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Abstract: In this paper we apply the Economic Model Predictive Control (MPC) for balancing
the power supply and demand in the future power systems in the most economic way. The
control problem is formulated as a linear program, having a block-angular structure solved by
the implementation of the Dantzig-Wolfe decomposition. For real-time applications we introduce
an early termination technique. Simulations demonstrate that the algorithm developed operates
efficiently a power system, reducing significantly computational time.
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1. INTRODUCTION

During the past decades climate has dramatically changed.
Scientists define the recent global warming as unprece-
dented and emphasize the need of accellerated and urgent
actions (Vidal, 2013). CO2 emissions and other pollutants
are collecting in the atmosphere like a thickening blanket,
trapping the sun’s heat and causing the planet to warm
up. The combustion of fossil fuels to generate electricity
is one of the largest source of CO2 emissions (United
States Enviromental Protection Agency, 2013). Hence, a
transistion from fossil to non-fossil fuels plays a key role
in our future, leading to a new electricity system. Future
electric grids will consist of independent energy sources
and customers; these are characteristics of Smart Grids
(European Technology Platform SmartGrids, 2012; The
Danish Energy Agreement of March 2012 , Ministry of
Climate, Energy and Building, 2012). Renewable energy
sources (RES) take part in the Smart Grids with their
intermittent energy production. This innovative scenario
requires control actions so as to ensure the total energy
production satisfies customers’ demands.

We propose an optimization-based controller to balance
power production and consumption in an economically effi-
cient way. As a case study we consider a large scale system
in which multiple power generators that are dynamically
decoupled, operate in a coordinated way to serve as a
single power portfolio. We address two issues related to
the power management in a large scale scenario. The first
issue concerns minimizing the cost of producing enough
power to meet the market demand. The second issue con-
cerns providing supply security. Our control strategy is an
Economic MPC applied to a power portfolio in a large scale
scenario. The optimization problem of the proposed con-
troller shows a block-angular constraints matrix; because
of this, we solve the control problem by using Dantzig-
Wolfe decomposition. However, real-time applications re-

quire fast computation of the optimal control sequence:
because of this, an early termination strategy is applied
on the Dantzig-Wolfe decomposition algorithm. Such early
termination provides a suboptimal solution of MPC and
reduces significantly computational times.

Recent applications for energy systems have included the
Economic MPC: refrigeration systems (Hovgaard et al.,
2010, 2011, 2012a,b), heat pumps for residential build-
ings (Halvgaard et al., 2012c), solar-heated water tanks
(Halvgaard et al., 2012a), and batteries in electrical ve-
hicles (Halvgaard et al., 2012b). Due to computational
complexity and the communication bandwidth limitation,
distributed control structures have been developed for
large-scale systems (Scattolini, 2009). The interest in dis-
tributed MPC has led to the use of decomposition tech-
niques applied to large-scale linear programs, (Lasdon,
1970; Chvatal, 1983; Nazareth, 1987; Dantzig and Thapa,
2003; Conejo et al., 2006). The Dantzig-Wolfe decompo-
sition algorithm for large linear programs was first intro-
duced in 1960 (Dantzig and Wolfe, 1960, 1961). However,
recently, the Dantzig-Wolfe algorithm has been used in
a number application connected to the MPC: in an oil
field by (Gunnerud and Foss, 2010; Gunnerud et al., 2010),
control of building temperature (Morsan et al., 2011) and
power balancing (Edlund et al., 2011). Suboptimal MPC
controllers are stabilizing and guarantee feasibility and sta-
bility of the controller (Pannocchia et al., 2010). However,
often real-time suboptimal MPC is a combination of offline
and online optimization (Scokaert et al., 1999; Zeilinger
et al., 2008). Other strategies involve online active set and
bounds on the CPU time (Ferreau et al., 2008) and early
termination approach for interior point methods (Wang
and Boyd, 2010).

The outline of the paper is as follows: Section 2 introduces
power systems. Section 3 formulates a linear Economic
MPC for linear power systems. Section 4 describes the
Dantzig-Wolfe decomposition algorithm. The early ter-



mination strategy is explained in Section 5. Section 6.1
proposes a model for the power generators included in
the portfolio; Section 6.2 reports simulation results and,
finally, the conclusion and suggestions for future work are
presented in Section 7.

2. POWER SYSTEMS

Power system consists of a number of independent power
units, such as power producers and consumers. Figure 1
depicts a generic power system, where power units are
connected only with operation center. The total power
supply includes the production from each of these indepen-
dent power producers. Such power systems are also called
Distributed Energy Sources (DES). Moreover, power units
are independent and dynamically decoupled systems; such
decoupled models are ubiquitous in power systems. Ac-
cordingly, the energy units considered in this paper can be
described as a linear discrete time state space model

xk+1 = Axk +Buk, (1a)

yk = Cxk, (1b)

zk = Czxk. (1c)

xk denotes the states, uk the manipulated variables (MVs),
yk denotes the measurement used for feedback, and zk is
output variables.

The manipulated variable, uk, is subject to bounds and
rate-of-movements constraints

umin ≤uk ≤ umax (2a)

∆umin ≤∆uk ≤ ∆umax (2b)

These are hard constraints and not mean-value con-
straints.

The system output zk denotes the power produced by
the generator and it must satisfy the customers’ demand,
r. Often the electricity demand is forecast in advance
and defined by an interval as [rmin,k, rmax,k]; we assume
to have such demand interval from external forecasts.
However, due to the manifold power units involved, it
might be impossible to have the total power production zk
within the demand interval; because of this, the constraints
on the power produced include slack variables sk. The slack
variables, sk, may represent selling or buying power from
the short-term market, violation of temperature limits, or
violation of state-of-charge limits. Every time sk is non-
zero, a penalty cost, e.g. the cost of buying or selling power
on the short-term market must be paid.

rmin,k − sk ≤zk ≤ rmax,k + sk (3a)

sk ≥ 0 (3b)

The cost of producing power over a period of time, is φk.
This economic cost, φk, consists of the cost of operating a
power generator, ck, and the penalties, ρk, related to the
use of slack variables, sk

φk =

N−1∑
j=0

c′kuk +

N−1∑
j=0

ρ′ksk. (4)

3. ECONOMIC MPC FOR OPERATIONS

Figure 1 illustrates a power system where the operations
center has the task to coordinate and control power untis.
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Fig. 1. A generic future power system. Power producers
and consumers are independent units, and Opera-
tions coordinates and controls these power units to
guarantee power supply in response to the customers’
demand.

Operating such power system means making real-time
decisions as planning the power production in response to
the customers’ demand. This section introduces Economic
Model Predictive Control (MPC) to operate a power
system as the one in Figure 1 balancing power supply nad
demand in the most economic way.

Consider a power system, as described in Section 2, which
consists of P power producers. These power generators
collectively produce the total portfolio power production
ˆ̃zk+j+1|k subject to the following connecting constraints

ẑk+j+1|k =

P∑
i=1

C̃ix̂i,k+j+1|k, (5a)

ẑk+j+1|k + sk+j+1|k ≥ r̂min,k+j+1|k, (5b)

ẑk+j+1|k − sk+j+1|k ≤ r̂max,k+j+1|k, (5c)

sk+j+1|k ≥ 0. (5d)

Constraints (5b)-(5d) are equivalent to the constraints (3)
but referring to the total power produced by the power
system.

The Economic MPC is formulated as a linear program
because of the linear dynamics of the power units (1),
linear cost functions (4), and linear constraints (2)-(3)
and (5). In addition, a Kalman filter predicts x̂k+1+j|k.
Accordingly, the Linear Economic MPC to operate a power
system of P power units, is formulated as

min φk =

P∑
i=1

φi,k +

N−1∑
j=0

ρ̂′k+j+1|ksk+j+1|k (6)

subject to the local constraints ∀i ∈ P and ∀j ∈ N
x̂i,k+j+1|k = Aix̂i,k+j|k +Biui,k+j|k (7a)

ẑi,k+j+1|k = Cz,ix̂i,k+j+1|k (7b)

umin,i ≤ ui,k+j|k ≤ umax,i (7c)

∆umin,i ≤ ∆ui,k+j|k ≤ ∆umax,i (7d)

ẑi,k+j+1|k + si,k+j+1|k ≥ r̂min,i,k+j+1|k (7e)

ẑi,k+j+1|k − si,k+j+1|k ≤ r̂max,i,k+j+1|k (7f)

si,k+j+1|k ≥ 0 (7g)

and subject to the connecting constraints ∀j ∈ N in (5).

The optimization control problem (5)-(7) has a block-
angular structure that is suitable for the implementation
of Dantzig-Wolfe decomposition to solve efficiently the
control linear program.
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Fig. 2. Dantzig-Wolfe structure. Each subproblem comuni-
cates exclusively with the master problem that must
coordinate such units.

4. DANTZIG-WOLFE DECOMPOSITION
TECHNIQUE

The Dantzig-Wolfe decomposition algorithm is a decompo-
sition technique to solve efficiently linear programs having
a block-angular structure, as (5)-(7), (Dantzig and Wolfe,
1960, 1961). The Economic MPC expressed as a linear
program in (5)-(7), can be formulated as

min
qi,kM

i=1

ϕ =

M∑
i=1

e′iqi,k (8a)

s.t.


F1 F2 . . . FM
G1

G2

. . .
GM



q1
q2
...
qM

 ≥

g
h1
h2
...
hM

 (8b)

where i ∈ M = {1, ..., P, P + 1} as the slack variables
sk+j+1|k in (5) and (6) are considered as an extra unit.
Therefore,

e′j =
[
p′j,0 . . . p

′
j,N ρ̂′N

]
, q′j =

[
ū′j,0 . . . ū

′
j,N s′N

]
where the variables p′k and ū′k are from the objective
function (4)

φk =

N−1∑
j=0

c′kuk +

N−1∑
j=0

ρ′ksk =

N−1∑
j=0

p′kūk

The M diagonal blocks in the linear program (8) denotes
M subproblems having their own set of constraints. More-
over, a master problem coordinates such subproblems as
Figure 2 shows. From here on we assume that the feasible
region of each subproblems is closed and bounded.

In a view of describing the Dantzig-Wolfe decomposition
technique, it is necessary to introduce the convex combi-
nation theorem (Dantzig and Thapa, 2003).

Theorem 1. (Convex Combination). Consider Q =
{q | Gq ≥ h} be nonempty, bounded and closed set, i.e.
a polytope. vj denotes the extreme point of Q with j ∈
{1, 2, ..., V }.
Then any point q in the polytope Q can be written as a
convex combination of its extreme points

q =

V∑
j=1

λjv
j (9a)

s.t λj ≥ 0, j = 1, 2, ..., V (9b)
V∑
j=1

λj = 1 (9c)

Proof. See (Dantzig and Thapa, 2003).

Substituting (9) into (8) yields to the following linear
program

min
λ

ϕ =

M∑
i=1

Vi∑
j=1

fijλij (10a)

s.t

M∑
i=1

Vi∑
j=1

pijλij ≥ g (10b)

Vi∑
j=1

λij = 1, i = 1, 2, ...,M (10c)

λij ≥ 0, i = 1, 2, ...,M ; j = 1, 2, ..., Vi
(10d)

where the coefficients are

fij = e′iv
j
i , pij = Fiv

j
i (11)

The linear program (10), known as Master Problem (MP),
is equivalent to the block-angular linear problem (8).
It is worth noting that (10) has fewer constraints than
the original problem (8). However the MP considers the
extreme points of each subproblem, thus the number of
variables is larger than in the original problem (8). The
Dantzig-Wolfe decomposition algorithm overcomes this
problem by including a reduced number of extreme points,
and adding new vertices when needed. As a result, the
Reduced Master Problem (RMP) is defined as

min
λ

ϕ =

M∑
i=1

l∑
j=1

fijλij (12a)

s.t

M∑
i=1

l∑
j=1

pijλij ≥ g (12b)

l∑
j=1

λij = 1, i = 1, 2, ...,M (12c)

λij ≥ 0, i = 1, 2, ...,M ; j = 1, 2, ..., l
(12d)

where l ≤ Vi for all i ∈ {1, 2, ...,M}. Solving the RMP
provides the Lagrangian multipliers π associated with the
inequality constraint (12b), the Lagrangian multipliers
ρ, associated with equalities (12c), and the Lagrange
multipliers κ for the positivity constraints (12d). These are
playing a key role in the Dantzig-Wolfe algorithm as they
represent the information sent from the Master Problem
to each subproblem. The Lagrangian associated to the
Master Problem (10) yields to the following necessary and
sufficient optimality conditions, for i = 1, 2, . . . ,M and
j = 1, 2, . . . , Vi

∇λij
L = fij − p′ijπ − ρi − κij = 0 (13a)

M∑
i=1

Vi∑
j=1

pijλij − g ≥ 0 ⊥ π ≥ 0 (13b)

Vi∑
j=1

λij − 1 = 0 (13c)

λij ≥ 0 ⊥ κij ≥ 0 (13d)

We notice that the conditions (13a) and (13d) imply

κij = fij − p′ijπ − ρi = [ei − F ′iπ]
′
vji − ρi ≥ 0 (14)

such that the KKT-conditions for (10) may be stated as
for i = 1, 2, . . . ,M and j = 1, 2, . . . , Vi



M∑
i=1

Vi∑
j=1

pijλij − g ≥ 0 ⊥ π ≥ 0 (15a)

Vi∑
j=1

λij − 1 = 0 (15b)

λij ≥ 0 ⊥ κij = [ei − F ′iπ]
′
vji − ρi ≥ 0 (15c)

An optimal solution must satisfy the KKT conditions (15).
We denote λRMP

ij a solution of RMP, such that a feasible
solution to Master Problem (10) is

λij = λRMP
ij i = 1, 2, . . . ,M ; j = 1, 2, . . . , l (16a)

λij = 0 i = 1, 2, . . . ,M ; j = l + 1, l + 2, . . . , Vi
(16b)

This solution satisfies (15a) and (15b). To be optimal it
also needs to satisfy (15c). These conditions are already
satisfied for i = 1, 2, . . . ,M and j = 1, 2, . . . , l. We need to
verify whether they are satisfied for all i = 1, 2, . . . ,M and
j = l+1, l+2, . . . , Vi. This is complicated by the fact that
we only know the extreme points, vji for i = 1, 2, . . . ,M
and j = 1, 2, . . . , l. An efficient initialization technique is
introduced in (Standardi et al., 2012). Condition (15c)
is satisfied for all i = 1, 2, . . . ,M and j = 1, 2, . . . , Vi if
mini ψi − ρi ≥ 0 where

ψi = min
vj
i

[ei − F ′iπ]′vji (17)

vji is an extreme point of the polytope Qi = {qi | Giqi ≥
hi}. Therefore, using the Simplex Algorithm we compute
the solution of (17) as a solution of the following linear
program

ψi = min
qi

ϕ = [ei − F ′iπ]′qi (18a)

s.t Giqi ≥ hi (18b)

These linear programs are called subproblems and can
be solved via either parallel or sequential computation;
this possible parallel computation of the subproblems
represents one of the advantages of the Dantzig-Wolfe
decomposition algorithm. Let (ψi, qi) be the optimal value-
minimizer pair for the linear problem (18); then if

ψi − ρi ≥ 0 ∀i ∈ {1, 2, ...,M} (19)

is satisfied, then the solution computed from the RMP
is optimal. Therefore the solution of the original control
problem (8) is given by

q∗i =

l∑
j=1

vjiλij i ∈ {1, 2, ...,M} (20)

Otherwise, if (19) is not satisfied, then the number of
extreme points considered, l , is not enough and a new
vertex vl+1

i needs to be included.

The Dantzig-Wolfe algorithm needs an initial feasible solu-
tion. As this decomposition agorithm solves an Economic
MPC, the previous solution is available and utilized as
initial value at the next sampling time. To initialize the
slack variables in the control problem (5)-(7) the output
constraints (3) are utilized.

5. EARLY TERMINATION

The Dantzig-Wolfe decomposition solves the control prob-
lem reducing computational times (Standardi et al., 2012).
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Fig. 3. Master Problem (10) objective function Vs. number
of extreme points of the polytope (9).

However, many real-time applications include limits on
the computational time that restrict the applicability of
the MPC; real-time constraints and high-speed applica-
tion may prevent the computation of the optimal con-
troller as well. Early termination strategy and suboptimal
MPC mantain feasibility and stability, as demonstrated in
(Zeilinger et al., 2008; Scokaert et al., 1999; Pannocchia
et al., 2010; Wang and Boyd, 2010). Section 4 illustrates
that l extreme points of the feasible polytope are necessary
to compute the optimal solution q∗i (20); the Dantzig-
Wolfe algorithm includes one vertex of the polytope at
each iteration until the stopping criteria (19) is not satis-
fied. However, a smaller number of vertices can compute
a solution that is not optimal but feasible though. The
computation of such suboptimal solution reduces the num-
ber of iterations in the Dantzig-Wolfe algorithm, hence,
reduces the computational time.

6. APPLICATION TO A POWER SYSTEM

In this section we apply the Economic MPC controller to a
power system consisting of power plants, and the Dantzig-
Wolfe decomposition computes the optimal control tra-
jectory. In addition, we implement the early termination
strategy in order to reduce computational times.

6.1 Boiler Load Generators

Section 2 introduces power units as independent and dy-
namically decoupled systems; these power units are cou-
pled only through the objective to follow the customers’
demand. This work includes boiler load units as power unit
and the models are (Edlund et al., 2009)

Zi(s) = Gi(s)Ui(s) Gi(s) =
1

(τis+ 1)
(21)

where zi(t) is the produced power at unit i, while ui(t) is
the corresponding reference signal.

6.2 Simulations Results

We apply the algorithm developed in this paper on a
power system consisting of five power plants as described
in Section 6.1. Open-loop simulation provides Figure 3
that illustrates the reason of early termination effective-
ness. Section 4 describes that the Dantzig-Wolfe algorithm
computes the optimal solution considering a certain num-
ber of extreme points of the feasible polytope (9). With
reference to the number of extreme points necessary to
compute the optimal solution, Section 5 introduces the
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Fig. 4. Closed-loop simulations results. The total power
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Fig. 5. CPU time vs. Extra Costs. The early termination
strategy decreases CPU time, blu bars. However, such
strategy leads to extra costs shown in the magenta
bars. Consequently, a smaller number of extreme
points of the feasible polytope yields to a decrease
of the CPU time and extra costs to pay. For instance,
if we set 16 as upper bound on the number of extreme
points, then there is a decrease of 50% on the CPU
time and 20% of extra costs to pay.

early termination strategy. Accordingly, Figure 3 shows
that the master problem objective function ϕ (10) reaches
its optimal value before the stopping criteria (19) of the
Dantzig-Wolfe algorithm is satisfied.

The Economic MPC strategy controls a power system,
and the Dantzig-Wolfe decomposition solves efficiently the
control linear problem. The controller performances are in
Figure 4, where the power system output is kept within
the interval demand for the entire closed-loop simulation.
Figure 5 reports the early termination effects. In closed-
loop simulation the Dantzig-Wolfe algorithm computes
the optimal control trajectory at each sampling time; in
average, the decomposition algorithm takes 25 extreme
points of the feasible polytope. The early termination
utilizes fewer extreme points by setting bounds on these
vertices. Such strategy reduces the computational time
appreaciably even higher that 50%. Whereas, the early
termiantion leads to extra costs upwards of 10%.

7. CONCLUSION

Future power systems need new control algorithms to
balance power supply and demand efficiently. The Eco-
nomic MPC can operate power systems efficiently. The
work of this paper differs from the recent applications of
Economic MPC to energy systems because we compute the
optimal control trajectory implementing a decomposition
technique, known as Dantzig-Wolfe. Moreover, the early
termination approach provides valuable results reducing
substantially computational times. The controller devel-
oped coordinates the power production of a power sys-

tem consisting of several power generators, i.e. boiler load
units. Future work should focus on the early termination
in order to minimize the associated extra costs.
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