the drum receives a fluctuating recycled stream input. Therefore, for a stable operation of the 

entire loop a good process control strategy, probably model based, is essential. This further implies that a complete 

granulation loop model, including crusher, that is able to exhibit the main/necessary dynamics of the granulation process 

should be developed. 

Currently, a simple model of the granulator is used for studying the behaviour of the process. This model has considerable 

uncertainties in representing complex interactions of the particles. It assumes that the particle growth inside the granulator is 

only due to layering, while particle growth by nucleation and agglomeration is ignored. In addition, particle breakage and 

consolidation effects are not taken into account in the model. It is believed that the use of an advanced model that could 

capture these particle growth mechanisms would improve PSD at the outlet of the granulator and might improve the overall 

stability of the granulation loop.  

In addition to the granulator itself, the particle crusher (roll-crusher) may also introduce operational instability as discussed 

in Radichkov et al. (2006). In their work, qualitative analysis through dynamic simulations of the granulation loop of a 

† Glemmestad, B. Retrieved from internal presentation at Yara Technology Centre. 
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fluidized bed as the granulator was performed. The process stability was analysed by giving step changes to the mean diameter 

(𝑑𝑚,) of the particles (Fig. 3).  

For coarser particles (having a relatively larger diameter) the process reaches a stable steady state represented by the Sauter 

diameter 𝑑32 (Fig. 3a), while for finer particle fraction the process shows an oscillatory behaviour (Fig. 3b). For very fine 

particles, the process again shows a stable steady state (Fig. 3c). Furthermore, as can been seen from Figure 3a, for larger 

values of particle diameter, the process shows damped oscillatory transient behaviour with settling time of about 6 hours 

(Radichkov et al., 2006). Interestingly, the simple model of the granulation loop used in particular plant also exhibits a similar 

behaviour. Thus, the crusher gap (mill grade, i.e., particle diameter) has a significant influence on process stability and these 

should be taken into account when developing a model of the crusher.  

 

Fig. 3 Qualitative transient behaviour after a step-by-step decrease of 𝑑𝑚, taken from Radichkov et al. (2006). 

 4. MODELLING OF GRANULATION LOOP 

The development of a dynamic model of the granulation loop is challenging. The most widely used approaches for modelling 

such systems include Discrete Element Modelling (DEM), Population Balance (PB) modelling, as well as hybrid PB-DEM. 

The combination of mass balance, energy balance and PB can give us a dynamic model for representing the behaviour of the 

granulation loop. The focus of this paper is on PB modelling. 

4.1 General population balance equation 

The Population balance equation (PBE) was originally proposed by Hulburt and Katz (1964) and Randolph and Larson 

(1962). Originally, PBE was based on the number density function. A simple derivation of the PBE can be found in Litster 

and Ennis (2004). The microscopic PB (particle property distribution varies with position in the vessel) can be expressed as 

follows: 

𝜕𝑛

𝜕𝑡
= −∇. 𝑣𝑒̅𝑛 − ∇. 𝑣𝑖̅𝑛 + 𝑏̇ − 𝑑̇, (1) 

where 𝑛 is the number size distribution (no∙m-4) and is a function of time, space and particle properties. The term 𝑏̇ is the 

birth rate distribution (no∙s-1∙m-4) and 𝑑̇ is the death rate distribution (no∙s-1∙m-4). The term 𝑣𝑒̅ is the vector of the particle 

velocity components with respect to the external coordinates (x, y, z directions), 𝑣𝑖̅ is the vector of the velocity components 

with respect to internal coordinates (particle properties such as size, density), and 𝑡 is time. 

4.2 Mechanisms of granulation process 

The PBEs represented by Equation (1) are based on complex granulation mechanisms that are taking place inside the 

granulator. Sastry and Fuerstenau (1973) conducted early work on the mechanisms of granulation. They defined five 

mechanisms that may occur during granulation and those were nucleation, coalescence, breakage, abrasion transfer, and 

snowballing (layering). A modern approach for dividing the granulation mechanisms were proposed by Iveson et al. (2001). 

They divided the granulation process into three basic mechanisms, namely (i) nucleation and wetting, (ii) growth and 

consolidation and (iii) breakage and attrition. A typical categorization of the principal mechanisms for mathematical 

modelling purposes (PB modelling included) is summarized in Table 1.  

  

(a) 

 

(a) 

(b) 

 

(b) 

 

(c) 

 

(c) 
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Table 1.  Principal mechanisms in granulation processes according to Litster and Ennis (2004). 

Mechanism Changes mass or number of granules Discrete or Continuous process 

 mass and number discrete 

 mass continuous 

 number discrete 

 mass continuous 

 number discrete 

 

Nucleation:  

Nucleation is the first step in the granulation process. This mechanism is responsible for the formation of the initial aggregates 

(granules) from liquid or fine powder feed. In the spraying zone, the fine powder interacts with the binder spray droplets 

resulting in an increase of both mass and number of granules. This is a discrete process and a number of nucleation models 

have been proposed in literature, e.g., Wildeboer et al. (2005). However, nucleation is rarely identified and separated from 

other granulation mechanisms, such as granule growth due to layering and agglomeration (Iveson et al., 2001; Litser and 

Ennis, 2004). 

 Growth:  

Granule growth occurs through two key mechanisms: layering and agglomeration. Agglomeration is alternatively denoted 

coalescence (Cameron et al., 2005). 

Growth due to layering:  

Layering is a particle growth that occurs due to successive coating of a liquid phase onto the granule. As a result, the granule 

grows and its mass increases, but the number of granules in the system remains unchanged. No collision between granules is 

assumed during this particle growth. 

Layering is a continuous process and an assumption of size-independent linear growth rate is common in the PB modelling 

of granulation processes. This simplification implies that each granule has the same exposure to new feed material and that 

the volumetric growth rate is proportional to the projected granule surface area. Such linear growth rate can be assumed when 

there is no segregation of granule size (Cameron et al., 2005; Litster and Ennis, 2004). 

Agglomeration (coalescence):  

Agglomeration refers to a particle growth mechanism that occurs due to successful collision of two particles, resulting in the 

formation of a composite particle. Agglomeration is a discrete event that changes the number of granules, but not their mass. 

The formation of the new granule is represented as a birth term in PBEs and the disappearance of the two smaller particles 

as a death term (Litster and Ennis, 2004). 

It is indeed challenging to model particle agglomeration. One of the approaches was proposed by Kapur and Fuerstenau 

(1969). Assuming that coalescence rate is proportional to the number density of granules of each size range and inversely 

proportional to the total number of granules, the birth rate and the death rate of new granules of size v is represented by 

Equation (2) and (3), respectively (Litster and Ennis, 2004). 

𝑏̇(𝑣) =
1

2𝑁𝑡𝑜𝑡
∫ 𝛽(𝑢, 𝑣 − 𝑢, 𝑡)𝑛(𝑢)𝑛(𝑣 − 𝑢)𝑑𝑢,

𝑣

0
 (2) 
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𝑑̇(𝑣) =
1

𝑁𝑡ot
∫ 𝛽(𝑣, 𝑢, 𝑡)𝑛(𝑣)𝑛(𝑢)𝑑𝑢,

∞

0
 (3) 

where u and (u-v) are the volumes of the two colliding particles (m3), v is the volume of the new particle (m3), 𝑁𝑡ot is the 

total number of particles (no∙m-3) and β is the rate constant usually called as coalescence kernel. The term ½ before the 

integral is to avoid double counting of particle collisions. 

The coalescence kernel is a key parameter that controls the overall rate of agglomeration. Various studies such as Adetayo 

and Ennis (1997), Adetayo et al. (1995), Liu et al. (2000) and Ouchiyama and Tanaka (1975) were devoted to finding 

formulations of coalescence kernels. From these studies, it was concluded that both the size-independent and the size-

dependent coalescence kernels drive the coalescence process. In the beginning of the granulation process, i.e., in the non-

inertial regime, the collision probability does not depend on the particle size but only on binder distribution. In contrast, in 

the inertial regime, particle coalescence and collision is a function of particle size and collision velocity (Litster and Ennis, 

2004). 

According to Adetayo et al. (1995), the extent of granulation in the inertial growth regime can be expressed using a model 

parameter 𝑘max. The critical size 𝑑max can be predicted using Equation (4) and (5). These formulations were derived by 

analysing the fertilizer production using a drum granulator.   

𝑑max = 𝑑0 exp (
𝑘max

6
), (4) 

𝑘max = 6 ln (
𝑁St∙9𝜇

8𝜌g𝑈c𝑑0
) ∝ ln (

𝜇

𝜌g𝑈c𝑑0
), (5) 

where 𝑑0 and 𝑑max are initial and critical particle diameters (m), 𝑁St is viscous Stokes number, µ is viscosity (Pa∙s), 𝜌g is 

granule density (kg∙m-3) and 𝑈c is collision velocity (m∙s-1). 

A number of other empirical and semi-empirical coalescence kernels for granulation are available in the literature (Cameron 

et al., 2005; Litster and Ennis, 2004). These include model parameters that should be fitted with experimental data.  

Breakage and attrition:  

Particle attrition is the opposite effect of layering. This granulation mechanism is more significant at high granule velocities 

and when drying occurs simultaneously with the granulation. Examples of such systems are fluidised bed and spouted beds. 

The attrition rate is a negative rate and is proportional to the bed conditions. Formulation of attrition rates for both fluidized 

and spouted beds are summarised in Litster and Ennis (2004). 

Particle breakage by fragmentation is a discrete event and results in birth and death terms in the PB. Breakage effects are 

important in high shear devices, especially in high impact mixer granulation (Chaturbedi et al., 2017; Litser and Ennis, 2004; 

Ramachandran et al., 2009). A different type of the particle breakage also appears in continuous granulation loops, via particle 

crushing in the mill. Models of breakage effects are complex and were extensively studied by Ramachandran et al. (2009) 

and Chaturbedi et al. (2017). 

4.3 Granulator model 

The industrial granulation loop, which is mentioned in this paper, should be modelled as a dynamic system capable of 

showing the PSD dynamics of the granules. This implies the use of PBEs that were described in Section 4.1 and Section 4.2. 

A plug flow may be assumed with the particle size changing only in one direction (axial). The shape of a granule may be 

assumed to be spherical and thus, the diameter can be used to represent its size. Thus, a microscopic PB of Equation (1) with 

one internal coordinate (particle diameter) and one external coordinate (axial direction) may be utilized as shown in Equation 

(6) (Litster and Ennis, 2004): 

𝜕𝑛

𝜕𝑡
= −

𝜕

𝜕𝑙
(𝑢𝑛) −

𝜕

𝜕𝑑p
(𝐺𝑛) + 𝑏̇ − 𝑑,̇  (6) 

where 𝑢 is the particle velocity (m∙s-1), 𝑑p is the particle diameter (m), 𝑙 is the distance from the start of the granulator (m) 

and 𝐺 is the particle growth rate (m∙s-1), and 𝑛 = (𝑑p, 𝑙, 𝑡). 

Further development of the model should be based on the granulator type that is used in the granulation loop. The significance 

of each granulation mechanism described in Section 4.2 will determine the main model assumptions. Equation (6) represents 

number based PB. However, solving the number based PB numerically is time consuming. A relatively faster solution can 

be obtained if the mass distributed PB is used (Cameron et al., 2005; Radichkov et al., 2006).  

For the development of a simplified model of the drum granulator, the change in the particle size growth may be assumed 

only due to layering, i.e. particle coalescence, attrition and breakage may be neglected (𝑏̇ and 𝑑̇ terms in Equation 6 are set 

to zero). In addition, a size-independent linear growth rate may be assumed. In this case, the growth rate, 𝐺 is proportional 

to the particle projected area, 𝐴p i.e., 

𝐺 ∝ 𝐴p = 𝑑p
2 (7) 
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Another approach for modelling such complex system might be using the compartment based PB. This would represent the 

inhomogeneity of the system. The assumption of granule formation by linear layering of the particles where one liquid droplet 

can wet only one particle is quite unrealistic. The particles that are more wetted are characterised with increased aggregation 

rates compared to those particles with less moisture content (Chaturbedi et al., 2017; Li et al., 2012). In this perspective, it 

could be a good idea to separate the spraying zone from the other part of the granulator. However, in the case of continuous 

granulation process with simultaneous granule drying (especially when microscopic PB is used), it might not be significant.  

A dynamic model of the granulator that includes all the mechanisms of the granulation process such as nucleation, growth 

due to layering and coalescence, particle attrition and breakage is more accurate in the sense that such kind of model is able 

to capture and exhibit complex operational dynamics. However, developing such kind of models may be difficult and in 

addition, obtaining the solution of the model numerically can be challenging as well as time consuming (Cameron et al., 

2005). From the process control point of view, a very detailed model (although more accurate) but not real-time 

implementable simply becomes impractical. Thus, it is useful and essential to develop a mathematical model that is simple 

enough yet sufficient to capture the necessary (important) dynamics of the granulator. It is also important that the model can 

be solved sufficiently fast so that it can be used for real-time implementation. Such kind of models are well suited for online 

model based control strategies. Thus, a good balance between the model complexity (accuracy) and the model solution time 

should be considered during the development of the mathematical models of the granulator. 

For developing a complete model of the granulation loop, it is also necessary to have mathematical models of other units 

present in the loop such as particle classifier (screens), dryer and crusher. 

4.4 Models for classifier, dryer and crusher 

Classifier and dryer: 

Simultaneous drying of the particles inside the granulator may be modelled using for example evaporation function and 

combining it with the energy balance. The separation of the discharge from the granulator is performed using double check 

screens. Two sieves of different sizes are used to separate the granules flowing out of the granulator into three fractions – 

oversized, product size and undersized granule fractions. These may be implemented in the model by using probability 

density functions, e.g., Gaussian normal distribution function, uniform distribution etc. 

Crusher: 

The oversized particle fraction is sent to a roll-crusher where the granules are broken (crushed) to form fine particle feed 

which is then added to the undersized particle fraction stream and finally taken back to the granulator as a recycle stream. As 

was discussed in Section 3, the granulation loop stability is dependent on the recycle feed. Thus, the model of the recycle 

feed that also includes the crusher should be developed to reflect this characteristic. Among others, some models of the 

crusher that are available in the literature include Austin and Cho (2002), Kis et al. (2006) etc. In Cotabarren et al. (2008) a 

model for a double-roll-crusher for urea size reduction process is proposed. The developed mathematical model predicts the 

PSD by taking into account the crusher gap.  

5.  CONCLUSIONS  

The recycle ratio is an important factor for the stability of the granulation loop. This ratio is partly dependent on the way the 

granulator drum functions. To stabilize the granulation loop, control algorithms that utilize the model of the process may be 

a good choice. Therefore, a proper understanding of the dynamics of the granulation loop is important.  A mathematical 

model of the granulation loop can be developed and simulated to study various operational scenarios. This model can be 

further used for control purposes. By stabilizing the granulation loop, oscillatory behaviour may be supressed and hence the 

product yield may be improved.  

Despite a number of studies on granulation processes, the available models have qualitative character rather than quantitative. 

Many of these models do not take into account particle agglomeration and to what degree recycled and fresh particles result 

in nucleation or agglomeration. Therefore, a more accurate yet a simple model of the granulation loop is essential.  
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Aquaculture, the farming of fish and aquatic crops such as
kelp and algae, is traditionally carried out in natural bod-
ies of water. An alternative is land-based farming in tanks
or raceways, which is particularly attractive when coupled
with water treatment to form a recirculating aquaculture
system (RAS). Benefits compared to traditional farming in
open cages include reduced emissions of nutrients, small or
no risk of escapes, and control of pathogens (Thorarensen
and Farrell, 2011).

Water treatment takes place in a series of mechanical
filters and biological reactors, where particulate and dis-
solved matter is degraded by microorganisms similarly to
how municipal sewage is treated. The biological nature
of recirculating aquaculture systems makes experimental
process development troublesome. Contributing factors in-
clude very long time constants, biological variations, and
concerns for animal welfare. This strongly motivates the
use of dynamic simulations, and for that purpose a RAS
simulator – called FishSim – was developed (Wik et al.,
2009). However, the capabilities of that implementation
were limited by numerical problems.

Using Modelica, a high-level object-oriented language for
dynamic systems modeling (Modelica Association, 2012),
we have developed a new simulation tool for recirculating
aquaculture. Like FishSim, it is based on Activated Sludge
Model 1 (Henze et al., 2000), but this implementation
is numerically well-behaved and robust which allows a
much greater variety in the simulated systems. It is also
significantly faster, even after the models have been ex-
panded with many more features, such as energy balances,
different feeding options, and a separation of autotrophic
bacteria into ammonia-oxidizing and nitrite-oxidizing bac-
teria. Since open-source Modelica tools are available, the
software is also free to use.

Water treatment is central in recirculating aquaculture.
Fish excrete ammonia, which is toxic to them. Aerated
bioreactors are typically employed to remove ammonia
and ammonium via nitrifying autotrophs, which require
low levels of biodegradable organics to thrive. Nitrifica-
tion creates nitrite (also toxic to fish at low levels) and
nitrate, the latter which is removed by water exchange
or denitrification. Denitrifcation conversely requires high
availability of biodegradable organics, but only progresses
rapidly in the absence of oxygen. The treatment systems

often further contain particle filters and UV and/or ozone
treatment against pathogens.

While it is reasonably clear to the industry which compo-
nents should be present in the treatment system, the order
in which they are best employed is still an open question.
In the literature and supplier information material there
is a large number of suggested configurations, but few
studies comparing them. Some guesses can be made based
on elementary chemical reaction engineering, but the very
complex dynamics of the biological treatment leads to high
uncertainty.

Using the simulator, we have investigated and compared
several treatment topologies. Through parameter opti-
mization based on a genetic algorithm (Haupt and Haupt,
2003) the minimal reactor sizes in each configuration was
found which could maintain acceptable levels of ammonia
and nitrate. The resulting sizes are an indicator of which
topology is the most effective.
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Abstract

District heating and cooling (DHC) networks are large scale complex systems which are
generally difficult to operate and optimize. The large thermal inertia in the systems leads
to long reaction times on changes at the consumer side, which means that forecasting of
consumer behaviour is a needed tool for efficient operation. Within the European Union
many major research project target the energy reduction on the consumption side and peak
load management while maintaining customer satisfaction.

The optimal operation of a DHC network can therefore be considered as an interesting
area of investigation due to a number of aspects, like (i) the vast amount of the energy that
is distributed by these networks, (ii) the demand to provide a better quality of services by
the operators of these networks, and (iii) compliance with new environmental regulations.

In this presentation, we discuss a possible conceptual method that utilizes a simplified
static model of different types of consumers in the network to design a decision support
system that will guide the operators of the DHC network to optimally operate the network
with different operational scenarios that include but not limited to: (i) energy consumption
minimization, (ii) economic operation, (iii) peak load reduction/shifting, and (iv) environ-
mentally friendly operation. In its current form, the operator will be informed, while in the
future these actions could be fully automated in a closed loop context.

The DHC network in Lule̊a, Sweden will be used as a test case which represents a typical
medium size network. The case has a number of properties which motivate its study like
e.g. the distributed generation possibilities, the geographical distribution of the consumers,
and the different types of consumers in the area. The presentation will be concluded with an
outlook on future tracks of research and development.

Keywords: District heating, district cooling, thermal grids, demand forecast, Energy
optimization, peak load management
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Integrating	microbial	genome-scale	flux	balance	models	with		
JModelica	and	the	Bioprocess	Library	for	Modelica	
	
Jan	Peter	Axelsson,	senior	consultant	
Vascaia	AB,	112	51	Stockholm,	Sweden	
	
Bioprocesses	are	complex	and	their	products	are	still	considered	to	be	defined	by	the	
detailed	production	procedure	by	the	authorities	for	pharmaceuticals.	Still	simplified	
models	are	of	great	value	to	facilitate	design	of	these	processes	although	computer	
simulation	has	still	a	limited	spread.		Data-driven	methods	dominate	the	field.	
	
In	this	paper,	a	genome	scale	flux	balance	model	FBA	[1]	of	yeast	from	the	Python	open	
source	framework	COBRApy	[2]	is	integrated	with	the	JModelica	[3]	dynamical	simu-
lation	software	to	simulate	cells	in	a	batch	reactor.	With	the	use	of	the	Bioprocess	Lib-
rary	for	Modelica	[4]	the	flux	balance	model	can	easily	also	be	tested	in	fedbatch	and	
perfusion	reactors	and	be	used	in	evaluation	of	control	strategies.	
	
The	integration	is	done	in	the	following	way.	The	simulation	interval	is	divided	into	a	
number	of	sub-intervals	of	equal	length.	At	the	start	of	each	sub-interval	the	FBA	LP-
problem	is	solved	given	the	concentration	of	substances	in	the	reactor	and	results	in	
metabolic	flux	rates	that	optimize	cell	growth.	With	these	fluxes	and	optimal	growth	rate	
the	reactor	dynamics	is	simulated	one	sub-interval	forward.	The	procedure	is	repeated	
until	the	total	simulation	interval	is	covered.		A	key	assumption	is	that	the	dynamics	of	
substrate	is	slow	compared	to	the	length	of	the	sub-intervals.		
	
Simple	integration	of	COBRApy	models	and	JModelica	is	possible	since	they	can	actually	
share	the	same	Python	environment.		The	computational	time	for	the	genome	scale	
model	shown	in	Figure	1	is	about	a	minute	on	an	ordinary	laptop.	
	
The	results	of	simulation	of	the	genome	scale	model	is	compared	with	results	from	the	
traditional	simplified	model	available	in	the	Bioprocess	Library	for	Modelica	[4].	For	the	
major	variables	like	glucose,	ethanol,	cell	concentrations	the	results	are	similar.	The	
genome	scale	provides	prediction	of	a	number	of	details,	but	not	evaluated	here.		
	
The	ease	with	which	these	ambitious	genome-scale	flux	balance	models	can	be	
integrated	into	dynamical	simulation	makes	it	possible	to	further	test	them	in	typical	
experimental	setups	that	can	be	described	in	Modelica	and	where	measurement	data	
can	be	gathered.	
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Figure	1.		Simulation	of	growth	of	yeast	in	a	batch	reactor	using	a	genome	scale	flux	balance	model	
iMM904.	The	diagrams	show	concentration	of	cells	X,	glucose	G	and	ethanol	E	concentration	over	
time	in	combination	with	metabolic	fluxes	of	glucose	qG,	ethanol	qG,	phosphate	qG,	sulfate	qSO4,	
ammonia	qNH4	and	hydrogen	ions	qH.		
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