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Abstract: An adaptive iterative learning control method is proposedd class of nonlinear strict-
feedback discrete-time systems with random initial coodg and iteration-varying desired trajectories.
An n-step ahead predictor approach is employed to estimateutheefstates in the control design.
Discrete Nussbaum gain method is utilized to deal with thek laf a priori knowledge of control
directions. The proposed control algorithm guaranteebdli@dedness of all the signals in the controlled
system. The tracking error converges to zero asymptofiedting the iterative learning axis except for
beginning statesfected by random initial conditions. Thé&ectiveness of the proposed control scheme
is verified through numerical simulation.
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1. INTRODUCTION tial condition and iteration-invariant reference tra@gtwere
removed.

During the past decades, iterative learning control (IL&} h
been studied extensively and attracts a lot of researctesite
It was first proposed by Arimoto et al. (1984) in the applica
tion of robot manipulators. Then numerous results have beg
dedicated to ILC design based on contraction mapping (s
e.g. Moore (1993); Chen and Wen (1999); Ahn et al. (2007)
However, there are several critical requirements thatt lthe
applications of ILC, especially to complex nonlinear sysse
For instance, the nonparametric uncertainties in nonlisgs:
tems are requested to satisfy the global Lipschitz conditio
Meanwhile, the initial value of each trial is required to be t
same, which is diicult to realize in practice. In order to re-
lax these prerequisites of traditional ILC, several adepiii C

The control direction is of great significance in all ILC crit
designs since it presents the motion direction of the system

er any control. Nonetheless, in some cases, the contest-dir
an is difficult to detect or be decided from the physical mean-
ng, which makes the control design much morgidilt. The
‘ontinuous Nussbaum gain method, which was first proposed
by Nussbaum (1983), is a popular method to deal with the prob-
lem of unknown control direction since it is easy to implemen
in the control design. It was then adopted in adaptive céntro
design of high-order nonlinear systems (Ye and Jiang (1998)
Ge and Wang (2003)) and ILC schemes with unknown control
direction (Chen and Jiang (2004); Xu and Yan (2004); Dang

methods are developed to deal with parametric uncertaiitie and Owens (2006)). Analogous to the continuous Nussbaum

nonlinear systems (see e.g. French and Rogers (2000); Xu aq?dn, the discrete Nussbau'm gain method was deyeloped in Lee
Tan (2003): Marino and Tomei (2009); Xu (2011); Yu et aI_and Narendra (1986), which met several essential propertie

(2011)). An iterative parameter adaptation law is incoaped gg??i\(/::zgg?r%ﬁ;s?eﬁ IithGaeSet?gln (az%%é(a)d\l(gr':h%td;slc(r%g
into the control design to achieve the pointwise trackingg| overpcome the cﬂﬁcultigs causedb .unknovv,n cor?trol di.rections
iterative learning axis. y :

While most of the existing results focused on ILC of continsiou " IS paper, the discrete Nussbaum gain method is utilized
learning control design to remove the key assumptionlin al

time systems, ILC of discrete-time systems deserves mere ilzwe existing studies on discrete-time ILC that the contiel d

forts since it is more suitable for real implementation. As doction is known and invariant. A class of hiah-order noain
discretized version of D-type continuous learning cont| discrete-time systems with stfict-feedback ?orm is comsd
gorithm, the D-type discrete learning control was propased © system S
Saab (1995) and applied to robot manipulators. The 2-DsysteWhose continuous-time counterpart has been studied in our

theory was successfully adopted in the analysis of disdiete  Pcvious work Yu et al. (2011). In order to solve the problem
ILC utilizing the property that the system progresses irhbc)tassomated with unknown control directions in the stepstap

the time domain and the iteration domain (Kurek and Zaremb%educnon’ am-step ahead state predictor approach is applied to

(1993); Fang and Chow (2003)). Recently, an adaptive ILéstimate future states exploited in the control law. Theppsed

scheme was presented for a class of discrete-time systemscﬂ?trOI scheme is free of controller singularity. The tiagker-

Chi et al. (2008), in which the requirements of identicat ini for converges to zero_asympto_t!cally along th? iteratieering
i ' axis under random initial conditions and iteration-vagyiarget

* This work is supported by Academy of Finland Project: Optiimaof  trajectories, while all the signals are kept bounded.
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2. PROBLEM FORMULATION AND PRELIMINARIES
2.1 Problem formulation

Consider the following strict-feedback discrete-time liveaar
systems

X (i,t+1)=6 §1(X1(I t),t) + b1 xo(i, t),
Xo(i,t+1)=46 fz(xz(l t),t) + baxs(i, t),

Xn(i, t + 1) = ] &n(Xa(i, 1), 1) + bu(i, 1),

y(i, 1) = (i, 1), 1
wherex;(i,t) = [Xu(i, 1), %(i, 1), - -, %({,)]T (1 < j < n) de-
note the states at time instdndf ith iteration,t € [0,1,--- , T],

i =0,1,2---; u(i,t) is the system inputy; are the unknown

bounded parameterg(x;(i, t), t) are known vector-valued non-

linear functions with respect tq (i, t) andt; b; are the unknown

beginningn instants of each iteration, that is lim, e(i,t) = 0
te[n,---,T].

Remark 1.In view of (1) and (4), the control input of initial
instantu(i, 0) is involved in the output after stepsy(i, n). The
outputs of firsin instantsy(i,t), 0 < t < n - 1, are &ected by
the random initial conditions, thus are not learnable.

2.2 Preliminaries about discrete Nussbaum gain

The discrete Nussbaum gain was first proposed in Lee and
Narendra (1986). Lefy(k)} be a discrete sequence wijtt0) =
0,x(k) >0,fork=0,1,2,---, andlAy(K)| = [y(K+ 1) — x(K)| <

¢, wherec is a constant.

The discrete nonlinear Nussbaum gain is chosen as

N (K)) = xs(K)s(x (K)), (5)

where
A
xs(K) = Sulfltv(a)}, (6)
and the sign functios(y (k) which swings betweerl and-1

input gains.x;(i, 0), the initial conditions of each iteration, areis defined as follows,

random and bounded.

To explicate the control design, we make the following agsum

tions on system (1).
Assumption 1.The nonlinear functiong;(x;(i, t), t) are global

Lipschitz, i.e.,|[¢(m) - £i(n2)]| < Ljlim—nall, V1 < j < n,
wherelL; are Lipschitz cofficients.

Assumption 2.The input gaing; are nonsingular, i.eb; # 0,

1 < j < n. The signs obj, which are called control directions,

are assumed to be unknown.

Rewrite system (1) as

y(i,t+n) =601& (X, t+n—1),t+n-1)
+b1X%(i,t + n— 1),

Xo(i,t+n—-1)= 652(x2(|t+n 2),t+n-2)
+hoxs(i,t+ n—2),

Xa(i, t+ 1) = 6n(Xa(i, 1), 1) + bru(i, 1).
After straight iteration, it is easy to obtain that

y@i,t+n) = Zn: ®I§k()7k(i,t+ n-Kk),t+n-Kk)+bui,t), (3)
k=1

(2)

k-1
where®, = 61,0y = 6 I1 bj, J =23,
j=1

=[0],0),--- 0", &(i,t+n-1) =
n—-1),&0e>0,t+n-2),t+n-2),---

equation (3) could be rewritten as
y(i,t+n) = O3, t+ n— 1)+ bu(, t).

n
n, b = [] b;. Define
j=1

[ET i, t+n—-1),t+
LE (X (i, 1), 0], Then

(4)

Define the reference trajectoryyagi, t), wheret € [0,1,--- , T],
i=012---

which removes the critical assumption of invariant destrael

. Note thatyy(i, t) can be variant with iterations,

S((0)) = +1,
At k = ky, if S(x(ki)) = +1, then if
o=k
DN (@)Ax(o) > x ¥ (ka),
=0

sets(y(ky + 1)) = -1, otherwise se(y(k; + 1)) = +1.
But if s(y(k;)) = -1, then if

o=ky
2 NU@)Ax(o) < ~x32(ka).
o=0
sets(y(ky + 1)) = +1, otherwise se(y(k; + 1)) = —-1.

Obviously it is easy for the digital implementation. Assaded

with discrete Nussbaum gain, two important properties cor-
responding to that of continuous Nussbaum gain (Nussbaum
(1983)) were derived.

Lemma 1.(Lee and Narendra (1986))(The Oscillating-Unbounded
Sum Property) Let

o=k
S(() = " N(r()Ax(0). )
=0
If xs(K) increases Without bound, then
K)) = +oo,
kalfzgl Xs(k)S(X( ) =+ (8)
Xs(k)i al)(s(k) S(x(k)) = - ©)

Lemma 2.(Lee and Narendra (1986))(The Bounded Sum Prop-
erty) If ys(K) < &1, then|S(x(K))| < & whereé; andé, are some
constants.

Recently, a basic lemma was derived in Ge et al. (2008), which
facilitates the application of discrete Nussbaum gain i@ th
adaptive control design.

Lemma 3.(Ge et al. (2008)) Let/(k) be a positive definite

jectory in traditional ILC based on contraction mapping (Xuunction definedvk, N(y(k)) be the discrete Nussbaum gain

(1997), Wang (1998)). Then the tracking errore§,t) =

proposed in Lee and Narendra (1986), ahthe a nonzero

y(i, t)-Yyq(i, ). The control objective is to find a sequence ofsuitCOﬂStant If the following inequality holds

able system inputs(i,t), t € [0,1,- -n],i=012-

such that the output of system (1) converges to the deswed V(k) < Z (c1 + ON((K)))AY(K) + Cox(K) + c3, Yk (10)

trajectory asymptotically along the iteration axis excégmt

K =ky



wherec,, ¢, andc; are some constants, is a positive integer, of linear systems (Goodwin and Sin (1984)). Consequently,
thenV(K), x(K), andzb_k (cp + ON(x(K))Ax(K) + cox(k) + c3  considering Remark 1, the control objective is to achiewe th
must be bounded/k. exact tracking on intervah| T].

o Itis noticed the noncausal terf(i, t+n—1) appears on the right
2.3 Useful definitions and lemmas side of (12). In order to explicate the control process, walsh
estimate the states of futunesteps at current step to design the
Definition 1. (Chen and Narendra (2001)) Letk) and y(k)  appropriate inputi(i, t).
(scalar or vector) be two discrete time signals defined for al . . i
k € N*, whereX* is the set of all nonnegative integers. ¢t Let 0j(i.t) and bj(i,t) denote the estimates @ and b; at
denotes a norm. the j-th step. Denote; = [67,b;]", the estimation errors are

e (Large order). We denotg(k) = O[x(K)] if there exist ¢ =¢i~ ¢
positive COFES;antﬂ\/ll, I'l/lz, kimd ko such thatly(k)l < Define the one-step state predictor as
M1 max<k [X(7)| + Mg, YK = ko. o [ ATy oy
e (Small order). We denotg(k) = o[x(K)] if there ex- i(.t+ 1) = (1. t=n+2y;(i.0). j=1.2.---.n-1 (13)
ists a discrete-time functio(k) with the property that wherey;(i,t) = [¢7(X;(i. ). t), X;,1(. )]
lim.B(K) = 0, and a constank, such thatly(k)| < .
B(K) max< [X(7)], Yk > ko. Define the two-step state predictor as
« (Equivalence). Ify(k) = O[x(K)] andx(K) = Oyl We  §.(i,t+2[t) = 37(, t—n+3); (i, t+ 1), j = 1,2,--- ,n—2 (14)
refer tox(k) andy(k) as being equivalent and denote it as . ) _ .
x(K) ~ y(K). wherey(i,t + 1it) = [£] (Xj(i, t + 10t), t+ 1), Kja(i, t+ L))"
Lemma 4.(Goo_dvyin and Sin (1984)) If the following con- pefine themrstep = 3,--- ,n — 1) state predictor as
ditions are satisfied for some given sequen{€t}, {o ()},

{bu(t)}, and{ba(t)} % (i, t+mit) = ¢ (i, t-neme1) (i, tem-11), j = 1,2, - o
, s(b) whereJ; (i, t+m—1Jt) = [T (R;(i, t+m—1Jt), t+m—1), X;,(i, t+
1) lim = 0, where{by(t)}, {bo(t)}, and 1\ 5j VD ’ > A
W I b+ b0 O ) (D0, (0e(0), and T
{s(t)} are real scalar sequences o)} is a real p x 1)
vector sequence. The parameter estimates updating law is defined as
(2) Uniform boundedness condition: € by(t) < K < o, . (@i, t+ 1t)y;(,1)
0<by(t) <K < oo, forallt > 1. ¢i(i, t+1) = ¢;(i, t-n+2)- Lo inen )= 1,2---.,n-1
(3) Linear boundedness conditianft) = O[ (t)]. Y (. 0y;(. 1) (16)
it follows that wherexj(i,t + 1/t) = x;(i, t + 1) — % (i, t + 1t).
(1) lim g(t) = 0. With respect to (4), definé(i,t + n— 1jt) = [¢T(Ra(i,t + n —
t—oo AN 1
(2) llo(®)Il is bounded. 1), t+n—1), & (Xe(i, t+n—2lt),t+n=2),--- , & (Xa(i, 1), )],
we have the following result
3. DISCRETE-TIME ADAPTIVE ILC DESIGN Lemma 5.The parameter estimatég(i,t), j = 1,2,--- ,n— 1,

) are bounded. The estimation errors satisfy

3.1 N-step ahead state predictor
The error dynamics of the system can be expressed as Xj("t +n— jlt)=o[Oly(i. t+n—1)].
(i, t+n—=1t) =o[Ofy(i,t + n—1)]].

ei,t+n)=y(i,t+n)—yy(i,t +n)

=0@"&(@,t+n—1) + bu(i,t) - yg(i,t + n), (11)
wheret = 0,1,--- , T—n. Denoter = b0, 8 = b1, the system
input can be chosen as 3.2 Adaptive iterative learning control design
u(i,t) = —&" (i, &0, t+ n— 1) + B(, t)yq(i, t + n), (12) . _ _

whered{i, t) anda(i, t) denote the estimates of parameteend W|th the n-step state predictor above, we design the system
B at time instant of ith iteration. Input as

. _ _,\T . il _ A e -
The control law (12) is a cancelation controller that aims to ugi.t) = (.00, t+n—1it) + 5, Oya(i, t+1). 17)
exactly cancel the nonlinearities using state feedbackpand Substituting (17) into (11), we have
rameter adaptation. Instead of iteratively learning theaiion-

Proof: See the proofs of Lemma 6 and 7 in Ge et al. (2008).

invariant desired inputiy(t) in traditional ILC (Xu (1997), it — b7 (i Dt — 1) = B Hva(i.t
Wang (1998)), we mainly focus on the iterative adaptation of e(i.t+n) A(Ta_ (|,~)§(|, +n=1) -4 Oyali. t+0)
unknown parametets'© andb!. Therefore, the requirements +a (1, )£(0, t+ n—1jt)), (18)

of identical initial condition and iteration-invariantfezence ; s = Y L

can be removed. On the other hand, the control law (12) \grlgrrsea”(l,t) = a0, - 5(i. 1) = B(1,1) - f are the estimation
asymptotically an inverse model algorithm anT] or equiva- '

lently a pole allocation algorithm allocating all poles tera. The parameter estimates updating law along the iterati® ax
It will be subject to the robustness issues even for the caiedefined as



s(i—l,t+n)=W
N@(. )e(i, )a" (i — 1, )31 — 1,t + n— 1Jt)
G(i,t) ’
ai,ty=a( -1t +
Ng(?"’t;))g(i CLt+n-1)s(i- Lt+n),
BG.1) =BG - 1, )
_7 Ng((?’t;)) ya(i = Lt+n)s(i — Lt +n),
Ap(i,t) = (i + 1,1) — i, 1)
=N, )a" (i — L, 1)EG1 — Lt +n—1|t)
x&(i — 1,t + n)/D(i, 1),
AZLY = 2 + 1ty - i 1) = OO I)SZD('(i’_t)l’t ull}
x(,0)=2z3i,1) + .4 (2| .Y
G(i,t) = 1+ IN(x(i, ),
D(i. t) = (1 + (i, (L + [N3(x (. )]
x(L+1€(i — Lt+n—1)2+y3( — L, t +n)

+@"( - L& - L, t+n—1p)?

+&2(i — 1Lt +n)), (19)

where Ng(i,t)) is the discrete Nussbaum function defined in

(5) which updates along the iteration axis at time instiant
t=0,1,--- T —n. The parametey > 0 is tunable to improve
the learning performance.

4. LEARNING CONVERGENCE ANALYSIS

Theorem 1.Consider the discrete-time nonlinear system (1)

with random initial conditions and iteration-varying desl
trajectories, if Assumptions 1 and 2 are satisfied, applfireg

proposed adaptive learning control law (17) and paramster e

mate updating law (19), all the signals in the system areagquar

teed to be bounded. Moreover, the tracking error conveges t

zero asymptotically along the iterative learning axis gtder
beginningn instants of each iteration, that is im, e(i,t) = 0
t=n,---,T.
Proof: Define a positive definite function as

V(i,t) = &' (i, Ha(,t) + £2@, t). (20)

Then the diference olV(i, t) along the iteration axis is derived
as

AV(i, 1) = V(i,t) = V(i - Lt)

— @0, 1) — (i - L) @G, 1) - ai -

+2a7(i — 1, 1)@, t) — a(i — 1,t)
+(B(i,1) - B — L.1))?

+2B(i - LY. 1) - B(i -

1,t))

1,1)). 1)

2N ((,1) ,
Dt
x(lEG — Lt+n—1)2 +ya(i — 1.t +n))

N(x(, 1))
+2y D(i.0)
x&(i - Lt+n—-1)—53 - 1,t)ya(i — 1,t + n)).

AV(i,t) = e(i-1Lt+n)

(i — Lt+n)@ (- 11

Considering the error dynamic (18) and parameter definition
(19), it can be obtained that

ei — Lt+n)=(e(i — Lt +n)G(i,t) — N((i, ), )
x@"(i — 1L, 0)EG - L, t+n—11)/y
=-b@"(i - 1,0 - 1,t+n—1)
B - 1,t)yq(i — 1,t +n)
+&"(i — L,0)EG - 1, t+n—1Jp)). (22)
Then it can be derived that
AV(i,t) = ZND(Q‘(( t))) 31 -Lt+n)(li - Lt+n—21)?
2 - Lt+n) - ENS‘((' t;)) &2 - Lt + n)G(i,
—2y Né“((' t;)) gli-Lt+n)a"(i- 11
x&(i — L t+n—1Jt)
i Né“((' t;)) NG, D)a(i = 1t + (i, 1)
x&"(i — 1,0)&@ — L t+n—1Jt)
,G(i,)e2(i — 1,t + n)
= D(i, 1)

—EN(X(i,t))(Az(i t) + o(i, )Ag(i, 1)) + 2yA¢(i, t)
<y?Az(i,t) + N@(. 1))(Ag(i, )% + 2yAg(i, 1)

5 N(X(i, )(Az(i, t) + ¢(i, t)Ap(i, t)
(8. D)’

>0 (23)
Since
Ax(i, t) = AZ(, 1) + (i, ) Ag(i, t) + M,
N(x (i, 1)) (Ae(i, 1)* < Az, 1), (24)
we have
AV(i,t) < (2 + %)Az(i,t) + 2yAg(i, 1) - %N(X(i,t))AX(i,t).
(25)

Substituting the parameter estimate updating law (19)(@t9 Taking the sum of (25) at time instantalong the iterative

yields

learning axis, we have



[

V(i,t) < - 2 N(r(k, t))Ax(k, t)
k=0

olIN

&
T

+(y* + I%I)Z(i’ t) + 2yp(i, t) + V(-1,1)

N
T

< —E é N(r(k, 1)) Ax(K, )

B + 272/@2 + 5+ V(L. 26
SinceV(-1,t) is a constant parameter, applying Lemma 3, we

can conclude directly that(i, t) andx(i, t) are bounded. Thus,
N(x(i,1)), G(i,1), a(i, 1), Ai, t) are all bounded, and

. o G, )23 -1,t+n)
i||—>r2: AZi,t) = ilm ST =

w

+(72 +

N

[N

RMS Error (Random Initial Values and Varying Trajectories)

1000

o

1
200 400 600

O (27) Iteration Number

o

In order to apply Lemma 4, we should guarantee the line&ig. 1. Root mean square tracking error under random initial
boundedness condition betweB(i, t) ande?(i — 1, t+n). From values and varying desired trajectories wiher= —0.1
error dynamic (18), it is easy to see that

o

x(i,) =Oly(i,t + j - 1)] = Ofe(i, t + j - 1)],

u(i,t) = Ofy(i,t + n)] = O[e(i, t + n)]. (28) 5
Thus it is derived from the Lipschitz condition in Assumtio
1 that ar
Ei-Lt+n-1)=0O[e(i — L, t+n-1)]. (29)

w
T

From Lemma 5, we have
E(i—l,t+n—1|t) = o[O[y(i-1,t+n-1)]] = o[O[e(i—1, t+n-1)]].
30)

N

It is easy to see that from the parameter definition (19)

RMS Error (Random Initial Values and Varying Trajectories)

(i, 1) ~ (i, v). (31) !
Thus it can be obtained that o ‘ ‘ ‘ Mﬂhmm
D(I’ t) = O[SZ(I - 1’t + n)] (32) 0 200 ‘ll?gration Numggro 500 1000

Applying Lemma 4, considering the boundednes&6ft), we

can conclude that lim. (i.t) = 0,t =n,---, T. Considering  rjg » Root mean square tracking error under random initial
Remark 1, the' pointwise tracking is achieved on |_n_temaT| . values and varying desired trajectories wibgn= 0.1

except for beginning instants &ected by random initial condi-

tions. Moreover, all the signals in the system are kept bednd To demonstrate the fiectiveness of the proposed control
n scheme, we carry out the simulation with of the same ab-

solute value but opposite signs. Simulation results witl ra
5. ILLUSTRATIVE EXAMPLE dom initial values and varying desired trajectories arensho
in Fig 1-6. Fig 1 and 2 show the RMS tracking error versus iter-
ation number. It has shown the validity of the control altjori.
The variation of discrete Nussbaum gain along the iteratias
at time instant = 1 is shown in Fig 3 and 4 as an example.
We can see that it is first at the wrong direction, then swiche
to the right direction after several iterations of learningpich

Consider the following high-order strict-feedback disergéme
nonlinear systems

(i, t + 1) = arxa (i, )coL(xe (i, 1)) + axa (i, t) sin(xe (i, 1)

+byX%a(i, 1), coincides with the sign df,. In Fig 5 and 6, discrete Nussbaum
oo SIS0 g N e o eratonis e ey e
’ 3+ (0. 1) 2+ x(i.1) " Rk
yi, ) = xa(i, 1), 6. CONCLUSIONS

wherea; = 0.2,a, = 0.1,a3 = 0.1,a4 = -05,b; = 1.5, . . . .
b, = ¥0.1. The initial value is chosen from-, 0)uU(0, 1) when 1N this paper, the problem of adaptive iterative learningto
iteration varies. for a class of strict-feedback discrete-time nonlineattesys

) ] o . } with random initial conditions and iteration-varying reface
The desired trajectory is given ag = m(i)[1.5sin(Et) +  trajectories is tackled. The discrete Nussbaum gain method
15 cos(’;—gt)], H = 0.04, wherem(i) is also varying in the exploited to deal with the lack of the prior knowledge of coht
interval (~1,0) U (0,1) with iterationi. The iteration interval directions. Under the proposed control scheme and paramete
ist € [0,1,---,100]. The tunable parameteris chosen to be estimates updating law, the tracking error converges to zer
4, pointwisely with all the signals bounded. Simulation résul
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have demonstrated thdfectiveness of the presented control
method.
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