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Abstract: This paper presents a general framework for the optimal control of nonlinear
hydrodynamic systems under uncertainties. In this paper the tag hydrodynamic refers to systems
with special decomposable state space structure, where the sub-spaces are constituted by the
following triple: (1) mass/energy conservation law, (2) disturbance model and (3) auxiliary
state components. For optimal control, permutational invariance is utilized executing stochastic
approximate dynamic programming on a rolling horizon. The primary targets for the application
are distribution systems e.g. water distribution networks (mass distribution) and district heating
systems (energy distribution). However, the mathematical abstraction is suitable for power
generation systems such as multi–reservoir and hydro–thermal grids.
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1. INTRODUCTION

Mass/energy distribution systems play a key role in ur-
banization. No emerging city–life can be imagined without
the transfer of clean water and heat to inhabitants. As
supply and demand are spatially distributed, this opera-
tion requires a distribution network to convey the required
resources from sources to consumers.

To satisfy consumer demand while minimizing operation
costs under various operational constraints is an essential
goal which has invoked a highly challenging research area.
The problem of designing optimal management policy for
such systems is governed by the combination of high di-
mensionality, nonlinearity (model, objectives) and strong
uncertainties in the inputs.

A comprehensive literature review on the developed meth-
ods in the outlined area is given in the authors’ former
paper Selek et al. (2013) in the context of water systems.
In Selek et al. (2013) a novel solution to the optimal control
of stochastic nonlinear systems was proposed and applied
to operational optimization of water distribution systems
utilizing permutational invariance. This concept was first
hinted in Bene and Selek (2012).
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The aim of the present paper is to give a brief overview
about the achievements and generalize the presented re-
sults towards broader class of distribution systems.

The paper is organized as follows: Section 2 defines the
systems of interest. The problem definition is given in
Section 3. In Section 4, a solution is proposed for the
outlined problems followed by an application to the opti-
mal control of Sopron water distribution system presented
under Section 5. Finally, Section 6 summarizes the results
and draws conclusions.

2. SYSTEMS OF INTEREST

This paper focuses towards the operational optimization
of mass/energy distribution networks which are defined
as follows: mass/energy distribution network is a hydro-
dynamic system, comprised by a grid of interconnected
pipes, where a work fluid is conveyed throughout the grid
by active hydraulic elements (pumps, valves) in order to
deliver mass (fluid) and/or energy from sources to con-
sumers. Besides hydrodynamic grid, the system comprises
three main building blocks: (1) source, (2) consumer and
(3) storage.

(1) Source provides sufficient mass/energy which is con-
veyed throughout the distribution network to satisfy
consumer demand

(2) Consumer is a sink, which utilizes the fluid and/or the
energy content of the fluid representing the demand

(3) The role of storage is to accumulate mass/energy.
Storage capacity is provided by the distribution net-
work and/or separate units (tanks) which are located
within the distribution network



A schematic representation of system of interest is depicted
in Figure 1.

mass/energy storage

mass/energy source valve

valvepump

pump

va
lv

e

va
lv

e

va
lv

e

pump

mass/energy source

mass/energy consumer

mass/energy storage

mass/energy consumer

mass/energy consumer

mass/energy consumer
mass/energy 

transport

mass/energy 
transport

mass/energy 
transport

mass/energy 
transport

m
as

s/
en

er
gy

 
tra

ns
po

rt

m
as

s/
en

er
gy

 
tra

ns
po

rt

m
as

s/
en

er
gy

 
tra

ns
po

rt

Fig. 1. Mass/energy distribution network

A broad range of systems can be treated under the um-
brella of the outlined category. District Heating Systems
and Water Distribution Networks are great examples.

3. PROBLEM STATEMENT

Let the evolution of the system of interest be described by
a nonlinear discrete time model of the form

x(k+1) = f(x(k), u(k), w(k), k), k = 0, . . . ,K−1 (1)

where x(k) = (x1(k), . . . , xn(k))T ∈ X is the state vector.
The control vector u(k) = (u1(k), . . . , um(k))T ∈ U de-
notes the manipulated inputs of the system and w(k) =
(w1(k), . . . , wz(k))T ∈ W (k) represents uncertainty (dis-
turbance or noise). The available information on random
variable w(k) is characterized by the uncertainty set W .

3.1 Model structure

The state vector x(k) represents all meaningful past and
present information available at time k which can be used
with advantage in selecting the appropriate control u(k).
For systems of interest, the sate vector of the underlying
model (1) can be decoupled as follows:

x̂(k + 1) = x̂(k) + ∆tBq(k) + D fd(x̆(k),w(k), k) (2a)

x̆(k + 1) = fd(x̆(k),w(k), k) (2b)

x̃(k + 1) = fa(x̃(k), x̂(k),u(k), fd(x̆(k),w(k), k)) (2c)

subject to

q(k) = fq( x̂(k),u(k), fd(x̆(k),w(k), k) ) (2d)

where q(k) denotes the vector of reservoir mass/energy
flow and ∆t is the sampling time. The controlled state
domain x̂(k) ∈ X̂ represents conservation law, quanti-
fying the amount of stored mass/energy in reservoirs.

The uncontrolled component x̆(k) ∈ X̆ includes a non-
linear disturbance model. The auxiliary state component
x̃(k) ∈ X̃ is required for the calculation of the step cost
c(x(k),u(k),w(k), k) and has no effect on the system dy-
namics. Finally, equation (2d) is the hydrodynamic model
of the distribution network, which describes the depen-
dence of reservoir mass/energy flow on controllable and
uncontrollable state components and control variable.

3.2 Control aim

The aim is to find an optimal control law (policy) π∗

providing the control decision(s) based on the system’s
state. This policy consists of a sequence of functions
π(., k) : X → U

π∗ = {π(x, 0), . . . ,π(x,K − 1)} (3)

which maps the states into feasible controls u(k) =
π(x(k), k) for all x(k) ∈ X, and minimizes the associated
cost

lim
K→∞

1

K

(
E

{
K−1∑
k=0

c(x(k), π(x(k), k), w(k), k)

})
. (4)

The expectation is computed with respect to the joint
distribution of the random variables w(k). The cost func-
tion is defined over an infinite horizon requiring the min-
imization of the average expected cost per stage, where
c(x(k), u(k), w(k), k) is the state transition cost which
accumulates over time. Equations (1)–(4) define an infinite
horizon non–stationary stochastic optimal control prob-
lem.

3.3 Periodicity

One of the main properties of the distribution systems is
that, the uncertainty is subject to periodic events such as
weather conditions and consumer behavior. Consequently,
the disturbance pattern can be modeled as periodic with
period one year. Likewise, the state transition function
f(., k) and step cost and the step cost c(., k) can be
considered as periodic with a period one year. Taking into
account the periodicity of the system, the optimal policy
is a periodic sequence of control laws

π(x, k) = π(x, k + lTp), l ∈ N. (5)

Assuming that the expected step cost is bounded

0 ≤ E
{
c(x(k), u(k), w(k), k)

}
≤ cmax, cmax <∞ (6)

for all (x(k),u(k),w(k)) ∈ (X,U,W ) and k = 0, . . . ,K−1,
the average cost becomes well defined over an infinite
number of stages, and it can be meaningfully minimized.

4. PROBLEM SOLUTION

This section gives a brief overview on the solution to the
stated problem which was proposed in Selek et al. (2013).



To keep the review of the results as transparent as possible,
it is assumed that the auxiliary sub–space X̃ is a null set.

The solution to the outlined problem was derived by ob-
serving permutational symmetries of the control sequences
with respect to system’s dynamics. Using this, the concept
called permutational invariance was introduced which was
first coined in Bene and Selek (2012) and later generalized
in Selek et al. (2013).

In a nutshell, permutational invariance refers to the in-
variance of the controllable state domain of a dynamic
system under the permutations of control sequences. To
understand the key idea of this concept, let us consider a
simple example where a single water tank is filled/drained.
The system evolves according to the discrete time equation

x(k + 1) = x(k) + u(k)− w(k) (7)

where x(k) denotes the stored water volume in the tank
at time k, u(k) and w(k) are the water inflow and demand
during the kth period. The water inflow is manipulated
by a controller while demand is a random variable with a
given (time variant) probability distribution. The system
dynamics can be written in integrator form, as follows:

x(k + t+ 1) = x(k) +

t∑
τ=0

u(k + τ)−
t∑

τ=0

w(k + τ). (8)

This representation highlights the fact that, the value
of the actual state depends on the total delivered water
(cumulative) rather than the schedule of individual water
deliveries. In other words, for any admissible disturbance
scenario {w(k), . . . , w(k + t)} the components of the inlet
water sequence {u(k), . . . , u(k+t)} can be freely permuted
without affecting the final state. This introduces permu-
tational invariance.

4.1 Utilizing permutational invariance

In systems of interest, the permutational invariance is as-
sured by the mass/energy conservation law (2a). However,
due to the nonlinear characteristics of the hydrodynamic
model (2d) , the system might not have the property
of permutational invariance under the ,,primary” control
variable which is usually composed by pump speeds, valve
openings etc. To ensure permutational invariance through
conservation law, a ,,dummy” control variable

uq(k) = ∆tq(k) (9)

is defined utilizing the output of the hydrodynamic model.
It was pointed out in Selek et al. (2013) a pseudo dynamics
can be created for the underlying system utilizing the
dummy control variable. In this particular case, the pseudo
dynamics is defined as follows,

ξ(t+ 1) = ξ(t) + uq(k + t), t = 0, 1, . . . (10)

subject to initial condition ξ(0) = (0, . . . , 0)T . Using this,
the reformulation of the conservation law (2a)

x̂(k + t+ 1) = x̂(k) + Bξ(t+ 1) + . . . (11)

highlights the fact that, the pseudo state ξ(k) carries nec-
essary (but not sufficient) information for state transition.

4.2 Optimization

Due to it’s weak coupling, the pseudo dynamics (10) pro-
vides an ideal medium for solving the underlying problem
by dynamic programming. To eliminate dimensionality
issues, the essential idea is to use an aggregation function
over the space of pseudo states and construct a simpler
more traceable problem. The resulted problem has a re-
duced dimension which gives the possibility to solve it
by dynamic programming. A one dimensional aggregated
variable is constructed by summing the components of the
pseudo state vector, that is

y(t) =

Nq∑
i=1

ξi(t). (12)

The use of pseudo states and aggregation eases the op-
timization, but causes information loss since the optimal
policy is calculated over the space of aggregated variable.
To compensate this effect, this policy must be updated
at every time instant k in order to be able to take into
account all meaningful (past and present) information
available which can be used with advantage in selecting
the appropriate control.

To achieve this, the receding horizon principle is applied,
that is, an optimal policy

π∗Y = {πY (y, 0), . . . ,πY (y,Nt − 1)} (13)

is calculated over the space of aggregated variables y(t) ∈
Y (πY (., t) : Y → U) on a finite time horizon [k, k+Nt−1]
by solving the Bellman equation

V (y(t), t) = min
u(k+t)

E
w(k+t)

{
c(x(k), y(t),u(k + t),w(k + t), k + t) + V (y(t+ 1), t+ 1)

}
subject to

y(t+ 1) = y(t)+ (14)
Nq∑
i=1

fq,i(x̂(k + t),u(k + t), fd(x̆(k + t),w(k + t), k + t))

g(x̂(k + t),u(k + t)) ≤ 0. (15)

Equation (15) represents the constraint system (reservoir
bounds, control constraints, etc.) and y(0) = 0. Once the
policy is obtained, only the first decision is implemented
for the system as a sub–optimal control law at time k,

π(x(k), k) := πY (y(0), 0). (16)

The decision making then repeatedly continues by shifting
the optimization horizon [k + 1, k +Nt].



5. APPLICATION

The outlined approach was implemented at the regional
water distribution network of Sopron, Hungary. The net-
works serves the city of Sopron and its surroundings, with
a total population of about 120,000. The topology of the
water distribution system is shown in Figure 2. The net-
work includes 11 pumping stations, 8 reservoirs and 5 main
consumer demands allocated to the corresponding service
reservoirs. Each pumping station in the model represents
a group of individual pumps running in parallel indicated
as ”Pump” units in Figure 2.
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Fig. 2. The topology of the regional water distribution
network of Sopron, Hungary (Schematic).

5.1 Optimization model

The hydraulic characteristic of the presented network al-
lows the use of mass–balance modeling. For this particular
case, a mass–balance description provides a computation-
ally traceable model for real time control with sufficient
accuracy. Mass balance models rely on the following as-
sumptions Jowitt and Germanopoulos (1992); Goryashko
and Nemirovski (2011):

• The water distribution network is a well designed net-
work, where internal network pressure remains within
acceptable bounds for allowable service reservoir stor-
age fluctuations;
• The head lift for each pumping station is large com-

pared to the network nodal head changes induced by
pump/valve switchings elsewhere in the system;
• The flows a given pumping station will deliver de-

pend on zonal consumer demands, and not on the
changes in the network head/flow pattern caused by
pump/valve switchings elsewhere in the system.

The outlined assumptions were well confirmed by a full–
hydraulic simulator of the network. This allows the pump-

ing stations to be represented by a set of flow rates and cor-
responding energy consumptions. Hence, there is a unique
control action for each discharge of the pumping station,
including operation rules (pump speeds, pump switchings)
for the individual pumps within the group.

Using the vector of reservoir inflows qr(k) = (qr,1(k),
. . . , qr,18(k))T (indicated in Figure 2) the mass conserva-
tion law can be written as follows:

x̂(k + 1) = x̂(k) + ∆tBqr(k) + Dw(k) (17)

where x̂(k) = (x̂1(k), . . . , x̂8(k))T and w(k) = (w1(k),
. . . , w6(k))T . The hydraulic model of the network becomes

qr(k) = Fqp(k) (18)

where qp(k) = (qp,1(k), . . . , qp,11(k))T denotes the pump
discharges. The water demand w(k) was implemented as
a random truncated Gaussian noise,

wi(k) ∼ N(µi(k), σi(k)) and wmin
i (k) ≤ wi(k) ≤ wmax

i (k)

where i = 1, . . . , 6. The parameters of the distributions
µi(k), σi(k), wmin

i (k) and wmax
i (k) were obtained using

empirical values (mean, standard deviation, min and max
demand) computed from historical records of the water
demand. The parameters were considered as periodic with
a period of one year.

Finally, the model of the system is formulated as follows

x(k + 1) = x(k) + ∆t

B̃︷︸︸︷
BF qp(k) + Dw(k). (19)

Since demand is represented as state noise the state space
X is totally controllable (i.e. X ≡ X̂).The dummy control
variable is defined by pump discharges u(k) = ∆tqp(k).
The state of the system is observed on hourly basis ∆t =
1 h which is a good compromise between computational
complexity of the model and flexibility of the operation.

The goal is to find an optimal water pump operation policy
which minimizes the cost of the electric energy required
by pumping while satisfying the water demand subject to
reservoir constraints. The cost of energy has the following
form:

lim
K→∞

1

K

K−1∑
k=0

( 3∑
i=1

Qi(ui(k))) + aT1 u4:11(k) (20)

+aT2 u2
4:11(k) + aT3 u3

4:11(k)

)
ec(k),

which must be minimized, subject to reservoir constraints
xmin ≤ x(k) ≤ xmax and control constraints



u(k) = ∆t



qp,1(k) ∈ [0, 270]
qp,2(k) ∈ [0, 250]
qp,3(k) ∈ [0, 460]
qp,4(k) ∈ {0, 150, 360}
qp,5(k) ∈ {0, 110}
qp,6(k) ∈ {0, 270, 500}
qp,7(k) ∈ {0, 550}
qp,8(k) ∈ {0, 66, 116}
qp,9(k) ∈ {0, 66, 118, 148}
qp,10(k) ∈ {0, 90, 114}
qp,11(k) ∈ {0, 72, 130}


. (21)

where up4:11(k) = (up4(k), . . . , up11(k))T , (p = 2, 3) and Qi(.)
are non-polynomial nonlinear functions.

The energy tariff ec(k) varies during the day, involving
peak (price of electric energy is high) and off peak periods
(price of electric energy is low). The tariff has the following
pattern: 1 (Unit) {[0h− 7h), [13h− 17h), [20h− 24h)} and
1.25 (Unit) {[7h − 13h), [17h − 20h)}. Unit denotes the
price of the electric energy in terms of a given currency
(e.g. EUR/kWh, USD/kWh etc.).

The complete problem definition (including water demand
data, cost function coefficients etc.) can be downloaded
from Selek (2011).

5.2 Results

The presented method was implemented under MATLAB
R2011b and executed on a computer equipped with Intel
Core i7 CPU (2.93 GHz) using parallelization (the com-
putation tasks were distributed to 8 cores). In order to
ensure the reproducibility of the presented results, the
implemented algorithm is available to download from Selek
(2011).

Some experiments are presented to illustrate the perfor-
mance of the control system. The obtained results are
presented for 10 days of operation using a randomly
chosen feasible state as initial condition. Figure 3 shows
the control strategy and the evolution of reservoirs. The
water demand is satisfied without significant constraint
violations. As expected, reservoir filling is performed when
the electrical tariff is low (off peak period is uncolored in
figures). This confirms intuitively the cost efficiency of the
control. The corresponding average cost per stage is 319.19
units.

6. SUMMARY AND CONCLUSIONS

A general framework to the optimal control of nonlinear
hydrodynamic systems under uncertainties was presented.
It was pointed out that, if the state space of the sys-
tem model is decomposable to the following triple: (1)
conservation law, (2) disturbance model and (3) auxiliary
state component, then permutational symmetries can be
utilized to construct a one dimensional equivalent problem
for the original (high dimensional) system in the subspace
of the 1st and 2nd state components.

Consequently, the optimal control solution of a high di-
mensional stochastic dynamic system is obtained by the
application of Stochastic Dynamic Programming (SDP)
on the associated one dimensional problem. The presented

method in this study resolves the curse of dimensionality
on the outlined sub–space of the state domain and it takes
nonlinearity, as well as uncertainty fully into account.

The presented approach has been applied to real time
management of the regional water distribution network
of the city of Sopron in Hungary. Although the presented
case study is preliminary, it clearly highlights the good
potential of the proposed approach and suggest further
studies.
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Fig. 3. 10 day sub–optimal pump control policy. Peak charging period is gray shaded while off–peak periods are
uncolored. Reservoir upper and lower bounds are indicated by solid gray lines.


