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Abstract— Extremum seeking control was originally pro- —averaging and singular perturbation analysis of the system
posed for adaptive optimization of static systems and later in the vicinity of the optimum to show that the ESC will

extended to Hammerstein and Wiener systems. More recently, converge to a stationary solution close to optimum under
stability and convergence results were presented also for gendra tai Il defined diti Th It i v | |
type dynamic systems with a focus on the local behavior around Cefain-Well “0elined Condiuons. € result Is only local,

the optimum and under assumptions of relatively slow gradient and furthermore, employment of averaging combined with
estimation and control. In this paper we derive properties singular perturbations implies that it is necessary to mssu

characterizing any stationary solution of the extremum seeking that the feedback is slow relative to the perturbation based
control scheme, i.e., we do not restrict ourselves to solutions estimation, and that the perturbations again be slow velati

close to optimum and allow for any frequency in the sinusoidal .
perturbation based gradient estimation scheme. By considering to the open-loop dynamics of the plant. Tan et al. [5] extend

the linear properties around a stationary solution of the system, the results to allow for semi-global stability analysisjl st
we show that stationary solutions are characterized by either relying upon averaging and singular perturbations. Régent
a zero gradient or a phase lag condition. The former condition Moase and Manzie [6] consider the problem of convergence
is satisfied at the optimum only for systems in which the zero 5 arpitrary initial conditions using arbitrarily fastaglient

gradient at the optimum is due to a static nonlinearity. The - . . .
phase lag condition is shown to be satisfied close to the optimum estimation and feedback. However, their method is only

for low frequency excitations, but can also be satisfied at solu- applicable to Hammerstein systems.

tions arbitrarily far from the optimum. The results imply that Krstic and Wang [4] also find that, for the case of
the extremum seeking control scheme applied to general type general dynamic models, the ESC will locally converge to
dynamic systems can have multiple stable stationary solutions of a solution deviating somewhat from the optimum, with the

which some are sub-optimal and potentially far removed from bei ti | to th f th litude of
the optimum. For illustration we consider extremum seeking 70" P€ING proportional o the Square ot the amplitude o

control of a tubular bioreactor, displaying a maximum vyield, ~the perturbation signal. Chioua et al. [7] consider the ictpa
and show that the closed-loop has two saddle-node bifurcations of the perturbation frequency and show that the error also

resulting in a total of three possible stationary solutions for will be proportional to the square of the frequency. Similar
some perturbation frequencies. A stable sub-optimal solution, to the results of Krsti and Wang, their result is based on a
with a yield less than 10% of the optimal yield, exists even with . N
relatively slow gradient estimation. local a_naIyS|s around Fhe optimum. .
In this work we consider ESC of general dynamic systems,
. INTRODUCTION but rather than focus on the local properties around the

] ) ) ) optimum our aim is to characterize the propertiesaofy
Extremum seeking control (ESC) is a classic adaptive coRtationary solution of the ESC scheme. Furthermore, we

trol technique used to achieve and maintain optimal op&gati 5o any frequency in the perturbation signal and put no
conditions even for complex processes with unknown inpuastrictions on the bandwidth of the feedback. Our motirati
output mappings. The classic approach to ESC is to employ& this work comes from a simulation study on ESC of the
perturbation based metod for estimating the gradient agwl th A NON process, a complex biological process for ammo-
combine this with feedback to force the gradient to zero. Thgi,m removal in wastewater [8]. This process has a sharp
use of feedback increases the robustness of the SChemeo@l’imum in terms of removed ammonium with dissolved
suppressing the effects of uncertainty and disturbanoe= E (v qen as the input, but the optimal conditions are unknown
some of the earliest descriptions of ESC were in principlgnq furthermore varying with the quality of the incoming
based on this combination of perturbation based estimatiQpy ;. Thus, ESC is an obvious choice for this process.
and feedback, e.g., Leblanc (1922)[1]. Initially the metho jyqever, the CANON process involves biofilm transport
was derived for purely static syst_ems, but in the 50s and 6%§1d growth, something which makes the open-loop dynamics
Imear. dynamics were added to yield model; of HammerSte@(ceedingly slow and hence employing gradient estimation
or Wiener type. See e.g., [2], [3] for reviews. Howevergignificantly slower than the process time-constant is not
stability issues were largely neglected in the early womks 05 qtical. Based on simulation studies we found that the ESC
ESC. o ) could move the CANON process close to optimum even with
It was only at the beginning of this century that ahigh perturbation frequencies and relatively fast feedlbac
rigorous local stability analysis of ESC applied to generag; we also found that for some initial condition the
dynamic systems was presented. Krsihd Wang [4] employ Egc could convergence to stationary solutions far from the
) ) i optimum. Thus, we detected sub-optimal solutions as well
KTH Royal Institute of Technology, School of Electrical Eneering, oo oictance of multiple stable stationary points. Theltesu
Automatic Control Lab, Stockholm 100 44, Sweden (Email: ofigth.se,
jacobsen@kth.se) presented in this paper serve to explain these observations



We start the paper by briefly describing the ESC algorithris asymptotically stable for all inputsand can be described
with periodic excitation for gradient estimation. Expiiess by a state space model of the form
for the stationary solutions of the ESC in terms of the local .
: . . = f(z,0)
linear frequency responses are then derived. Based on this y = hz) (1)
we characterize the stationary solutions in terms of anndit
and phase lag of the open-loop frequency response. Th&e assumption of asymptotic stability can easily be relaxe
results show that there may be two distinct properties th&Yy introducing a stabilizing feedback control law. The func
characterize the stationary solutions of ESC, one relaied tions f : R" x R — R™ andh : R" — R are assumed
the gradient and one related to the phase_|ag of the Systé@nbe sufficiently smooth such that all necessary derivative
at the excitation frequency. To shed some light on the réXist. Furthermore, we assume that there exist a suffigient
lationship between the derived characteristics and ptigger Smooth functior/ : R — R" such that
of a general dynamic system around an extremum point, we 0= f(z,0)
present some results on the dynamics of systems with steady- ’
state input multiplicity. We also present a simple stapilit if and only if
analysis of the ESC to show that both type of solutions, x=1(0)
satisfying either the gradient or the phase lag conditiam, ¢
be locally stable. Finally, we illustrate the results with
simple example involving maximization of the yield in a
tubular isothermal bioreactor with plug flow. As shown, the hol:R—R (2)

reactor with ESC displays multiple stable stationary sohst exists and is sufficiently smooth. The function (2) is the

even fo_r relat|vely low ex_C|tat|on frequenmeg in the gEI_dl teady-state map betweenand y, and as such, it is the
estimation. We finally discuss some possible remedies Eﬁnction We want to optimize by emploving ESC. We will
avoid sub-optimal solutions to the ESC. P y ploying )

assume that (2) has an extremum which is either a maximum
or a minimum.
The addition of the sinusoid in Fig. 1 is motivated by the
fact that the product of the sinusoid itself and the system
The principal idea behind extremum seeking control is teesponse to the sinusoid will have a DC component which
use gradient feedback to bring a process to the maximum igrproportional to the local gradient of the input-outputgma
minimum, corresponding to the zero gradient point, of théol, provided the system acts as a static map. The purpose of
input-output map in which the output represents the objecti the high-pass filteF; is to remove the DC component from
function and the input is the main control variable. Therghe process response, while the low-pass figrserves to
exists several approaches to ESC, e.g., based on sliding madtain only the DC component of the predicted gradient.
[9] or numerical optimization methods [10]. In this paper We next consider deriving the characteristics of the sta-
we consider the classical and much studied variant basédnary solutions to the ESC as outlined above.
on sinusoidal perturbations [2], [11], [3]. The correspi
ESC loop is oStIined in Fig. ][.]WIEICI!I E[l|S]O defines thep%ous Il STATIONARY SOLUTIONS OF THEESCSCHEME
signals of the scheme. An important motivation for choosing Consider the system given in (1) controlled by an ESC-

this particular scheme is that it is model independent asal alloop as shown in Fig. 1. We are interested in determining
relatively simple to implement. the stationary solutions of this loop, here taken to be the

solutions for which the contrdl is a constant. Clearly, this
] implies that{(t) = 0 for the solutions considered. With a
4 &= f(z,0) y constantd(t) = 6, the input to the process becomes

y = h(z) } 0(t) = § + asin(wt)

Fy This input will in turn yield a stationary response in the

process outpug(t) which is composed of a DC component,

R y—n resulting from@, combined with the frequency response for

¢ k § F asin(wt). If we assume that the amplitude of the sinusoid
S L a is small, then the frequency response can be described by

. the transfer-functioid+(s) obtained by linearizing the process

asin(wt) around the steady-state corresponding te 4, i.e.,

The assumptions above imply that the stationary solutiéns o
r?(l) are parametrized b§ and that the composite function

Il. EXTREMUM SEEKING CONTROL WITH PERIODIC
EXCITATION

Fig. 1. Structure of the ESC system. y(t) = hol(0) + |G(iw)|asin(wt + arg(G(iw)))

he presence of the high-pass filtéh; will effectively

. . T
we consujer the. process to be _descrlbed _by a g.enerr%lmove the DC component gf resulting in the response
set of nonlinear differential equations combined with a

nonlinear state-to-output map. It is assumed that the syste y(t) — n(t) = |G(iw)||F (iw)|a sin(wt + ¢)



where ¢ = arg(G(iw)) + arg(Fyu(iw)) is the combined consider the full ESC-loop, it is clear that high-frequency
phase lag of the system and the high-pass filter. The sign@dmponents will be attenuated not only by the low-pass filter
y —n is "demodulated” by multiplication with: sin(wt) to  but also by the integrator and typically by the processfitsel
yield as well. Furthermore, if we consider the averaget aver

(y(t) — n(t))asin(wt) = one periodl = 27 /w we get

. . . . T 2 T
|G (iw)||Fp (iw)]a® sin(wt + ) sin(wt). %/O gdt = %%|G(iw)”FH<iw)|/0 (IFL(0)] cos(ep)—
The trigonometric identity | Fp, (12w)] cos(2wt + @ + arg (Fy (i2w))))dt =

i sin = 1 cos(a — 3) — cos(a a? T
sin(a)sin(5) = 3 (costa = ) = coslar+5) ;QGuw)wH(mn( | 1P cospie-

2
yields
W0 st = I Fuileostel [ 7 ) conar + g + aea(Fuliz)e | —
cos(2wt + ¢)) :

=0
Note that the demodulated signal consists of a DC compo?2 . .
nent and a sinusoidal component with twice the excitation?‘FL(O)||G(“")||FH(W)‘ cos()-
frequency. Low-pass filtering the demodulated signal gieldThis corresponds exactly to what is assumed in (3), i.e., the
a? ) , assumption is equivalent to studying the average behaviour
§ :7|FL(O>||G(W)||FH(W)| cos(ip)— of the system which makes sense since we are interested in
a? _ _ . . stationary solutions. If the assumption (3) is not maden the
5 1FL(@2w)[|G (iw)[| Fr (iw)| cos(2wt + ¢ + arg (£ (i2w))vould not be constant for stationary solutions and we would

The low pass filter is assumed to effectively filter out thénStead have to consider limit-cycles of small amplitude.

high frequency component, i.e., A. Relation of stationary solutions to optimality
|Fp,(i2w)] = 0, (3) From the above we find that stationary solutions of the
ESC scheme either satisfy the amplitude condition
which yields .
p G(iw)| =0
£= §|FL(0)HG(W)HFH(W)| cos(¢). 4)  orthe phase lag condition
Since¢ = 0 is required to yield a constamt, it follows = g + nm
that we for stationarity require - )
) To better understand how these conditions relate to priegert
a—|FL(0)||G(iw)\|FH(z‘w)| cos(p) = 0 (5) of a general dynamic system at the optimum, it is interesting
2 to consider the dynamic properties of systems with an
Clearly, §|FL(O)HFH(Z.W)| > 0, so the only possibility for extremum |n.the mput_—o.ut.put mapping, i.e., syste_m_s with
(5) to be true is if either steady-state input multiplicity. Steady state input nulitity
is a property that all systems viable for ESC exhibits, i.e.,
|G (iw)] =0 (6) there are multiple inputs yielding the same output at steady

state due to the existence of a maximum or minimum.
Such systems have previously been shown to possess certain
dynamical properties [12] that are relevant for the statign

From the analysis above we draw the conclusion that trolutions of the ESC as derived above.
stationary solutions are characterized either by the Byste Let
being output invariant withG (iw)| = 0 Vw or the phase lag Gls) = Kbo + 015+ A by s™
fulfilling (7). Since these criteria can be fulfilled irregpiee U agtais+ -+ apst’
of the optimality conditions, there may exist stationanpe the transfer-function from input to outputy of (1)

solutions completely unrelated to the optimum. Furtheenor jinearized about a steady-state solutior= /(d). Then the
the phase lag at the frequencw can in principle vary with stationary gain is given by
the inputé in such a way that (7) can be fulfilled for several

or
COS(¢)=0=><p=g+mr, n=0,1,2,... (7)

>m

different stationary points. Some systems could therefore G(0) = Kbi = (hol) ()
have multiple stationary solutions for a single excitation @o
frequency. Let 6* be the value for whichh o [ achieves its extremum.

The derivation above is not strict since it depends on (3)hen it follows that(hol)’ switches sign through zero é&t=
a condition that no filters actually fulfill. However, if we 6*, i.e. the sign of hol)’(6* +¢) is opposite of(hol)' (0* —



¢) for small values ofe. This implies that the stationary impact of other poles and zeros are likely to interfere with
gainG(0) also will switch sign through zero when linearizedits phase contribution and we may not get a phase lag of
aboutz* = [(#*). This can only happen if either of ¢ = 5 +nm at any solution in the vicinity of the optimum.
K = 0, or by = 40 ) Thus, for suﬁlc!ently large .frequenues there W|I] probabl
not be any stationary solutions related to the existence of a
are true at the optimunu§ = +oo is not possible for proper process optimum.
systems). If K = 0, then all dynamics disappear at the Finally, it is clear that a process may have frequencies
extremum sinceG(s) = 0 Vs, i.e., the output is invariant where the phase lag = 7 + nm without any relation
at the optimum. If insteadl, = 0 and some,, # 0, then a whatsoever to the optimality conditions discussed abdve. |
real zero will cross between the LHP and the RHRG48)  this frequency varies with, then we will have a continuous
changes sign and hence there exisuch thatG(s) # 0. In  range of excitation frequencies for which a sub-optimal
this case the system will have a dynamic response to smathtionary solution will exist. In such cases it is also fluss
changes i even at the extremum point and, furthermorethat multiple solutions will exist, of which one is related
the linearized system will be non-minimum phase, at leasv the optimality of the process while the others are not.
locally, on one side of the extremum. This is an interestinglowever, there may also exist situations where all statipna
observation as it severely limits the ability to stabilize osolutions are sub-optimal in the sense that they are ndaetkla
speed up the dynamics of a system prior to applying ES@ the optimality conditions of the process. This is shown
However, we will here merely focus on the implications offor the example bio-reactor below. First, we derive a simple
the zero crossing for the existence of stationary soluttons stability condition for the stationary solutions of the EGE
the ESC itself and will leave the implications for inner loopderived above.

feedback to future work. . . .
Consider now the case of a Hammerstein/Wiener model, aBs' Stability of the stationary solutions

considered in most previous studies on ESC. For such modelgS Shown above, depending on the dynamic properties of
it is clear that the optimum correspondsito= 0, and hence the process and the excitation frequencythe ESC may
the optimum is a stationary solution of ESC for sufficiently/Ck on to different types of stationary solutions. In preef
smalla. Furthermore, the phase lag of such models does ngfe Will of course only observe stable stationary solutions
vary with § and hence there will only be singular frequencie@nd hence it is of interest to determine if all the various
for which the ESC can lock on to a solution with= = 4. types of stationary solutions can be stable, at least foresom
Thus, for essentially any choice of the excitation freqyencChoices of controller parameters. _
w there will be a unique stationary solution of the ESC 10 simplify the stability analysis we will assume that the
which is the optimal solution for smail. Furthermore, the control is so slow that the process in combination with the
deviation from optimality for larger. will only depend on 10W-pass and high-pass filters acts as a static map &
the degree of non-symmetry of the mapping! around the ¢. Note that the control can be slow even if the excitation
optimum. As shown in [4], the solution will also be stablelfequency is relatively high since the response time also
for an appropriate choice of controller parameters, inigd depends on other parameters such as excitation amplitude
a sufficiently small excitation frequency. a and integrator gairk. Also note that the purpose of the
Consider next the case in which the optimum correspond@¥@bility analysis presented here simply is to show that in
to by = =0, i.e., a transmission zero crosses the imaginar@/”nc'me all type_:s of stationary solutions discussed a&bov
axis through zero a8 passes the extremum. In this caseCan be asymptotically stable. _
the system has a zero at= 0 and hence a phase lag of Consider the ESC closed loop in Fig. 1. The block diagram
7/2 atw = 0 at the optimum. We here make the usuafan be simplified into the one shown in Fig. 2, in which all
assumption that the cut-off frequenay, < w in the high- blocks but the integrator block have been included in the

pass filter. Thus, the stationary solution will asymptdtjca Plock labelledL.
approach the optimum as — 0. For solutions close to

the extremum there will be a zero close @p either in L

the LHP or RHP, and hence a small non-zero frequency é :| g

for which the phase lagp = 7/2. Thus, for small non-

zero excitation frequencies the ESC will converge to a s

solution in the vicinity of the optimum. Since the zero moves

away from the origin ad moves away from the optimum, it Fig. 2. Simplified representation of ESC scheme in Fig.1

implies that the distance to the optimum will increase with

increasing frequency. This also corresponds well with the To investigate the stability of the simplified loop we seek
results based on local approximations around the optimuta find an algebraic expression for the relation

in [7]. Note that the slower the zero moves with changes A

o . . o &= L(6).

in 6, the larger the distance to the optimum will in general .
be for a given excitation frequency. Also, note that as the If 6 is varying slowly, then the local response of the
zero has moved some distance from the imaginary axis tisgstem (1) to small and relatively fast perturbations can



be approximated by the system linearized about the curretime in the reactor. The residence time can be controlled
6. Thus, we approximate the system by a linear parametasing the total flow into the reactor as the input. The reactor

varying (LPV) system withy as a parameter. We form model is
& =A(f)x + B(6)o ga 100 5
- A at = q 0z
y=C(0)x 0B, 108 5 B
. -t -5 aff —
which yields thef-parametrized transfer-function ot q0z o(1+ pp)

A A ANl A Herea and 3 are dimensionless concentrationsAfnd B,
G(s,0) = C(O)(sI — A(6)) " B(O). respectively,q is the total flow and) and p are parameters
If w is fast compared to the variations #h we can describing the reaction kinetics. The dimensionless kengt
consider the problem using separate time scales. For the f@é the reactor isl, i.e., z € [0,1]. We consider the same
time scale, we approximaté as a constant and follow the hominal parameter values as in [13], i.¢.,= 20, p = 3
same steps as in deriving (4) to characterize the stationa@d o(t,0) = 0.8 and 3(t,0) = 0.2. We use the method of

solutions. We get lines for simulation and employ simple backward Euler with
9 N = 10 elements for the spatial discretization.
¢ = %\FL(O)HG(M,é)||FH(iw)\cos(cp(é)) = L(6). The static map from the flomw = ¢ to the product

concentration oB, y = (1), is shown in Fig. 3. As can be
This static map is the relation betweérand ¢ in the slow seen, there is a maximum concentratiomBofy = 0.915, for
time scale. Again, we are interested in stationary solstiorf flow u = 6.01. From linearization we find that there is a
corresponding t@ = 0, or § = 6 constant. To determine the zero ats = 0 in the transfer-function of the linearised system
stability of such solutions we consider a linearizationof at the optimum, and this zero moves into the RHP for higher

around the stationary solutions f@rf) = 0 values of the input flowy. Thus, the system does not have any
_ steady-states for which the amplitug(iw)| = 0 for any
L(6) ~ dL(Ae) ), 0=0-0. non-zero frequencw. According to the analysis presented
do above, this implies that that any stationary solution to the

Now if we replacel by its linear approximation in the closed ESC problem for the bioreactor must satisfy the phase-lag
loop in Fig. 2, it should be clear the closed loop will have &onditiony = 7 + n.
single pole at

de(Ae)_ !

d0 0.9F

The stability of the loop is determined by the sign of the a™

pole and the stability criterion thus becomes :f‘”

_ ‘S 06

de @ <0 Q) S os

de §0,4

Condition (9) can in principle be satisfied for any type of S .

stationary solution discussed above, and hence all types of 8}

solutions can in principle be stable. Also, note that any '

stationary solution can be made stable by simply choosing o
the appropriate sign of the controller gdin % 5 10 15 % % 40 a5 %

25
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IV. EXAMPLE: CONTROL OF ACONTINUOUS TUBULAR

REACTOR

As stated in the introduction, our motivation behind this We employ the cut-off frequency; = 0.01 in the high-
work was observations made when applying ESC to pass filter and compute solutions in termsudb ¢ = 5 +n7
bioreactor used for ammonium removal from waste watefor steady-states within the input rangec [0,200]. The
The model for this process is highly complex and weesults in terms of stationary flow and concentrationBof
therefore consider a simpler example here to make the sesudts functions of the perturbation frequengyis shown in
more transparent as well as reproducible by the reader. TReg. 4. As can be seen, for perturbation frequencies up to
qualitative results obtained are similar to those obseimed w = 0.36 the ESC scheme has a stationary solution close
the bioreactor for wastewater treatment. to the optimal concentration915. However, as can be seen

The system considered here is a simple isothermal tubuliiom Fig. 4, there is a bifurcation ab = 0.36, resulting
bioreactor with plug-flow for converting specied into in multiple steady-states in the range € [0.035, 0.36].
speciesB, but in which there also is a side reaction producing-rom simulations as well as from the simplified stability
specieg” from B [13]. The side reaction implies that there isanalysis presented above, we find that the solutions at the
a maximum in the yield ofB with respect to the residence upper and lower branches are stable while the solutions at

Fig. 3. Steady-state input-output map for bioreactor in EXamp



the intermediate branch are unstable. For instance, for tlegen at the optimum, there is a transmission zero crossing
perturbation frequency 0.05 rad/min we find three the imaginary axis at the optimum and hence there will be a
solutions with concentrationg = 0.913 (stable),y = 0.226  solution close to optimum fulfilling the phase lag condition
(unstable) andy = 0.033 (stable), respectively. See alsofor low perturbation frequencies. However, there may also
Fig. 4. Thus, depending on the initial conditions, the ES@xist stationary solutions fulfilling the phase lag coratitat
may converge to a solution close to the optimal yield ooperating points with no relation to the optimality conaliti

to a solution with essentially no yield. Note that this is avhatsoever. Such solutions may coexist with solutionseclos
perturbation frequency which is low relative to the mairto the optimum, resulting in multiple stationary soluticios
dynamics of the reactor with a time-constant arodnaiin ~ the ESC problem. For higher excitation frequencies, there
may exist no stationary solutions related to the optimatity
the process and only sub-optimal solutions exist.

We stress that the phase lag condition presented in this
paper, if properly utilized, may represent an advantage for
ESC as it represents a dynamic property reflecting nearness
to optimum, and hence higher excitation frequencies allow-
ing for faster convergence may be employed. However, the
problem of avoiding convergence to sub-optimal solutions
also fulfilling the phase lag condition is an open problem.

200
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