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Abstract: PFC (Predictive Functional Control) is a simple but very effective SISO (Single-Input Single-
Output) predictive controller. A disturbance estimator is proposed based on PFC algorithm in case of non-
measurable disturbances. The algorithm considers both external disturbance signal and internal, structural 
disturbances (process/model mismatch). Estimated disturbance feed-forward control can lead to instability 
because of the additional closed-loop of the estimator. Stabilizing technique by filtering the estimated 
disturbance is investigated for aperiodic processes including dead time.  
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1. INTRODUCTION 

PFC (Predictive Functional Control) is a simple predictive 
control algorithm (Richalet, et al., 1978) which does not 
require any matrix inversion or numerical minimization of a 
cost function. PFC algorithms can be easily realized for all 
types of SISO (Single-Input, Single-Output) processes. 
Furthermore the manipulated variable and/or its increment, as 
well other variables can be constrained. PFC can be extended 
by feed-forward control in the case of measurable 
disturbances.  

The idea of IMC (Internal Model Control) is to estimate the 
disturbance (either an external one or a model mismatch 
between process and model used in the controller) and to use 
this signal in the control algorithm.  Dr. Richalet 
recommended a different scheme to estimate the disturbance 
with PFC and to use the estimated signal for feed-forward 
control. The advantage of the method is that it considers both 
external not-measurable disturbances and internal, structural 
model mismatch. For this reason the expression “global 
disturbance estimator”. In the case of external disturbances 
the method works in a similar way as if the disturbance 
would have been measured and feed-forward controlled. 

Feed-forward control with measured disturbance is an open-
loop control. However a feed-forward control with estimated 
disturbance has an additional closed loop and influences the 
stability. Therefore some modification must be done to 
enhance the stability. The simplest technique is using an 
attenuation factor multiplied by the estimated disturbance 
(Richalet and O’Donavan, 2009). 

The paper is structured as follows. In Section 2 the PFC 
algorithm is shortly shown. In Section 3 the disturbance 
estimation using PFC algorithm is presented. In Section 4 the 
estimated disturbance feed-forward control is shown. Section 
5 presents a sufficient stability criterion for the feed-forward 
gain for both using and not using a first-order stabilizing  

filter.  A case study of a mixer with heating jacket illustrates 
the theoretical results in Section 6.  

2. PREDICTIVE FUNCTIONAL CONTROL  

The principle of PFC is that the controlled variable y achieves 
the reference trajectory at the target point (or points) using 
one change (or minimal number of changes) in the 
manipulated variable u. The desired change in the controlled 
variable y during the prediction horizon np (from the actual 
time k) is calculated from the desired change of the reference 
trajectory and the predicted change of the model output ym. 
The manipulated variable u can be calculated easily from the 
change of the reference trajectory and the predicted change of 
the model output during the prediction horizon, see Fig.1.  

Fig.1: PFC principle 

The desired changes in the controlled variable y during np 
prediction step can be defined supposing that y reaches the 
reference trajectory at the target point (np step ahead): 
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where )()( kyyke r   and yr is the assumed constant 

reference signal. 

The reference trajectory can be chosen an exponential 
function for simplicity. Then the control error is decreasing 
monotonously:  
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where λr  is the reduction ratio of the trajectory’s error. 

The reference trajectory provides the settling time t95%=Tc for 
the closed loop control system if  cr Tt 3exp , where 

Δt is the sampling time. 

From (1) and (2), the desired change in y is defined as 
follows: 
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rpp              (3)                         

The changes of y can be predicted using a proportional, first-
order model equation without dead time (chosen for 
simplicity) in discrete-time as 
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where ym is the model output, u is the model input, am is the 
discrete-time model parameter and Km is the static gain of the 
model. 

Supposing that the actual input signal u is kept constant 
during the prediction horizon, the predicted model output 
becomes after np steps:  
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Then, the predicted change in ym becomes: 
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Simple comparison between the predicted change of the 
reference trajectory in (3) and the predicted change of ym in 
(5) results in the manipulated variable: 
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where: 
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If the process has dead time mdd   then )(ky  in (6a) has to 

be replaced by )|(ˆ kdky m  

 )()()()|(ˆ mmmm dkykykykdky                               (7) 

In case of higher-order aperiodic processes the transfer 
function can be partitioned in parallel connection of first-
order processes  
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                (8)  

with the corresponding parameters 
imK ,
and 

ima ,
of the i-th 

sub-process. (If the process has multiple poles then different 
but very similar poles have to be assigned to each multiple 
pole.)  

The basic algorithm can be easily extended for this case, as 
well (Khadir and Ringwood, 2008):   
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where n is the order of the process, 
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3.  PFC WITH GLOBAL DISTURBANCE ESTIMATOR  

The following global disturbance observer was developed by 
Dr. Richalet based on PFC, see the scheme in Fig. 2. The 
main advantage of this scheme is that it uses same tools as 
the already installed PFC, which can be easily implemented. 

Fig. 2:  Richalet’s scheme of PFC with disturbance estimator

A simulated process model is controlled by a fast PFC in the 
estimator. Both the “real” controller and the estimator 
controller use the same process model without dead time.  
The controlled variable y is applied as the reference signal of 
the estimator PFC. 

As the estimator control loop is not disturbed the difference 
between both manipulated/control signals are equal to the 
external disturbance acting on the process input if the 
process model and the controllers are perfect. Consequently 
this difference is the estimated disturbance acting to the 



     

process’s input. A detailed description of the disturbance 
estimator is given in (Richalet and O’Donavan, (2009). 

The estimator controller’s tuning parameters are: Tce and npe. 
The principle of the estimator in this scheme is to define the 
control signal ue(k) which force the estimator process output 
ye to reach the controlled variable y during the prediction 
horizon npe after the dead time dm. 

The desired changes in ye during npe steps are: 
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where  cere Tt 3exp  is the reduction ratio of the bias 

between y(k) and )(kyem
. Here yem is the non-delayed model 

output of the estimator loop yem(k - dm) = ye(k). 

The desired estimator closed loop settling time te95%=Tce has 
to be chosen very small to provide a fast estimation of the 
disturbance. 

The predicted change of the estimator model output yem is: 
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Comparing (10) and (11) results in 
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where n is the order of the model and 
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The estimated disturbance is 
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In the following simulations the following processes and 
PFC tuning parameters are supposed, see Table 1. 

Table 1: Process and controller parameters 

Process/Model Tc np 

Delayed first-order: 
s

e s

101

2 10





 25s 1 

Delayed third-order: 
3

10

)33.31(

2

s

e s




 25s 10 

Delayed first-order model of these processes is assumed in 
the PFC algorithm with model gain Km = 2, time constant 
Tm = 10 s, and dead time Tdm = 10 s. A first-order 
approximating model was used with the third-order process, 
in order to show the robust behaviour of the algorithm. 

Using a third-order model with a third-order process - as 
usual - would lead to a better control behaviour.  

Both external disturbance signal and process gain variation 
are assumed in the simulations. The control scenario is: 

- sampling time t=1s and simulation time = 460s, 

- at t=10s stepwise increase of yr from 0 to  1, 

- at t=160s stepwise external disturbance (0 → -0.5). 

- at t=310s process gain increase by 50%. 

Fig. 3 shows the estimation of the disturbance for the given 
processes (without feed-forward control). The estimator 
parameters are: Tce = 1s and npe = 1 for first-order process, 
Tce = 5s and npe = 3 for third-order process. 

a) Delayed first-order process and first-order model  

b) Delayed third-order process and first-order model 

Fig. 3:  PFC with disturbance estimation without feed-
forward control 

The plots in Fig. 3/a and 3/b show that the real external 
disturbances are estimated well, of course only after the dead 
time. The structural disturbance coming from the processes 
gain change is estimated as an external disturbance signal at 
the process input. The estimated disturbance has the same 
effect as the process parameters change. The plot in Fig. 3/b 
shows estimated structure disturbance at about t=20 s, 
mainly because of the mismatch between the third-order 
process and its approximating first-order model. 



     

 
4.  PFC WITH ESTIMATED DISTURBANCE FEED 

FORWARD CONTROL  

To compensate the disturbance effects on the process, PFC 
with estimated disturbance feed-forward algorithm can be 
used, see Fig. 2. 

PFC control equation with disturbance feed-forward is: 
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where )(kdist  represents either measured or estimated 

disturbance signal: 
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Fig. 4 shows the simulation of PFC with feed-forward 
algorithm based on the measured disturbance. 

a) Delayed first-order process and first-order model 

b) Delayed third-order process and first-order model 

Fig. 4:  PFC with measured disturbance feed-forward 
control 

The plot shows that the external disturbance signal is 
compensated completely. The (usually non-measurable) 
structure disturbances are compensated as slowly as the 
external disturbances by the control without disturbance 
feed-forward algorithm. 

Fig. 5 shows the simulation of PFC with estimated 
disturbance feed-forward algorithm. 

a) Delayed first-order process and first-order model 

b) Delayed third-order process and first-order model 

Fig. 5:  PFC with estimated disturbance feed-forward 
control 

Plot 5/a shows that the estimated external and structural 
disturbances are compensated in case of the first-order 
process, however with high oscillation when the structural 
disturbance occurred. Plot 5/b shows instability of the 
process control resulting from the mismatch between the 
third-order process and its first-order approximating model. 
It is emphasized that if a correct third-order model was used 
with the third-order process then the control and manipulated 
signals would not oscillate so much. In the next section we 
shall show how the control behaviour can be improved even 
in the case of such a model mismatch.  

Stabilizing the process control with estimated disturbance 
feed-forward algorithm can be fulfilled by applying the 
estimated disturbance through a filter as recommended by 
Richalet and O’Donavan (2009). 



     

5.  STABILIZING PFC WITH ESTIMATED 
DISTURBANCE FEED-FORWARD CONTROL  

To enhance the stability of the closed-loop system control 
with estimated disturbance feed-forward algorithm, the 
estimated disturbance is fed forward through a filter.  

Zero-order filter with gain 
fK  is assumed first in the 

following analysis. The control signal equation using 
fK  is: 
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Assuming nominal dead time 
mp dd  , and process gain 

variation as a structure disturbance 
mKp KK )1(  , the 

process pulse-transfer function has the form: )( 1 qGq
p

md . 

Pulse-transfer function of the control signal with estimated 
disturbance fed-forward (see the Appendix 1) is: 
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Pulse-transfer function of the estimator control signal is: 
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Pulse-transfer function of the estimated disturbance is: 
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The characteristic equation of the closed-loop control system 
can be introduced from (20) and (18) as: 
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The sufficient stability condition of the closed-loop system 
can be introduced in the frequency domain for 

)2,0[11   jeq  as: 
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The frequency response of the process can be defined 
parametrically according to the identified process model, or 
defined non-parametrically according to the impulse 
response yI (or the step response ys) taking into account the 
variations of the process gain as follows: 
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whereas the impulse response tends to zero at instant ks. 

Assuming a filter )( 1qG f
 with static gain 

fK  to damp the 

oscillations of the estimated disturbance signal, the sufficient 
stability condition of the closed-loop system can be 

introduced in the frequency domain for 11 q  as: 
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The stabilizing gain in (24) can be higher than the gain in 
(22) whereas for an aperiodic filter (first-order filter usually) 
the absolute value 11)( 11   qqG f

. This is 

expected because the filter is stabilizing the control more 
than without filter. 

The resulted stabilizing gain conditions (22) and (24) are 
applied for the simulated processes. The designed gains are 
presented in Table 2. 

Table 2: Designed stabilizing filter’s gain 

Delayed 
process 

                     Filter 

Zero-order 

Kf 0 

First-order 

Kf 1 

First-order 0.9566 1.0776 

Third-order 0.2449 0.2667 



     

Fig. 6 shows PFC with estimated disturbance fed-forward 
using a gain 

0fK  (without filter, s0fT ) (see Table 2). 

The plots in Fig. 6a and Fig. 6b show that the designed 
stabilizing gain 

0fK  results in oscillating signals with very 

small damping, which shows that 
0fK  is very close to the 

boundary stabilizing gain and it is smaller than the critical 
value. Applying a smaller filter’s gain damps the 
oscillations, and applying a higher filter’s gain moves the 
process control toward instability. 

Fig. 6c shows PFC with estimated disturbance feed-forward 
of the delayed third-order process assuming nominal third-
order model with dead time. The gain 

366.05.1 0  ff KK , which leads to instability in Fig. 6b, 

is applied in Fig. 6c. Also higher values are applied to show 
that with nominal model the stabilizing gain can be increased 
whereas it is stable for 75.0fK  and unstable for 1fK . 

Fig. 7 shows the simulation of PFC with estimated 
disturbance feed-forward using first-order stabilizing filter 
with gain 

1fK  (see Table 2) and time constant s3fT . 

The plot shows that the designed stabilizing gain 
1fK  

results in oscillating signals with very small damping, which 
demonstrates that 

1fK  is smaller than and very close to the 

a) Delayed first-order process and first-order model 

b) Delayed third-order process and first-order model 

c) Delayed third-order process and third-order model 

Fig. 6:  PFC with estimated disturbance feed-forward 
control using stabilizing gain 

 

a) Delayed first-order process and first-order model 

b) Delayed third-order process and first-order model 

Fig. 7:  PFC with estimated disturbance feed-forward 
control using first-order stabilizing filter 



     

limit value of the  stabilizing gain. Applying a smaller 
filter’s gain damps the oscillations, and applying a higher 
filter’s gain moves the process control toward instability. 

6. CASE STUDY 

Mixing and tempering of liquids is a fundamental operation 
in the chemical industry. Therefore, this process has been 
chosen as a case study to illustrate the new design method. A 
fluid is fed into the mixer. This liquid is stirred and 
tempered. The temperature is controlled via a heating jacket 
which is supplied with water. The schema of the mixer is 
shown in Fig. 8. 

 
Fig. 8: Schema of the mixer 

The following symbols and parameters are used:  

M_in:  inlet temperature of fluid in mixer 
M_out:  outlet temperature of fluid in mixer 
FM_in and FM_out: inlet and outlet flow of fluid in mixer  

s/m00056.0h/m2 33
M F ; flow of fluid in mixer  

VM: volume of mixer 
kg/KJ3730p_M c :  heat capacity of fluid in mixer  

3
M kg/m841 : density of fluid in mixer 

M:  temperature of fluid in mixer  
J_in:  water inlet temperature into jacket 
J_out:  water outlet temperature from jacket  
FJ_out  and FJ_out: water inlet and outlet flow in jacket 

s/m0028.0h/m10 33
J F : water flow in jacket 

VJ=1 m3:     volume of jacket 
kg/KJ4180p_J c :   heat capacity of water 

3
J kg/m1000 : density of water 

A=2m2:  reactor heat transfer surface. 
K)W/(m150 2U :    thermal transmittance 

W/K300m2K)W/(m150 22  AUUA  

The jacket is described by (25). 
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t
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

   

                                                                                      (25) 
From (25) we obtain the following differential equation 
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This equation reflects the following parameters of the jacket: 

min85,5s351
)( Jp_JJ

p_JJJ
J 





FcUA

cV
T


 :  time constant  

0252,0
)( Jp_JJ

MJ, 



FcUA

UA
K


:      gain of input M  

9748,0
)( Jp_JJ

Jp_JJ
J_inJ, 





FcUA

Fc
K


 :     gain of input J_in  

 
The mixer is described by (26). 
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 (26) 

By transforming of (26) we get the following differential 
equation:  
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t
T 

  

This equation reflects the following parameters of the mixer: 
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
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M_inM, 





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Fc
K


 :      gain of input M_in  

The process model is shown in Fig. 9 with the controller.  

 

 

Fig. 9: Control schema of the mixer model 

The process was simulated by sampling time of 1t min. 
First-order model with static gain 1437.0mK  and time 

constant 3/160mT min was assumed in PFC, the tuning 

parameters were: 160cT min and 10pn . Estimated 

disturbance feed-forward control was applied with PFC 
estimator parameters: 30ceT min and 10pen . 

Set point level ϑM,r: 40°C→41°C was applied at t=50 min 
and after 500 min a disturbance signal step ϑM_in: 
40°C→41°C °C was used in the inlet fluid temperature to the 
mixer.  

Fig. 10 shows simulations of the temperature control without 
and with estimated disturbance feed-forward control using a 
stabilizing gain (that means no first-order filter)  Fig. 10a 
shows the simulations using a designed critical stabilizing 
gain 976.00  ff KK ; this plot shows good disturbance 

rejection with decreasing oscillations. Smaller gain 

075.0 ff KK   is simulated in Fig. 9b; the plot shows good 

disturbance rejection with smaller oscillating signals. Higher 



     

gain 0025.1 ff KK   is simulated in Fig. 10c, the plot shows 

very strongly oscillating signals. 

                       Fig. 10a: Stabilizing gain Kf = Kf 0 

                  Fig. 10b: Stabilizing gain Kf = 0.75 Kf 0 

Fig. 10c: Stabilizing gain Kf = 1.025 Kf 0 

Fig. 11 shows simulations of the mixer temperature control 
without and with estimated disturbance feed-forward control 
using a first-order stabilizing filter with 10fT s.  

Fig. 11a: Stabilizing first-order filter with Kf = Kf 1 

Fig. 11b: Stabilizing first-order filter with Kf = 1.5 Kf 1 

Fig. 11a shows the simulations using a designed critical 
stabilizing gain 988.01  ff KK , the plot shows good 

disturbance rejection with smooth signals (because of the 
filter effect). Higher gain 15.1 ff KK   is simulated in 

Fig. 11b; the plot shows slower disturbance rejection with 
stronger oscillating signals. 

7. CONCLUSION 

PFC is a simple predictive algorithm which can be 
implemented easily mainly for SISO processes. The 
disturbance estimator using PFC algorithm was 
recommended by Dr. Richalet to avoid an additional 
implementation of another disturbance estimator algorithm. 
The advantage of this disturbance observer is that the 
recommended algorithm uses the same tools like the already 
implemented PFC. 

The algorithm was simulated for delayed first- and higher-
order processes using first-order model with dead time. 
Good estimation of the external and structural (gain 
variation) disturbances were shown even in the case that the 
third-order process was approximated by a first-order model.  



     

PFC can be extended by disturbance feed-forward algorithm 
easily. Therefore, the estimated disturbance was used in the 
feed-forward control. Applying PFC with estimated 
disturbance feed-forward algorithm the control can become 
unstable, mainly if the model matching is not exact. A 
stabilizing technique was applied by feeding the estimated 
disturbance through a stabilizing filter. The stabilizing filter 
gain was designed based on derived sufficient stability 
condition in the frequency domain. The theoretical results 
were confirmed by simulations.  

The new design method was illustrated for estimating and 
compensating the temperature disturbances in a mixer with 
heating jacket. PFC temperature control is often used for 
chemical reactors (see e.g. Bouhenchir, 2006). The proposed 
method can be used also for compensating temperature 
disturbances occurring with chemical reactions.  
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APPENDIX  

Pulse-transfer function of the manipulated variable with 
estimated disturbance fed-forward through a gain 

fK  is: 
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Pulse-transfer function of the estimator control signal is: 
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Pulse-transfer function of the estimated disturbance is: 
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Substituting (A3) into (A1) results in: 
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Characteristic equation of the closed-loop control system is 
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The sufficient condition of the stability in the frequency 
domain ( 11 q ) is: 
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          (A5) 

Assuming a stabilizing filter with gain 
fK , the sufficient 

condition of the stability in the frequency domain is: 
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                       (A6) 

For an aperiodic filter (with unity gain), the absolute value of 
the pulse-transfer function in the frequency domain is: 

1)( 1 qGf          (A7) 

First-order filter (with unity gain) as an example has an 
absolute value of the pulse-transfer function as: 
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From (A7) we can see that the upper limit of the stabilizing 
gain in (A6) is higher or equals the upper limit of the 
stabilizing gain in (A5) 
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