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Abstract: An adaptive iterative learning control method is proposed for a class of nonlinear strict-
feedback discrete-time systems with random initial conditions and iteration-varying desired trajectories.
An n-step ahead predictor approach is employed to estimate the future states in the control design.
Discrete Nussbaum gain method is utilized to deal with the lack of a priori knowledge of control
directions. The proposed control algorithm guarantees theboundedness of all the signals in the controlled
system. The tracking error converges to zero asymptotically along the iterative learning axis except for
beginning states affected by random initial conditions. The effectiveness of the proposed control scheme
is verified through numerical simulation.
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1. INTRODUCTION

During the past decades, iterative learning control (ILC) has
been studied extensively and attracts a lot of research interests.
It was first proposed by Arimoto et al. (1984) in the applica-
tion of robot manipulators. Then numerous results have been
dedicated to ILC design based on contraction mapping (see
e.g. Moore (1993); Chen and Wen (1999); Ahn et al. (2007)).
However, there are several critical requirements that limit the
applications of ILC, especially to complex nonlinear systems.
For instance, the nonparametric uncertainties in nonlinear sys-
tems are requested to satisfy the global Lipschitz condition.
Meanwhile, the initial value of each trial is required to be the
same, which is difficult to realize in practice. In order to re-
lax these prerequisites of traditional ILC, several adaptive ILC
methods are developed to deal with parametric uncertainties in
nonlinear systems (see e.g. French and Rogers (2000); Xu and
Tan (2003); Marino and Tomei (2009); Xu (2011); Yu et al.
(2011)). An iterative parameter adaptation law is incorporated
into the control design to achieve the pointwise tracking along
iterative learning axis.

While most of the existing results focused on ILC of continuous-
time systems, ILC of discrete-time systems deserves more ef-
forts since it is more suitable for real implementation. As a
discretized version of D-type continuous learning controlal-
gorithm, the D-type discrete learning control was proposedin
Saab (1995) and applied to robot manipulators. The 2-D system
theory was successfully adopted in the analysis of discrete-time
ILC utilizing the property that the system progresses in both
the time domain and the iteration domain (Kurek and Zaremba
(1993); Fang and Chow (2003)). Recently, an adaptive ILC
scheme was presented for a class of discrete-time systems in
Chi et al. (2008), in which the requirements of identical ini-
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tial condition and iteration-invariant reference trajectory were
removed.

The control direction is of great significance in all ILC control
designs since it presents the motion direction of the systemun-
der any control. Nonetheless, in some cases, the control direc-
tion is difficult to detect or be decided from the physical mean-
ing, which makes the control design much more difficult. The
continuous Nussbaum gain method, which was first proposed
by Nussbaum (1983), is a popular method to deal with the prob-
lem of unknown control direction since it is easy to implement
in the control design. It was then adopted in adaptive control
design of high-order nonlinear systems (Ye and Jiang (1998);
Ge and Wang (2003)) and ILC schemes with unknown control
direction (Chen and Jiang (2004); Xu and Yan (2004); Dang
and Owens (2006)). Analogous to the continuous Nussbaum
gain, the discrete Nussbaum gain method was developed in Lee
and Narendra (1986), which met several essential properties
of the continuous one. It was then applied in the discrete-time
adaptive control design in Ge et al. (2008); Yang et al. (2009) to
overcome the difficulties caused by unknown control directions.

In this paper, the discrete Nussbaum gain method is utilized
in learning control design to remove the key assumption in all
the existing studies on discrete-time ILC that the control di-
rection is known and invariant. A class of high-order nonlinear
discrete-time systems with strict-feedback form is considered,
whose continuous-time counterpart has been studied in our
previous work Yu et al. (2011). In order to solve the problem
associated with unknown control directions in the step-by-step
deduction, ann-step ahead state predictor approach is applied to
estimate future states exploited in the control law. The proposed
control scheme is free of controller singularity. The tracking er-
ror converges to zero asymptotically along the iterative learning
axis under random initial conditions and iteration-varying target
trajectories, while all the signals are kept bounded.



2. PROBLEM FORMULATION AND PRELIMINARIES

2.1 Problem formulation

Consider the following strict-feedback discrete-time nonlinear
systems

x1(i, t + 1)= θT
1ξ1(x̄1(i, t), t) + b1x2(i, t),

x2(i, t + 1)= θT
2ξ2(x̄2(i, t), t) + b2x3(i, t),

...

xn(i, t + 1)= θT
nξn(x̄n(i, t), t) + bnu(i, t),

y(i, t) = x1(i, t), (1)

where x̄ j(i, t) = [x1(i, t), x2(i, t), · · · , x j(i, t)]T (1 ≤ j ≤ n) de-
note the states at time instantt of ith iteration,t ∈ [0,1, · · · ,T],
i = 0,1,2, · · · ; u(i, t) is the system input;θ j are the unknown
bounded parameters;ξ j(x̄ j(i, t), t) are known vector-valued non-
linear functions with respect to ¯x j(i, t) andt; b j are the unknown
input gains.x j(i,0), the initial conditions of each iteration, are
random and bounded.

To explicate the control design, we make the following assump-
tions on system (1).
Assumption 1.The nonlinear functionsξ j(x̄ j(i, t), t) are global
Lipschitz, i.e.,

∥

∥

∥ξ j(η1) − ξ j(η2)
∥

∥

∥ ≤ L j ‖η1 − η2‖, ∀1 ≤ j ≤ n,
whereL j are Lipschitz coefficients.
Assumption 2.The input gainsb j are nonsingular, i.e.,b j , 0,
1 ≤ j ≤ n. The signs ofb j , which are called control directions,
are assumed to be unknown.

Rewrite system (1) as

y(i, t + n) = θT
1ξ1(x̄1(i, t + n− 1), t + n− 1)

+b1x2(i, t + n− 1),

x2(i, t + n− 1)= θT
2ξ2(x̄2(i, t + n− 2), t + n− 2)

+b2x3(i, t + n− 2),
...

xn(i, t + 1)= θT
nξn(x̄n(i, t), t) + bnu(i, t). (2)

After straight iteration, it is easy to obtain that

y(i, t + n) =
n
∑

k=1

ΘT
kξk(x̄k(i, t + n− k), t + n− k) + bu(i, t), (3)

whereΘ1 = θ1,Θk = θk

k−1
∏

j=1
b j , j = 2,3, · · · ,n, b =

n
∏

j=1
b j . Define

ΘT = [ΘT
1 ,Θ

T
2 , · · · ,Θ

T
n ]T, ξ(i, t+ n− 1) = [ξT

1 (x̄1(i, t+ n− 1), t+
n − 1), ξT

2 (x̄2(i, t + n − 2), t + n − 2), · · · , ξT
n (x̄n(i, t), t)]T. Then

equation (3) could be rewritten as
y(i, t + n) = ΘTξ(i, t + n− 1)+ bu(i, t). (4)

Define the reference trajectory asyd(i, t), wheret ∈ [0,1, · · · ,T],
i = 0,1,2, · · · . Note thatyd(i, t) can be variant with iterations,
which removes the critical assumption of invariant desiredtra-
jectory in traditional ILC based on contraction mapping (Xu
(1997), Wang (1998)). Then the tracking error ise(i, t) =
y(i, t)−yd(i, t). The control objective is to find a sequence of suit-
able system inputsu(i, t), t ∈ [0,1, · · · ,T − n], i = 0,1,2, · · · ,
such that the output of system (1) converges to the desired
trajectory asymptotically along the iteration axis exceptfor

beginningn instants of each iteration, that is limi→∞ e(i, t) = 0,
t ∈ [n, · · · ,T].
Remark 1.In view of (1) and (4), the control input of initial
instantu(i,0) is involved in the output aftern stepsy(i,n). The
outputs of firstn instantsy(i, t), 0 ≤ t ≤ n − 1, are affected by
the random initial conditions, thus are not learnable.

2.2 Preliminaries about discrete Nussbaum gain

The discrete Nussbaum gain was first proposed in Lee and
Narendra (1986). Let{χ(k)} be a discrete sequence withχ(0) =
0, χ(k) ≥ 0, fork = 0,1,2, · · · , and|∆χ(k)| = |χ(k+ 1)− χ(k)| ≤
c, wherec is a constant.

The discrete nonlinear Nussbaum gain is chosen as
N(χ(k)) = χs(k)s(χ(k)), (5)

where
χs(k)

∆
= sup

σ≤k
{χ(σ)} , (6)

and the sign functions(χ(k) which swings between+1 and−1
is defined as follows,

s(χ(0)) = +1,

At k = k1, if s(χ(k1)) = +1, then if
σ=k1
∑

σ=0

N(χ(σ))∆χ(σ) > χ3/2
s (k1),

sets(χ(k1 + 1)) = −1, otherwise sets(χ(k1 + 1)) = +1.

But if s(χ(k1)) = −1, then if
σ=k1
∑

σ=0

N(χ(σ))∆χ(σ) < −χ3/2
s (k1),

sets(χ(k1 + 1)) = +1, otherwise sets(χ(k1 + 1)) = −1.

Obviously it is easy for the digital implementation. Associated
with discrete Nussbaum gain, two important properties cor-
responding to that of continuous Nussbaum gain (Nussbaum
(1983)) were derived.
Lemma 1.(Lee and Narendra (1986))(The Oscillating-Unbounded
Sum Property) Let

S(χ(k))
∆
=

σ=k
∑

σ=0

N(χ(σ))∆χ(σ). (7)

If χs(k) increases without bound, then

sup
χs(k)≥a1

1
χs(k)

S(χ(k)) = +∞, (8)

inf
χs(k)≥a1

1
χs(k)

S(χ(k)) = −∞. (9)

Lemma 2.(Lee and Narendra (1986))(The Bounded Sum Prop-
erty) If χs(k) ≤ ξ1, then|S(χ(k))| ≤ ξ2 whereξ1 andξ2 are some
constants.

Recently, a basic lemma was derived in Ge et al. (2008), which
facilitates the application of discrete Nussbaum gain in the
adaptive control design.
Lemma 3.(Ge et al. (2008)) LetV(k) be a positive definite
function defined∀k, N(χ(k)) be the discrete Nussbaum gain
proposed in Lee and Narendra (1986), andθ be a nonzero
constant. If the following inequality holds

V(k) ≤
k
∑

k′=k1

(c1 + θN(χ(k
′

)))∆χ(k
′

) + c2χ(k) + c3,∀k (10)



wherec1, c2 andc3 are some constants,k1 is a positive integer,
thenV(k), χ(k), and

∑k
k′=k1

(c1 + θN(χ(k
′

)))∆χ(k
′

)+ c2χ(k)+ c3

must be bounded,∀k.

2.3 Useful definitions and lemmas

Definition 1. (Chen and Narendra (2001)) Letx(k) and y(k)
(scalar or vector) be two discrete time signals defined for all
k ∈ ℵ+, whereℵ+ is the set of all nonnegative integers. Let|·|
denotes a norm.

• (Large order). We denotey(k) = O[x(k)] if there exist
positive constantsM1, M2, and k0 such that |y(k)| ≤
M1 maxτ≤k |x(τ)| + M2, ∀k ≥ k0.

• (Small order). We denotey(k) = o[x(k)] if there ex-
ists a discrete-time functionβ(k) with the property that
limk→∞ β(k) = 0, and a constantk0 such that|y(k)| ≤
β(k) maxτ≤k |x(τ)|, ∀k ≥ k0.
• (Equivalence). Ify(k) = O[x(k)] and x(k) = O[y(k)], we

refer tox(k) andy(k) as being equivalent and denote it as
x(k) ∼ y(k).

Lemma 4.(Goodwin and Sin (1984)) If the following con-
ditions are satisfied for some given sequences{s(t)}, {σ(t)},
{b1(t)}, and{b2(t)}

(1) lim
t→∞

s2(t)
b1(t) + b2(t)σT(t)σ(t)

= 0, where{b1(t)}, {b2(t)}, and

{s(t)} are real scalar sequences and{σ(t)} is a real (p× 1)
vector sequence.

(2) Uniform boundedness condition: 0< b1(t) < K < ∞,
0 < b2(t) < K < ∞, for all t ≥ 1.

(3) Linear boundedness condition:σ(t) = O[s(t)].

it follows that

(1) lim
t→∞

s(t) = 0.

(2) ‖σ(t)‖ is bounded.

3. DISCRETE-TIME ADAPTIVE ILC DESIGN

3.1 N-step ahead state predictor

The error dynamics of the system can be expressed as

e(i, t + n) = y(i, t + n) − yd(i, t + n)

=ΘTξ(i, t + n− 1)+ bu(i, t) − yd(i, t + n), (11)

wheret = 0,1, · · · ,T−n. Denoteα = b−1Θ, β = b−1, the system
input can be chosen as

u(i, t) = −α̂T(i, t)ξ(i, t + n− 1)+ β̂(i, t)yd(i, t + n), (12)

whereα̂(i, t) andβ̂(i, t) denote the estimates of parametersα and
β at time instantt of ith iteration.

The control law (12) is a cancelation controller that aims to
exactly cancel the nonlinearities using state feedback andpa-
rameter adaptation. Instead of iteratively learning the iteration-
invariant desired inputud(t) in traditional ILC (Xu (1997),
Wang (1998)), we mainly focus on the iterative adaptation of
unknown parametersb−1Θ andb−1. Therefore, the requirements
of identical initial condition and iteration-invariant reference
can be removed. On the other hand, the control law (12) is
asymptotically an inverse model algorithm on [n,T] or equiva-
lently a pole allocation algorithm allocating all poles to zero.
It will be subject to the robustness issues even for the case

of linear systems (Goodwin and Sin (1984)). Consequently,
considering Remark 1, the control objective is to achieve the
exact tracking on interval [n,T].

It is noticed the noncausal termξ(i, t+n−1) appears on the right
side of (12). In order to explicate the control process, we shall
estimate the states of futuren steps at current step to design the
appropriate inputu(i, t).

Let θ̂ j(i, t) and b̂ j(i, t) denote the estimates ofθ j and b j at
the j-th step. Denoteφ j = [θT

j ,b j ]T, the estimation errors are

φ̃ j = φ j − φ̂ j .

Define the one-step state predictor as

x̂ j(i, t + 1|t) = φ̂T
j (i, t − n+ 2)ψ j(i, t), j = 1,2, · · · ,n− 1 (13)

whereψ j(i, t) = [ξT
j (x̄ j(i, t), t), x j+1(i, t)]T.

Define the two-step state predictor as

x̂ j(i, t+2|t) = φ̂T
j (i, t−n+3)ψ̂ j(i, t+1|t), j = 1,2, · · · ,n−2 (14)

whereψ̂ j(i, t + 1|t) = [ξT
j ( ¯̂x j(i, t + 1|t), t + 1), x̂ j+1(i, t + 1|t)]T.

Define them-step (m= 3, · · · ,n− 1) state predictor as

x̂ j(i, t+m|t) = φ̂T
j (i, t−n+m+1)ψ̂ j(i, t+m−1|t), j = 1,2, · · · ,n−m

(15)
whereψ̂ j(i, t+m−1|t) = [ξT

j ( ¯̂x j(i, t+m−1|t), t+m−1), x̂ j+1(i, t+
m− 1|t)]T.

The parameter estimates updating law is defined as

φ̂ j(i, t+1) = φ̂ j(i, t−n+2)−
x̃ j(i, t + 1|t)ψ j(i, t)

1+ ψT
j (i, t)ψ j(i, t)

, j = 1,2, · · · ,n−1

(16)
wherex̃ j(i, t + 1|t) = x j(i, t + 1)− x̂ j(i, t + 1|t).

With respect to (4), definêξ(i, t + n − 1|t) = [ξT
1 ( ¯̂x1(i, t + n −

1|t), t+ n− 1), ξT
2 ( ¯̂x2(i, t+ n− 2|t), t+ n− 2), · · · , ξT

n (x̄n(i, t), t)]T,
we have the following result

Lemma 5.The parameter estimatesφ̂ j(i, t), j = 1,2, · · · ,n− 1,
are bounded. The estimation errors satisfy

¯̃x j(i, t + n− j|t) = o[O[y(i, t + n− 1)]],

ξ̃(i, t + n− 1|t) = o[O[y(i, t + n− 1)]].

Proof: See the proofs of Lemma 6 and 7 in Ge et al. (2008).

3.2 Adaptive iterative learning control design

With the n-step state predictor above, we design the system
input as

u(i, t) = −α̂T(i, t)ξ̂(i, t + n− 1|t) + β̂(i, t)yd(i, t + n). (17)

Substituting (17) into (11), we have

e(i, t + n) = −b(α̃T(i, t)ξ(i, t + n− 1)− β̃(i, t)yd(i, t + n)

+α̂T(i, t)ξ̃(i, t + n− 1|t)), (18)

whereα̃(i, t) = α̂(i, t) − α, β̃(i, t) = β̂(i, t) − β are the estimation
errors.

The parameter estimates updating law along the iteration axis
is defined as



ε(i − 1, t + n) =
γe(i − 1, t + n)

G(i, t)

+
N(χ(i, t))ϕ(i, t)α̂T(i − 1, t)ξ̃(i − 1, t + n− 1|t)

G(i, t)
,

α̂(i, t) = α̂(i − 1, t) +

γ
N(χ(i, t))

D(i, t)
ξ(i − 1, t + n− 1)ε(i − 1, t + n),

β̂(i, t) = β̂(i − 1, t)

−γ
N(χ(i, t))

D(i, t)
yd(i − 1, t + n)ε(i − 1, t + n),

∆ϕ(i, t) = ϕ(i + 1, t) − ϕ(i, t)

= −N(χ(i, t))α̂T(i − 1, t)ξ̃(i − 1, t + n− 1|t)

×ε(i − 1, t + n)/D(i, t),

∆z(i, t) = z(i + 1, t) − z(i, t) =
G(i, t)ε2(i − 1, t + n)

D(i, t)
,

χ(i, t) = z(i, t) +
ϕ2(i, t)

2
,

G(i, t) = 1+ |N(χ(i, t))| ,

D(i, t) = (1+ |ϕ(i, t)|)(1+
∣

∣

∣N3(χ(i, t))
∣

∣

∣)

×(1+ ‖ξ(i − 1, t + n− 1)‖2 + y2
d(i − 1, t + n)

+(α̂T(i − 1, t)ξ̃(i − 1, t + n− 1|t))2

+ε2(i − 1, t + n)), (19)

where N(χ(i, t)) is the discrete Nussbaum function defined in
(5) which updates along the iteration axis at time instantt,
t = 0,1, · · · T − n. The parameterγ > 0 is tunable to improve
the learning performance.

4. LEARNING CONVERGENCE ANALYSIS

Theorem 1.Consider the discrete-time nonlinear system (1)
with random initial conditions and iteration-varying desired
trajectories, if Assumptions 1 and 2 are satisfied, applyingthe
proposed adaptive learning control law (17) and parameter esti-
mate updating law (19), all the signals in the system are guaran-
teed to be bounded. Moreover, the tracking error converges to
zero asymptotically along the iterative learning axis except for
beginningn instants of each iteration, that is limi→∞ e(i, t) = 0,
t = n, · · · ,T.

Proof: Define a positive definite function as

V(i, t) = α̃T(i, t)α̃(i, t) + β̃2(i, t). (20)

Then the difference ofV(i, t) along the iteration axis is derived
as

∆V(i, t) = V(i, t) − V(i − 1, t)

= (α̃(i, t) − α̃(i − 1, t))T(α̃(i, t) − α̃(i − 1, t))

+2α̃T(i − 1, t)(α̃(i, t) − α̃(i − 1, t))

+(β̃(i, t) − β̃(i − 1, t))2

+2β̃(i − 1, t)(β̃(i, t) − β̃(i − 1, t)). (21)

Substituting the parameter estimate updating law (19) into(21)
yields

∆V(i, t) = γ2 N2(χ(i, t))
D2(i, t)

ε2(i − 1, t + n)

×(‖ξ(i − 1, t + n− 1)‖2 + y2
d(i − 1, t + n))

+2γ
N(χ(i, t))

D(i, t)
ε(i − 1, t + n)(α̃T(i − 1, t)

×ξ(i − 1, t + n− 1)− β̃(i − 1, t)yd(i − 1, t + n)).

Considering the error dynamic (18) and parameter definition
(19), it can be obtained that

e(i − 1, t + n) = (ε(i − 1, t + n)G(i, t) − N(χ(i, t))ϕ(i, t)

×α̂T(i − 1, t)ξ̃(i − 1, t + n− 1|t))/γ

= −b(α̃T(i − 1, t)ξ(i − 1, t + n− 1)

−β̃(i − 1, t)yd(i − 1, t + n)

+α̂T(i − 1, t)ξ̃(i − 1, t + n− 1|t)). (22)

Then it can be derived that

∆V(i, t) = γ2 N2(χ(i, t))
D2(i, t)

ε2(i − 1, t + n)(‖ξ(i − 1, t + n− 1)‖2

+y2
d(i − 1, t + n)) −

2
b

N(χ(i, t))
D(i, t)

ε2(i − 1, t + n)G(i, t)

−2γ
N(χ(i, t))

D(i, t)
ε(i − 1, t + n)α̂T(i − 1, t)

×ξ̃(i − 1, t + n− 1|t)

+
2
b

N(χ(i, t))
D(i, t)

N(χ(i, t))ε(i − 1, t + n)ϕ(i, t)

×α̂T(i − 1, t)ξ̃(i − 1, t + n− 1|t)

≤ γ2G(i, t)ε2(i − 1, t + n)
D(i, t)

−
2
b

N(χ(i, t))(∆z(i, t) + ϕ(i, t)∆ϕ(i, t)) + 2γ∆ϕ(i, t)

≤ γ2∆z(i, t) +
1
|b|

N(χ(i, t))(∆ϕ(i, t))2 + 2γ∆ϕ(i, t)

−
2
b

N(χ(i, t))(∆z(i, t) + ϕ(i, t)∆ϕ(i, t)

+
(∆ϕ(i, t))2

2
). (23)

Since

∆χ(i, t) = ∆z(i, t) + ϕ(i, t)∆ϕ(i, t) +
(∆ϕ(i, t))2

2
,

N(χ(i, t))(∆ϕ(i, t))2 ≤ ∆z(i, t), (24)

we have

∆V(i, t) ≤ (γ2 +
1
|b|

)∆z(i, t) + 2γ∆ϕ(i, t) −
2
b

N(χ(i, t))∆χ(i, t).

(25)
Taking the sum of (25) at time instantt along the iterative
learning axis, we have



V(i, t) ≤ −
2
b

i
∑

k=0

N(χ(k, t))∆χ(k, t)

+(γ2 +
1
|b|

)z(i, t) + 2γϕ(i, t) + V(−1, t)

≤ −
2
b

i
∑

k=0

N(χ(k, t))∆χ(k, t)

+(γ2 +
1
|b|

)χ(i, t) + 2γ2

/

(γ2 +
1
|b|

) + V(−1, t). (26)

SinceV(−1, t) is a constant parameter, applying Lemma 3, we
can conclude directly thatV(i, t) andχ(i, t) are bounded. Thus,
N(χ(i, t)), G(i, t), α̂(i, t), β̂(i, t) are all bounded, and

lim
i→∞
∆z(i, t) = lim

i→∞

G(i, t)ε2(i − 1, t + n)
D(i, t)

= 0 (27)

In order to apply Lemma 4, we should guarantee the linear
boundedness condition betweenD(i, t) andε2(i−1, t+n). From
error dynamic (18), it is easy to see that

x j(i, t) =O[y(i, t + j − 1)] = O[e(i, t + j − 1)],

u(i, t) =O[y(i, t + n)] = O[e(i, t + n)]. (28)

Thus it is derived from the Lipschitz condition in Assumption
1 that

ξ(i − 1, t + n− 1) = O[e(i − 1, t + n− 1)]. (29)
From Lemma 5, we have
ξ̃(i−1, t+n−1|t) = o[O[y(i−1, t+n−1)]] = o[O[e(i−1, t+n−1)]].

(30)
It is easy to see that from the parameter definition (19)

ε(i, t) ∼ e(i, t). (31)
Thus it can be obtained that

D(i, t) = O[ε2(i − 1, t + n)]. (32)
Applying Lemma 4, considering the boundedness ofG(i, t), we
can conclude that limi→∞ e(i, t) = 0, t = n, · · · ,T. Considering
Remark 1, the pointwise tracking is achieved on interval [n,T]
except for beginningn instants affected by random initial condi-
tions. Moreover, all the signals in the system are kept bounded.

5. ILLUSTRATIVE EXAMPLE

Consider the following high-order strict-feedback discrete-time
nonlinear systems

x1(i, t + 1)= a1x1(i, t)cos2(x1(i, t)) + a2x1(i, t) sin(x1(i, t))

+b1x2(i, t),

x2(i, t + 1)= a3
x1(i, t) sin(x2(i, t))

3+ x2
1(i, t)

+ a4
x3

2(i, t)

2+ x2
2(i, t)

+ b2u(i, t),

y(i, t) = x1(i, t),

wherea1 = 0.2, a2 = 0.1, a3 = 0.1, a4 = −0.5, b1 = 1.5,
b2 = ∓0.1. The initial value is chosen from (−1,0)∪(0,1) when
iteration varies.

The desired trajectory is given asyd = m(i)[1.5 sin(πH
5 t) +

1.5 cos(πH
20 t)], H = 0.04, wherem(i) is also varying in the

interval (−1,0) ∪ (0,1) with iteration i. The iteration interval
is t ∈ [0,1, · · · ,100]. The tunable parameterγ is chosen to be
4.
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Fig. 1. Root mean square tracking error under random initial
values and varying desired trajectories whenb2 = −0.1
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Fig. 2. Root mean square tracking error under random initial
values and varying desired trajectories whenb2 = 0.1

To demonstrate the effectiveness of the proposed control
scheme, we carry out the simulation withb2 of the same ab-
solute value but opposite signs. Simulation results with ran-
dom initial values and varying desired trajectories are shown
in Fig 1-6. Fig 1 and 2 show the RMS tracking error versus iter-
ation number. It has shown the validity of the control algorithm.
The variation of discrete Nussbaum gain along the iterationaxis
at time instantt = 1 is shown in Fig 3 and 4 as an example.
We can see that it is first at the wrong direction, then switches
to the right direction after several iterations of learning, which
coincides with the sign ofb2. In Fig 5 and 6, discrete Nussbaum
gain N(χ(t)) at the 1000th iteration is depicted. It is easy to see
that N(χ(t)) are all be the same sign withb2 for t ∈ [0, · · · ,99].

6. CONCLUSIONS

In this paper, the problem of adaptive iterative learning control
for a class of strict-feedback discrete-time nonlinear systems
with random initial conditions and iteration-varying reference
trajectories is tackled. The discrete Nussbaum gain methodis
exploited to deal with the lack of the prior knowledge of control
directions. Under the proposed control scheme and parameter
estimates updating law, the tracking error converges to zero
pointwisely with all the signals bounded. Simulation results



0 200 400 600 800 1000
−8

−6

−4

−2

0

2

4

6

8

Iteration Number

D
is

cr
et

e 
N

us
sb

au
m

 F
un

ct
io

n 
V

ar
ia

tio
n 

at
 ti

m
e 

t=
1

 

 
χ(k)
N(χ(k))

Fig. 3. Discrete Nussbaum function along the iteration axisat
t=1 whenb2 = −0.1
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Fig. 4. Discrete Nussbaum function along the iteration axisat
t=1 whenb2 = 0.1
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Fig. 5. Discrete Nussbaum function of the 1000th iteration
whenb2 = −0.1
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Fig. 6. Discrete Nussbaum function of the 1000th iteration
whenb2 = 0.1

have demonstrated the effectiveness of the presented control
method.
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