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Abstract: In economic model predictive control of distributed energy systems, the constrained
optimal control problem can be expressed as a linear program with a block-angular structure. In
this paper, we present an efficient Dantzig-Wolfe decomposition algorithm specifically tailored
to problems of this type. Simulations show that a MATLAB implementation of the algorithm
is significantly faster than several state-of-the-art linear programming solvers and that it scales
in a favorable way.
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1. INTRODUCTION

Due to global concerns related to environmental issues
and security of supply, an increasing amount of renew-
able energy sources is being integrated in the power grid.
Accordingly, methods for power production planning that
can handle the volatile and unpredictable power genera-
tion associated with technologies such as wind, solar and
hydropower are required. For this reason, energy systems
management has emerged as a promising application area
for economic model predictive control (MPC). In economic
MPC of energy systems, the power production planning is
handled in real-time by an optimization algorithm that
computes an optimal production plan based on the most
recent information available such as forecasts of energy
prices, wind power production, and district heating con-
sumption. Examples of economic MPC in energy systems
management include cost-efficient control of refrigeration
systems (Hovgaard et al., 2011), building climate control
(Ma et al., 2011; Halvgaard et al., 2012a), and optimal
charging strategies for batteries in electric vehicles (Halv-
gaard et al., 2012b).

Economic MPC is a receding horizon control strategy, and
requires the solution of a linear program in every sampling
instant. In energy systems management, the solution to
this linear problem, known as the optimal control prob-
lem, provides a sequence of control moves that yields the
most cost-efficient power generation respecting system dy-
namics, capacity constraints and electricity demand, with
respect to a process model of the power system. To com-
pensate for non-predictable disturbances and discrepancies
between the process model and the true system only the
first input in the sequence of control moves is applied to the
system, and the optimization procedure is repeated using
updated information at the following sampling instant.

As the control moves are computed in real-time, one
of the key challenges in economic MPC is to solve the
optimal control problem in an efficient and reliable way.
The main contribution of this paper is an algorithm
for control of distributed energy systems that satisfies
these criteria. Our algorithm exploits that the units in
a distributed energy system are dynamically decoupled.
This gives rise to a block-angular structure in the optimal
control problem that allows it to be decomposed, into
a master problem and a number of subproblems, using
Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960,
1961). To solve the decomposed problem efficiently, we use
a column generation procedure, which is warm-started by
a strategy that utilizes problem specific features.

Previously, Dantzig-Wolfe decomposition algorithms have
been applied to MPC applications in Edlund et al. (2011);
Cheng et al. (2008, 2007); Morosan et al. (2011). Cheng
et al. (2008) uses Dantzig-Wolfe decomposition to coordi-
nate the target calculation in set-point based MPC with
ℓ1-penalty, and similar work for ℓ2-penalty is conducted in
Cheng et al. (2007). Examples in energy systems manage-
ment are provided in e.g. Edlund et al. (2011) in which
a hierarchical control structure based on Dantzig-Wolfe
decomposition is proposed, and in Morosan et al. (2011)
that uses a Dantzig-Wolfe decomposition algorithm for
building climate control.

1.1 Paper Organization

This paper is organized as follows. In Section 2, we in-
troduce the optimal control problem solved in economic
MPC, and a compact problem formulation is derived. We
apply Dantzig-Wolfe decomposition to this problem in Sec-
tion 3. In Section 4, we present optimality conditions for
the decomposed problem, and we propose a warm-started
column generation procedure for solving the problem. Per-
formance benchmarks for the proposed algorithm based



on a conceptual energy systems management case study
are provided in Section 5. We give concluding remarks in
Section 6.

2. PROBLEM DEFINITION

We consider an electrical grid with M distributed power
generating units. The units are modelled as discrete state
space systems in the form

xj,k+1 = Ajxj,k +Bjuj,k, j ∈M, (1a)

yj,k = Cjxj,k, j ∈M, (1b)

where M = {1, 2, . . . ,M}. The state space matrices are
denoted as (Aj , Bj , Cj), the states as xj,k ∈ R

nx(j), the

inputs as uj,k ∈ R
nu(j), and the outputs as yj,k ∈ R

ny(j).

Assuming that the power production is available as a
linear combination of the outputs in (1), the total power
production can be written as

yT,k =
∑

j∈M

Υjyj,k =
∑

j∈M

ΥjCjxj,k, (2)

in which Υj ∈ R
1×ny(j) is a row vector such that ΥjCjxj,k

is the power production of unit j at time step k.

Economic MPC defines a control law for the generating
units (1), that optimizes the inputs (control moves) with
respect to an economic objective function, input limits,
input rate limits and soft output limits. Evaluating this
control law requires the solution to the minimization
problem

min
u,x,y,yT ,ρ,γ

∑

k∈N0

qTk+1ρk+1 +
∑

j∈M

pTj,kuj,k + rTj,k+1γj,k+1,

(3a)

subject to the constraints

xj,k+1 = Ajxj,k +Bjuj,k, k ∈ N0, j ∈ M, (3b)

yj,k = Cjxj,k, k ∈ N1, j ∈ M, (3c)

yT,k =
∑

j∈M

ΥjCjxj,k, k ∈ N1, (3d)

uj,k ≤ uj,k ≤ uj,k, k ∈ N0, j ∈ M, (3e)

∆uj,k ≤ uj,k − uj,k−1 ≤ ∆uj,k, k ∈ N0, j ∈ M, (3f)

y
j,k
− γj,k ≤ yj,k ≤ yj,k + γj,k, k ∈ N1, j ∈ M, (3g)

0 ≤ γj,k ≤ γj,k, k ∈ N1, j ∈ M, (3h)

y
T,k
− ρk ≤ yT,k ≤ yT,k + ρk, k ∈ N1, (3i)

0 ≤ ρk ≤ ρ, k ∈ N1, (3j)

where Ni = {0+ i, 1+ i, . . . , N − 1+ i}, with N being the
length of the prediction horizon. The input data are the in-
put limits, (uj,k, uj,k), the input rate limits, (∆uj,k,∆uj,k),
the output limits associated with the generating units,
(y

j,k
, yj,k), the output limits associated with the total

power production, (y
T,k

, yT,k), the input prices, pj,k, the

price for violating the output constraints associated with
the generating units, rj,k, and the price for violating the
output constraints associated with the total power produc-
tion qk. We also include upper limits on the variables γj,k
and ρk, as this simplifies later computations considerably.

Notice that if process noise or measurement noise is
present in the model (1), an optimization problem in the
form (3) can be derived using the Kalman filter under the
certainty equivalence assumption.

2.1 Compact Formulation

By eliminating the states using equation (1a), we can write
the output equation, (1b), as

yj,k = CjA
k
jxj,0 +

∑

i∈N0

Hj,k−iuj,i, j ∈ M,

where the impulse response coefficients are given by

Hj,k = CjA
k−1
j Bj , j ∈M.

Consequently

yT,k =
∑

j∈M

(

ΥjCjA
k
jxj,0 +

∑

i∈N0

ΥjHj,k−iuj,i

)

.

Define the vectors

yj =
[

yTj,1 yTj,2 · · · y
T
j,N

]T
, j ∈M, (4a)

uj =
[

uT
j,0 uT

j,1 · · · u
T
j,N−1

]T
, j ∈M, (4b)

and the matrices

Γj =









Hj,1 0 · · · 0
Hj,2 Hj,1

...
...

. . .
Hj,N Hj,N−1 · · · Hj,1









, Φj =











CjAj

CjA
2
j

...
CjA

N−1
j











,

for j ∈M.

We can then write the outputs, (4a), for each of the
generating units as

yj = Γjuj +Φjxj,0, j ∈M. (5)

Moreover, by introducing Γ̃j and Φ̃j accordingly, it follows
that

yT =
∑

j∈M

Γ̃juj + Φ̃jxj,0. (6)

We simplify the notation further by introducing

uj =











uj,0

uj,1
...

uj,N−1











, uj =









uj,0

uj,1

...
uj,N−1









, j ∈ M,

and similarly we define ∆uj , ∆uj , yj, yj , yT , yT , γ̄j , ρ̄, ρ,

q, pj , rj and γj . Using this notation, the optimal control
problem, (3), can be written as

min
u,ρ,γ

qTρ+
∑

j∈M

pTj uj + rTj γj , (7a)

subject to a set of decoupled constraints

uj ≤ uj ≤ uj , j ∈M, (7b)

∆uj ≤ ∆uj ≤ ∆uj , j ∈M, (7c)

y
j
− γj ≤ Γjuj +Φjxj,0 ≤ yj + γj , j ∈M, (7d)

0 ≤ γj ≤ γ, j ∈M, (7e)

0 ≤ ρ ≤ ρ, (7f)

and a set of linking constraints

y
T
− ρ ≤

∑

j∈M

Γ̃juj + Φ̃jxj,0 ≤ yT + ρ. (7g)

In a compact form, (7) can be stated by



min
z

∑

j∈M̄

cTj zj, (8a)

s.t. Gjzj ≥ gj, j ∈ M̄, (8b)
∑

j∈M̄

Hjzj ≥ h, (8c)

where M̄ = 1, 2, . . . ,M + 1 and

c =
[

cT1 · · · c
T
M cTM+1

]T
=
[

pT1 rT1 · · · p
T
M rTM qT

]T
,

z =
[

zT1 · · · z
T
M zTM+1

]T
=
[

uT
1 γT

1 · · · u
T
M γT

M ρT
]T

.

In (8), (8b) represents the decoupled constraints (7b)-(7f),
and (8c) represents the linking constraints (7g). The data
structures in (8) are defined as

Gj =

[

Ḡj

−Ḡj

]

, gj =

[

g
j

−gj

]

, Hj =

[

H̄j

−H̄j

]

, h =

[

h

−h

]

,

where

[

Ḡj g
j
gj

]

=













I 0 uj uj

Λ 0 ∆uj + I0uj,−1 ∆uj + I0uj,−1

Γj I y
j
− Φjxj,0 ∞

Γj −I −∞ yj − Φjxj,0

0 I 0 γj













,

[

H̄j h h
]

=









Γ̃j 0 y
T
−
∑

j∈M

Φ̃jxj,0 ∞

Γ̃j 0 −∞ yT −
∑

j∈M

Φ̃jxj,0









,

for j ∈ M, with Λ and I0 defined as

Λj =









I
−I I

. . .
. . .
−I I









, I0 =









I
0
...
0









.

In the special case j = M + 1
[

ḠM+1 g
M+1

gM+1

]

= [ I 0 ρ ] .

H̄M+1 = [I −I]
T
.

3. DANTZIG WOLFE DECOMPOSITION

Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960,
1961; Nemhauser and Wolsey, 1988; Martin, 1999) exploits
that a convex set can be characterized by its extreme
points and its extreme rays. In particular, for each j ∈ M̄,
the set of points satisfying the decoupled constraints (8b)
may be written as

Gj = {zj|Gjzj ≥ gj},

=

{

zj |zj =
∑

i∈P

λi
jz

i
j ,
∑

i∈P

λi
j = 1, λi

j ≥ 0 ∀i ∈ P

}

,

where zij are the extreme points of Gj , and λi
j are convex

combination multipliers. Notice that since each of the
sets, Gj , are bounded, extreme rays are not needed to
characterize these sets.

By replacing the decision variables in (8) by convex com-
bination multipliers, we obtain the master problem formu-
lation

Original Problem

#constraints 6N +N
∑

j∈M (4nu(j) + 6ny(j))

#variables N +N
∑

j∈M
(nu(j) + ny(j))

Master Problem

#constraints 4N +M + 1 +
∑

j∈M̄
|P|

#variables
∑

j∈M̄
|P|

Table 1. Dimensions of the original problem,
(8), and the master problem (9).

min
λ

φ =
∑

j∈M̄

∑

i∈P

cijλ
i
j , (9a)

s.t.
∑

j∈M̄

∑

i∈P

Hi
jλ

i
j ≥ h, (9b)

∑

i∈P

λi
j = 1, j ∈ M̄, (9c)

λi
j ≥ 0, j ∈ M̄, i ∈ P , (9d)

where we have defined

Hi
j = Hjz

i
j, j ∈ M̄, i ∈ P , (10a)

cij = cTj z
i
j, j ∈ M̄, i ∈ P . (10b)

Given a solution, λ∗, to the master problem (9), a solution
to the original problem, (8) can be obtained as

z∗j =
∑

i∈P

(λ∗)ijz
i
j , j ∈ M̄.

In Table 1, we have compared the dimensions of the orig-
inal problem, (8), and the master problem (9). Since the
number of extreme points, |P|, can increase exponentially
with the size of the original problem, solving the master
problem directly is inefficient. As demonstrated in the
following section, however, the problem can be solved in an
attractive way using a column generation procedure that
replaces P by a subset P̃ .

4. COLUMN GENERATION

The dual linear program of (9) can be stated as

max
α,β

αTh+
∑

j∈M̄

βj , (11a)

s.t. (Hi
j)

Tα+ βj ≤ cij , j ∈ M̄, i ∈ P , (11b)

α ≥ 0, (11c)

in which α ∈ R
4N and β ∈ R

M+1 are the Lagrange mul-
tipliers associated with the linking constraints, (9b), and
the convexity constraints, (9c), respectively. The necessary
and sufficient optimality conditions for (9) and (11) are

∑

j∈M̄

∑

i∈P

Hi
jλ

i
j ≥ h, (12a)

∑

i∈P

λi
j = 1, j ∈ M̄, (12b)

λi
j ≥ 0, j ∈ M̄, i ∈ P , (12c)

cij − (Hi
j)

Tα− βj ≥ 0, j ∈ M̄, i ∈ P , (12d)

α ≥ 0, (12e)

λi
j(c

i
j − (Hi

j)
Tα− βj) = 0, j ∈ M̄, i ∈ P , (12f)



In Proposition 1 we derive conditions for which a solution
satisfying this set of optimality conditions, can be obtained
by solving the master problem (9) over a subset of the
original variables.

Proposition 1. Let P̃ ⊆ P for all j ∈ M̄, and define
(λ̃, α̃, β̃) as a primal-dual solution to (9) and (11) restricted

to the subset P̃ . Then the solution

α∗ = α,

β∗
j = βj , j ∈ M̄,

(λ∗)ij =

{

λ̃i
j if i ∈ P̃

0 if i ∈ P \ P̃
, j ∈ M̄, i ∈ P ,

satisfies the conditions, (12), if the optimal objective value
of the subproblem

min
z̃j

ϕj = (cj −HT
j α

∗)T z̃j − β∗
j (13a)

s.t. Gj z̃j ≥ gj , (13b)

is non-negative for each j ∈ M̄.

Proof The solution (λ∗, α∗, β∗) satisfies (12a) since
∑

j∈M̄

∑

i∈P

Hi
j(λ

∗)ij =
∑

j∈M̄

∑

i∈P̃

Hi
j λ̃

i
j ≥ h,

which follows from the definition of (λ̃, α̃, β̃). Similarly, it
is easy to verify that the conditions (12c), (12b), (12e) and
(12f) are fulfilled.

Provided that (λ∗, α∗, β∗) is optimal, (12d) yields

cij − (Hi
j)

Tα∗ − β∗
j = (cj −HT

j α
∗)T zij − β∗

j ≥ 0, (14)

for all j ∈ M̄ and i ∈ P . By construction of the solution,
(14) is satisfied for all i ∈ P̃. To check that the condition

holds for all i ∈ P \ P̃ , we consider the optimization
problem (13). Since this linear program minimizes the left
hand side of (14) over all possible extreme points, z̃j , of
Gj , the solution (λ∗, α∗, β∗) also satisfies the remaining
optimality condition (14) if ϕj is non-negative for all
j ∈ M̄. �

In Algorithm 1, we have outlined a column generation pro-
cedure based on Proposition 1. The algorithm exploits that
if (14) is violated, then the solution to the subproblems,
(13), provides a set of extreme points that can be added
to the master problem. Table 1 shows that the master
problem is much smaller than the original problem when
P is restricted to the subset P̃ . Therefore, the column gen-
eration procedure requires less memory than conventional
linear programming methods. We also notice that solving
the subproblems is computationally inexpensive as they
do not grow with the number of units M . This step may
even be performed in parallel.

4.1 Warm-Starting

Algorithm 1 requires a set of initial points {z0j }
M̄
j=1 that

are feasible for both the subproblems (13) and the original
problem (8). As economic MPC requires running the
algorithm in a closed-loop fashion, we can generate such
a set of points by exploiting the solution from a previous
time step.

Given the solution to (13)

Algorithm 1 Column generation procedure for the solu-
tion of the master problem (9).

Require: {z0j }
M̄
j=1

i = 0, converged = 0
while not converged do

P̃ = {0, 1, . . . , i}
COMPUTE PROBLEM DATA

for j ∈ M̄ do

for i ∈ P̃ do
Hi

j = Hjz
i
j

cij = cTj z
i
j

end for
end for
SOLVE RESTRICTED MASTER PROBLEM

(φ∗, λ∗, α∗, β∗)← solve (9) with P = P̃
SOLVE SUBPROBLEMS

for j ∈ M̄ do
(ϕ∗

j , z̃
∗
j )← solve (13)

end for
CHECK IF CONVERGED

if ϕj ≥ 0 ∀j ∈ M̄ then
converged = 1

else
UPDATE EXTREME POINTS

for j ∈ M̄ do
zi+1
j = z̃∗j
i = i+ 1

end for
end if

end while

z∗j =
[

u∗T
j,0 · · · u

∗T
j,N−1 γ∗T

j,1 · · · γ
∗T
j,N

]T

, j ∈M,

z∗M+1 =
[

ρ∗T1 · · · ρ∗TN

]T

,

we build a set of initial points in the following sampling
instant as

z0j =
[

u∗T
j,1 · · · u

∗T
j,N−1 ǔT

j γ∗T
j,2 · · · γ

∗T
j,N γ̌T

j

]T

, j ∈ M

z0M+1 =
[

ρ∗T2 · · · ρ∗TN ρ̌T
]T

.

Hence, the original solution values are shifted forward in
time, and the variables ǔj, γ̌j and ρ̌ are appended to the
initial points. In our implementation, we let

ǔj = u∗
j,N−1, j ∈M. (15)

which leads to an initial input sequence with constant
input in the two final sampling intervals. Using the state
space equations (1)-(2), we compute the outputs y̌j,N and
y̌T,N associated with this input sequence. Based on these
values we let

γ̌j = max(y
j,N
− y̌j,N , 0) + max(y̌j,N − yj,N , 0),

ρ̌ = max(y
T,N
− y̌T,N , 0) + max(y̌T,N − yT,N , 0).

where the maximum function is evaluated element-wise.

Assuming that the inputs (15) satisfy the input constraints
for the updated problem data, and that the upper limits on
γj and ρ are sufficiently large, the strategy above yields a

set of feasible initial points for Algorithm 1, {z0j }
M̄
j=1, which

exploits the solution obtained in the previous time step.
As the solution in successive time steps are closely related
in MPC applications, this approach provides a warm-start
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Fig. 1. Closed-loop simulation study of economic MPC.
The marginal price of using the units is decreasing
with the unit number.

for Algorithm 1. In case no previous solution is available,
a similar strategy can be used to adjust the slack variables
for an arbitrary feasible input sequence.

5. RESULTS

In this section, we compare a MATLAB implementa-
tion of Algorithm 1, denoted DWempc, to linear program-
ming solvers from the following software packages: CPLEX,
Gurobi and MOSEK. For each solver, the computation time
of solving the optimal control problem (3) is measured.
The algorithms are run on an Intel(R) Core(TM) i5-
2520M CPU @ 2.50GHz with 4 GB RAM running a 64-bit
Windows 7 Enterprise operating system. In DWempc, the
restricted master problem and the subproblems are solved
using CPLEX.

As a conceptual case study, we consider a collection of
power generating units in the form

Yj(s) =
1

(τjs+ 1)3
Uj(s), j ∈ M, (16)

where Uj(s) is the fuel input and the Yj(s) is the power
production. The third order model, (16), has been vali-
dated against actual measurement data in Edlund et al.
(2010). In our study, we vary the time constant, τj , to
represent different types of power generating units. Time
constants in the range 80-120 are associated with slow
units such as centralized thermal power plants, while time
constants in the range 20-60 represent units with faster
dynamics such as diesel generators and gas turbines.

To control the units, (16), using economic MPC we realize
the system in the discrete state space form (1)-(2). In
the resulting model structure, uj,k ∈ R is fuel input,
yj,k ∈ R is the power production, and yT,k ∈ R is the
total power production. Thus, Υj = 1, for all j ∈ M.
Fig. 1 demonstrates the production plan obtained using
economic MPC in a case study with M = 3 power
generating units. The graphs show the individual outputs,
as well as the output limits for the total production.
The case study parameters are listed in Table 2. All
the parameters listed, are kept constant over the entire
horizon. The values, pj , are the prices pr. unit of fuel (e.g

Table 2. Case study parameters.

τj pj uj uj ∆uj ∆uj

Generating Unit 1 40 24 0 50 -30 30

Generating Unit 2 90 12 0 100 -20 20

Generating Unit 3 100 6 0 200 -5 5
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MOSEK [IPM]
Gurobi [AS]
Gurobi [IPM]
CPLEX  [AS]
CPLEX [IPM]
DWempc

Fig. 2. CPU-time for solving (3) as a function of the
number of power generating units, and fixed N = 50.
Active-set methods are denoted by (AS) and interior-
point methods are denoted by (IPM).

oil, natural gas or coal). We have defined these parameters
such that the fuel price for fast units is higher than the fuel
price for slow units. The price for imbalances is fixed to
qk = 10000. Fig. 1 shows that the cheapest generating unit
accounts for the main load whereas the more expensive
generating units are used only when faster dynamics
are required to satisfy the constraints. This represents
a common situation in the power industry, where large
thermal power plants typically produce a majority of the
electricity, while units with faster dynamics such as diesel
generators help balancing the system when needed.

Fig. 2 depicts the computation time of solving the con-
strained optimal control problem, (3), using DWempc,
CPLEX, Gurobi and DWempc for an increasing number of
generating units. The problem data was generated in a
similar way as in the case study above. Our results show
that DWempc outperforms conventional linear programming
solvers with a significant margin, and that the difference
grows with the number of units controlled. This demon-
strates that the column generation procedure outlined in
Algorithm 1 is a promising method for economic MPC of
distributed energy systems.

6. CONCLUSION

In this paper, we have presented a detailed description of a
warm-started Dantzig-Wolfe decomposition algorithm for
economic MPC of distributed energy system. Our results
show that a MATLAB implementation of the algorithm
is significantly faster than both active-set methods and
interior-point methods provided by MOSEK, CPLEX and
Gurobi. Moreover, DWempc has several desirable features



such as low memory costs and parallelization capabilities,
which makes it well suited for economic MPC applications
with a decentralized structure such distributed energy
systems.
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