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Abstract: Radial basis function neural networks are used to predict residual stress of case-hardened steel 

samples in this study. The predictions are carried out based on the non-destructive Barkhausen noise 

measurement which is a potential method applicable to quality control. Neural network models are 

identified with the algorithm proposed in the literature and thus another aim of the study is to evaluate the 

applicability of the algorithm. The developed models perform well in the predictions and thus the 

algorithm applied is applicable. When compared with linear models, neural networks produce better 

prediction results. 
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1. INTRODUCTION 

Quality control of manufactured components requires that 

their fitness for use can be measured. The fitness is typically 

evaluated through mechanical properties such as hardness, 

yield and tensile strength and residual lifetime (Dobmann et 

al. 2006). The mechanical properties can be measured 

directly but unfortunately the methods that can be used are 

destructive. Destructive methods only provide statistical 

information of the components but obviously leave the 

measured component useless and therefore they are not 

applicable to quality control purposes. Thus non-destructive 

methods must be used. The drawback of non-destructive 

methods is that usually they do not measure the property of 

interest directly. Instead, they measure some property that is 

related to the desired property. Models are then needed to 

evaluate the desired material property indirectly.  

Barkhausen noise (BN) measurement is a potential non-

destructive testing method suitable for ferromagnetic 

materials. It can be used, for example, to evaluate the case-

depth of a hardened component (Santa-aho et al. 2012a) or to 

detect grinding burns from a ground component (Santa-aho et 

al. 2012b). The measurement is based on the stochastic 

movements of magnetic domain walls within the material 

when it is placed in a varying external magnetic field (Jiles 

2000). The domain wall movements cause rapid changes to 

the magnetisation of the sample. These changes can be 

captured and they form the noise-like BN signal. A typical 

BN signal with the sinusoidal excitation magnetic field is 

presented in Fig. 1.   

For quality control purposes, prediction models are needed to 

evaluate the desired material properties quantitatively. The 

earlier studies of the present authors have used multivariable 

linear regression (MLR) models in predictions (Sorsa et al. 

2012a, Sorsa et al. 2012b). Linear models have been used to 

capture the major interactions between BN and the material 

properties. In this study, the aim is to test if it is beneficial to 

use nonlinear models in predictions. Radial basis function 

(RBF) neural network models are used for the task.  

The predicted material property is the residual stress state 

which is an essential property considering the lifetime of a 

component. Residual stresses are the stresses remaining in the 

material without external loads. They are caused, for 

example, by inhomogeneous plastic deformation or 

temperature gradients during processing (Withers and 

Badeshia 2001). Tensile residual stresses may be detrimental 

to material but deliberate compressive stresses may increase 

the lifetime of a component (Withers and Badeshia 2001). 

BN has been shown to be sensitive to changes in residual 

stresses (Lindgren and Lepistö 2002, Mierczak et al. 2011). It 

is generally shown that compressive stresses decrease 

Barkhausen activity while tensile stresses increase it. The 

relationship has been evaluated through certain features 

calculated from the BN signal. These features are, for 

example, the root-mean-square (RMS) value (Lindgren and 

Lepistö 2002) and the maximum amplitude (Mierczak et al. 

2011) of the signal. Among these many other BN properties 

has been shown to vary depending on the stress state.  

The relationship between BN and material properties is 

complex and case-dependent. Thus it is challenging to 

identify the most significant features to be used in 

predictions. Many methods can be used in selection such as 

simple deterministic forward-selection or backward-

elimination or more complex stochastic methods such as 

genetic algorithms (Guyon and Elisseeff 2003). The aim of 

this study is not to evaluate different selection methods and 



 

 

     

 

thus the selection is carried out through two simple steps. 

First, a set of eight potential features is selected based on the 

literature and the earlier results and then this set is 

exhaustively searched to find the most suitable subset.  

As mentioned above, the RBF neural network model is 

identified with the algorithm given in (Sarimveis et al. 2002). 

The second goal of this study is to evaluate the applicability 

of this algorithm. It is based on the fuzzy partitioning of the 

input variables. Even though the algorithm greatly simplifies 

the identification of the RBF network it still has a tuneable 

parameter. This parameter defines the number of cluster 

centres obtained from the fuzzy partitioning. In this study, 

this parameter is gradually increased and its influence to the 

obtained prediction model is evaluated. 

 

Fig. 1. A typical BN signal and the external magnetic field. 

2. MATERIALS AND METHODS 

2.1  Material Description 

Two sets of case-hardened steel samples are used. The first 

set is manufactured from 18CrNiMo7-6 (EN 10084) steel. 

The same sample set is used earlier in (Sorsa et al. 2012a) 

and (Sorsa et al. 2012b). The other sample set is 

manufactured from RAEX400 low alloyed hot-rolled steel. 

This sample set is used earlier in (Santa-aho et al. 2012c) and 

(Sorsa et al. 2013). Different tempering times and 

temperatures are used in order to vary the final hardness and 

residual stress of the samples. Furthermore, the samples in 

the second set are subjected to external loading. A more 

thorough description of the materials and sample preparation 

can be found in the publications mentioned above.  

2.2  Measurements 

The residual stress measurements are carried out with the 

XStress 3000 X-ray diffractometer using CrKα radiation and 

the chi method with the tube voltage of 30 kV, current of 6.7 

mA and the collimator diameter of 3 mm. Rollscan 300 

instrument is used to capture the BN signals with the 

magnetizing frequencies of 45 and 125 Hz for the 

18CrNiMo7-6 (EN 10084) and RAEX400 steel data sets, 

respectively. The measuring devices are manufactured by 

Stresstech Oy (Finland). 

 

2.3  Identification of the RBF Neural Network Models 

An artificial neural network is a set of parallel simple 

computational units, neurons. Radial basis function (RBF) 

neural networks used in this study utilise a radial basis 

function as an activation function in the hidden layer neurons. 

The radial basis function of the h:th neuron is given by 

(Ramuhalli et al. 2002) 
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where h and ch are the width and the centre of the basis 

function, respectively, and ||xi – ch|| is the Euclidean distance 

between the i:th input vector and the centre of the basis 

function. RBF networks include three layers. The input layer 

only distributes the input variables to all hidden layer 

neurons. The output of the hidden layer neurons is obtained 

by (1). These outputs are weighted and fed to the output layer 

neurons where the weighted values are summed to obtain the 

output of the network. The network output is thus given by 

(Ramuhalli et al. 2002)  
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Above, H is the number of neurons and wh are the weighting 

coefficients. 

The usage of the RBF network needs the identification of the 

appropriate number of neurons and the centres and widths of 

the radial basis functions. This may be a complex and 

computationally expensive task. Two popular approaches for 

identifying these parameters are clustering and dynamic 

stepwise selection (Wang and Xiang 2007). Trial-and-error is 

obviously inefficient in finding the appropriate values 

especially because the parameters hold cross-correlations and 

thus need to be defined simultaneously.  

The algorithm proposed in (Sarimveis et al. 2002) simplifies 

the identification of the RBF network significantly. The 

algorithm is based on the fuzzy partitioning of the input 

variables and only the number of partitions used needs to be 

set. Fig. 2 gives an illustration of the partitioning in a two 

variable case. Both variables are evenly partitioned into five 

triangular fuzzy sets leading to 25 overlapping subspaces. In 

the figure, the fuzzy sets of variable 1 are denoted by A1,1, 

A1,2 and so on. Similarly notation is used for variable 2. Fig. 2 

also shows a fuzzy subspace A that is determined by the 

fuzzy sets A1,3 and A2,3. When there are more than two input 

variables, the partitioning presented in Fig. 2 is generalised to 

the multidimensional case.  

The partitioning is the basis for determining the number of 

neurons and the centres of the radial basis functions 

(Sarimveis et al. 2012). For the partitioning, the number of 

partitions must be determined. This can be set to each 

variable individually but in this study the number of 

partitions is kept constant for all the variables. After 

partitioning, each data point is browsed and fuzzy subspace 

that is closest to each data point is determined. The centres of 

the subspaces obtained are then used as the centres of the 



 

 

     

 

radial basis functions (Sarimveis et al. 2002). Thus both the 

centres and the number of neurons are obtained through the 

steps described above. 

The final parameter that needs to be set is the width of the 

radial basis functions. The width is obtained by (Leonard and 

Kramer 1991)  
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where cj are the p closest neighbours of ch. 

The procedure given above gives the parameters needed to 

train the RBF neural network. The training basically includes 

two steps where the neuron outputs are first calculated and 

the weighting coefficients are identified. The weighting 

coefficients are obtained as the least-squares solution of (2).  
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Fig. 2. Fuzzy partitioning of the input variables.  

3. RESULTS AND DISCUSSION 

3.1  Features Selected and Data Sets Used 

As mentioned in the introduction, a pre-selected set of 

features calculated from the BN signal is used in this study. 

These features are selected based on the earlier results by the 

present authors and the literature. The RMS value is the most 

often used feature. It has been used, for example, in (Santa-

aho et al. 2012b) and (Lindgren and Lepistö 2002). Peak 

position and width are obtained from the so called 

Barkhausen profile and are used in (Stewart et al. 2004) and 

(Sorsa et al. 2012b). Coercivity has also been shown to be 

significant in (Davut and Gür 2007) and (Sorsa et al. 2012b). 

Entropy is found significant in (Sorsa et al. 2010) and peak 

amplitude in (Mierczak et al 2011) and (Sorsa et al. 2013). 

The power spectral density (PSD) is used, for example, in 

(Piotrowski et al. 2010). The features used are given in Table 

1.  

Data set 1 is obtained from the set of case-hardened samples 

manufactured from 18CrNiMo7-6 (EN 10084) steel. Data set 

2 is obtained from the case-hardened samples that are bent to 

vary the stress states. The data sets include 60 and 98 data 

points, respectively. They are divided into training and 

testing data sets so that the testing set includes 10% of the 

data points and the extreme data points are included in the 

training set.  

Table 1.  The pre-selected set of features calculated from 

the BN signals 

Feature Abbreviation 

the RMS value x1 

peak position x2 

the FWHM value x3 

coercivity x4 

entropy x5 

peak amplitude x6 

crest factor x7 

power spectral density x8 

3.2  Procedure Applied 

The procedure used includes basically two steps. They are 

feature selection and model identification. The feature set 

given in Table 1 is exhaustively searched to find the 

appropriate subset. For each candidate subset the models are 

identified. The MLR models are identified with the least-

squares method and the RBF neural network models with the 

algorithm described in Section 2.3. The number of 

neighbours in (3) is set to 2. The number of partitions used is 

gradually increased. The feature selections and model 

performance are evaluated through the root-mean-squared 

error (RMSE) of prediction which is obtained from  
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where N is the number of data points, ŷ  and y are the 

predicted and measured residual stresses, respectively. It 

should be noticed that when the performance of feature 

selection is evaluated the predicted residual stress values are 

obtained through the leave-one-out (LOO) cross-validation 

procedure. Cross-validation is applied to avoid overfitting. 

After finding the most suitable feature subsets, the actual 

models are identified with the whole training data set. The 

testing data set is then used to evaluate the goodness of the 

models.  

Even though LOO cross-validation is used the algorithm used 

for identifying the neural network model may lead to 

overfitting. Overfitting may be a problem when the number 

of fitting parameters relative to the number of data points 

increases. In this case, the number of fitting parameters 

increases as the number of input features and partitions are 

increased. This is shown in Fig. 3. The figure shows that the 

number of fitting parameters saturates with the maximum 

value being equal to the number of data points in the training 

set. The training sets of data sets 1 and 2 hold 54 and 81 data 

points, respectively.  



 

 

     

 

 

 

Fig. 3. The average number of fitting parameters as a 

function of the number of features and partitions a) for data 

set 1 and b) for data set 2. 

3.3  Feature Selection Results 

As mentioned above, the suitable feature subset is 

exhaustively searched from the set of candidate features 

given in Table 1. The search is carried out separately for 

different data sets with different number of partitions. Fig. 4 

shows the minimum RMSE values as a function of the 

number of partitions. The figure indicates that the best 

solutions are found generally when the number of partitions 

is between 3 and 6. When the number of partitions is lower 

the model structure is too simple for the case. On the other 

hand, the number of parameters increases with the higher 

number of partitions as shown in Fig. 3 and thus the 

deterioration of model performance is assumingly due to 

overfitting. The very best solution for data set 1 includes 

features x3 and x6 with 4 partitions. The best feature subset 

for data set 2 includes features x2, x5 and x8 with 5 partitions. 

When MLR models are used, the found subset for data set 1 

includes only features x2 and x3. For data set 2, features x1, x2, 

x3, x4 and x7 are to be used.  

The results obtained show that the prediction of material 

properties from BN signals is very case-dependent. All the 

selected features can be considered meaningful because they 

are used in the literature as mentioned in Section 3.1. 

However, the results clearly show that it is not desired to 

include all the features into the model but to select the most 

suitable ones for the case. Thus an automated solution for 

feature selection is essential when building prediction models 

between BN and material properties. 
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Fig. 4. The RMSE value as a function of the number of 

partitions. 

3.4  Prediction Results 

As mentioned in Section 3.1, the actual prediction models are 

identified with the selected feature subsets using the whole 

training data set. The performance indices of the identified 

models are given in Table 2. The table shows the RMSE 

values and also the correlation coefficients (R) between the 

measured and predicted residual stresses. The table shows 

that with both data sets, the RBF model gives significantly 

better results. The RMSE value of the testing set decreases 

over 10 MPa with both data sets when neural networks are 

applied. Also the correlations increase.  

Fig. 5 shows the measured and predicted residual stresses for 

data set 1. The earlier experiences indicate that the prediction 

of residual stress is challenging especially with data set 1. 

That is also seen in Fig. 5. However, a careful examination of 

the figure shows that the RBF neural network model behaves 

better as already indicated by Table 2. Fig. 6 shows the 

measured and predicted residual stresses for data set 2.The 

figure clearly shows that the performance of the RBF neural 

network model is better than the performance of the MLR 

model. Comparison of Fig. 5 and Fig. 6 further shows that the 

prediction of residual stress is an easier task with data set 2. 

That is due to the fact that the major variation in the samples 

of data set 2 is due to the applied load and thus due to the 

stress changes. With data set 1, other sources of variation, 

such as hardness and microstructure changes, are also 

important which makes the prediction of residual stress a 

more difficult task.  

3.5  Applicability of the Procedure  

The results given above give two conclusions. Firstly, it is 

shown that it is beneficial to use nonlinear model structures 



 

 

     

 

when material properties are predicted based on the BN 

measurement. Secondly, the procedure applied for identifying 

the RBF neural network model performs well and can be 

used. The main benefit of the algorithm proposed in 

(Sarimveis et al. 2002) is that the identification of the neural 

network structure simplifies greatly. With this simplification, 

the RBF neural network model can be better used in the 

computationally expensive feature selection step. 

Considering feature selection algorithms, the number of 

partitions must still be defined. In this study, different values 

were used which may be impractical in some cases. It is 

however possible to include the number of partitions in the 

optimisation algorithm that tries to find the most suitable 

feature subset (Alexandridis et al. 2005). 

 

Table 2.  The performance indices of the obtained MLR 

and RBF neural network models 

  Data set 1 Data set 2 

  Training Testing Training Testing 

MLR 
RMSE 66.9 57.6 77.4 59.3 

R 0.78 0.88 0.93 0.96 

RBF 
RMSE 51.1 45.8 53.1 46.9 

R 0.88 0.93 0.97 0.98 

 

-1000

-800

-600

-400

-200

0

-1000 -800 -600 -400 -200 0P
re

d
ic

te
d

 r
es

id
u

al
 s

tr
es

s 
(M

P
a)

Measured residual stress (MPa)

training testinga) MLR

 

-1000

-800

-600

-400

-200

0

-1000 -800 -600 -400 -200 0P
re

d
ic

te
d

 r
es

id
u

al
 s

tr
es

s 
(M

P
a)

Measured residual stress (MPa)

training testingb) RBF

 

Fig. 5. The predicted residual stress as a function of the 

measured residual stress for data set 1. a) prediction with the 

MLR model and b) prediction with the RBF neural network 

model.  

4. CONCLUSIONS 

Barkhausen noise (BN) measurement is a potential non-

destructive testing method that can be used in quality control. 

The method can be used to indirectly measure material 

properties such as residual stress and hardness. The indirect 

measurement needs models that predict the material 

properties based on the measured BN signal. The 

development of the prediction models is a complex task 

including feature selection and model identification steps. 

The task is even more complex if nonlinear model structures 

such as neural networks are used. 

In this paper, the applicability of radial basis function (RBF) 

neural network models for predicting residual stress is 

studied. The RBF neural network model is identified with an 

algorithm proposed in (Sarimveis et al. 2002). The results 

show that the prediction accuracy of identified neural 

network models is significantly better than the prediction 

accuracy of multivariable linear regression (MLR) models. 

The results also show that the tested algorithm performs well 

in identification of the neural network model. This algorithm 

greatly simplifies the structure identification which is 

beneficial if RBF neural network models are used in 

prediction of material properties based on the BN 

measurement. 
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Fig. 6. The predicted residual stress as a function of the 

measured residual stress for data set 2. a) prediction with the 

MLR model and b) prediction with the RBF neural network 

model. 
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