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1. INTRODUCTION

Control design requires a model of the process and its
environment, as well as a collection of requirements such
as robustness and performance. Robustness shows the sen-
sitivity of the closed loop to process changes. Performance
involves specifications with respect to load disturbance re-
sponse as well as limitation of the control actions generated
by measurement noise. Thus, the final design requires a
compromise between the different requirements.

Most design methods focus on the attenuation of load
disturbances and do not considere measurement noise. In
this extended abstract the dicussion will focus on trade-
offs between load disturbance attenuation, robustness and
reduction of control actions due to measurement noise.

2. MODELING AND FILTER DESIGN

The process P (s) is approximated with the standard
FOTD system

P (s) = Kp

1

1 + sT
e−sL, (1)

where Kp, L, and T are the static gain, the apparent time
delay, and the apparent time constant. The relative time
delay τ = L/(L + T ) is used to characterize process dy-
namics. The parameters Kp, L, and T can be determined
from a step response experiment.

The PI and PID controllers have the transfer functions

CPI(s) = kp +
ki
s
, CPID(s) = kp +

ki
s
+ kds, (2)

where kp, ki, and kd are the controller parameters.

Measurement noise is reduced by a second order filter with
the transfer function

Gf (s) =
1

1 + sTf + s2T 2

f /2
, (3)

where Tf is the filter time constant. A second order filter
is used to ensure roll-off in the PID controller.

The combinations of the controllers and the filter transfer
functions are

C(s) = CPI(s)Gf (s), C(s) = CPID(s)Gf (s), (4)

Using this representation ideal controllers can be designed
for the augmented plant P (s)Gf (s).

Control performance can be characterized by the inte-
grated absolute error

IAE =

∫

∞

0

|e(t)|dt, (5)

where e is the control error due to a unit step load
disturbance. Here, it is assumed that the disturbance
enters at the process input.

Robustness to process uncertainty can be captured by the
maximum sensitivities Ms and Mt.

It is important that the control actions generated by mea-
surement noise are not too large. This can be observed in
the transfer function from measurement noise to controller
output of the closed loop system

Gun(s) =
C(s)

1 +Gl(s)
= C(s)S(s), (6)

where Gl(s) = P (s)C(s) is the loop transfer function, and
S(s) is the sensitivity function. In order to characterize
the effects of measurement noise, the control bandwidth
ωcb is considered. This quantity represents the smallest
frequency where the gain of Gun is less than β, where β
is typically in the range 0.01–0.7. Considering that S(s)
in (6) approaches 1 for frequencies higher than the gain
crossover frequency ωgc, the control bandwidth for PI and
PID control can be approximated by

ωPI
cb ≈

1

Tf

√

2kp
β

ωPID
cb ≈

2kd
βT 2

f

(7)

The largest gain Mun of the transfer Gun is another way
to characterize the effect of measurement noise

Mun = max
ω

|Gun(iω)|, (8)

Adding a filter reduces the effects of measurement noise,
but it also reduces robustness and deteriorate load dis-
turbance responses. A compromise is to choose the filter
so that the impact on robustness and performance is not
too large. The design suggested here is formulated as
a trade-off between performance (IAE), robustness (Ms,
Mt) and filtering of measurement noise (ωcb, Mun), where
the controller parameters and the filter time constant are
calculated using an iterative procedure.

The filter time constant is chosen as

Tf =
α

ωgc

, (9)

where ωgc is the gain crossover frequency. Controllers with
this filter constant will be designed for different values of
α, which is chosen as a trade-off between performance and
robustness. For a given value of α the design procedure is
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Figure 1. Performance and robustness for the process
P (s) with PI control. Load disturbance responses are
shown on the top left and the Nyquist curve for Gl

on the top right. The bottom left plot shows the gain
curve of Gun and the bottom right the gain curve
of Gl. The filter time constants are Tf = α/ωgc with
α = 0 (red), 0.01, 0.02, 0.05, 0.1, 0.15 and 0.2 (green).

• Optimize performance (IAE) for the process P sub-
ject to robustness constraints (Ms,Mt).

• Choose the filter time constant Tf = α/ωgc.
• Repeat the procedure with P replaced by PGf until
convergence.

3. EXAMPLE

To illustrate the approach we consider the system

P (s) =
1

(s+ 1)(0.1s+ 1)(0.01s+ 1)(0.001s+ 1)
(10)

The FOTD approximation of P (s) givesKp = 1, T = 1.04,
L = 0.08, and τ = 0.07, which shows the dominant
lag dynamics of the process. Design of a PI controller
using AMIGO [Åström and Hägglund (2005)] gives kp =
4.13 and ki = 7.67. These values are given in Table 1,
which shows the influence of the filter time constant on
the process and controller parameters as well as in the
performance (IAE) and noise attenuation.

Figure 1 shows the effects on performance and robustness
of the filter time constant for different α values. The top
left plot shows the process output response to a unit step
load disturbance. The top right shows the Nyquist plot
of the loop transfer function and the region where the
sensitivity is in the range 1.2 ≤ Ms ≤ 1.6. The bottom

Table 1. Parameter dependence on the filter
time constant for P (s) using PI control

α τ L T kp ki Tf IAE ωcb

ωgc

0 0.07 0.08 1.04 4.13 7.67 0 0.13 ∞

0.01 0.07 0.08 1.04 3.95 7.21 0.003 0.14 888.7

0.02 0.07 0.08 1.04 3.79 6.81 0.005 0.15 435.7

0.05 0.08 0.09 1.04 3.33 5.65 0.015 0.18 163.2

0.1 0.10 0.11 1.04 2.53 3.87 0.038 0.26 71.2

0.15 0.15 0.18 1.03 1.45 1.89 0.095 0.53 35.9

0.2 0.26 0.37 1.05 0.60 0.66 0.312 1.53 17.4
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Figure 2. Performance and robustness for the process P (s)
with PID control. Load disturbance responses are
shown on the top left and the Nyquist curve of Gl

on the top right. The bottom left plot shows the gain
curve ofGun and on the bottom right the gain curve of
Gl. The filter time constants are calculated for α = 0
(red), 0.01, 0.02, 0.05, 0.1, 0.15 and 0.2 (green).

left figure shows the magnitude Gun, the circles indicate
the noise bandwidth ωcb for β = 0.1. The lower right figure
shows the gain curve of loop transfer function Gl.

The load disturbance response increases with increasing
filtering, see Table 1. The maximum sensitivity remains
essentially constant but the gain margin decreases with
increased filtering. The noise attenuation decreases signif-
icantly with filtering, this is reflected by the decrements of
Mun and the ratio ωcb/ωgc. The gain crossover frequency
decreases marginally with increased filtering. The process
parameter L and the controller parameters given by the
iterative approach change significantly with Tf .

Design of a PID controller with AMIGO gives kp = 6.44,
ki = 17.83, and kd = 0.24. Table 2 shows the dependence
on the filter time constant of different parameters. Figure 2
shows the response to load disturbance, the Nyquist plot
of the loop transfer function Gl, the gain curve of the noise
transfer function Gun, as well as the gain curve of Gl.

Table 2 and Figure 2 show that for PID control, filtering
has a significant effect on Mun, IAE and ωcb/ωgc. The
gain crossover frequency ωgc also decreases with increased
filtering. Notice that the proportional and integral gains
and Mun are significantly higher for PID control.

Table 2. Parameter dependence on the filter
time constant for P (s) using PID control

α τ L T kp ki kd Tf IAE ωcb

ωgc
103

0 0.07 0.08 1.04 6.4 17.8 0.24 0 0.059 ∞

0.01 0.07 0.08 1.04 6.3 17.1 0.24 0.002 0.062 262.6

0.02 0.07 0.08 1.04 6.1 16.5 0.24 0.004 0.064 64.3

0.05 0.08 0.09 1.04 5.7 14.7 0.24 0.010 0.072 9.7

0.1 0.08 0.10 1.04 5.0 11.9 0.24 0.022 0.089 2.2

0.15 0.10 0.11 1.04 4.4 9.6 0.24 0.037 0.111 0.9

0.2 0.12 0.14 1.03 3.7 7.3 0.24 0.057 0.146 0.4
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Figure 3. On the left performance IAE as a function
of ωcb/ωgc and on the right performance IAE as a
function of Mun for PI (x) and PID (◦) control of the
process P (s). The filter time constant is calculated for
α = 0, 0.01, 0.02, 0.05 (square), 0.1, 0.15 and 0.2.

Figure 3, together with Table 1 and Table 2, show the
trade-offs between load disturbance attenuation and mea-
surement noise injection for PI and PID control. The load
disturbance response deteriorates with filtering, the range
is larger for PI control than for PID control, hence it seems
advisable to use smaller values of α for PI control. The
figure also shows that filtering has a significant effect on
the magnitude of the unwanted control actions created
by measurement noise. Both Mun and ωcb/ωgc decrease
rapidly with filtering. According to these results, reason-
able values of α are in the range of 0.01 to 0.05.

4. DESIGN RULES

The iterative design is based on the FOTD model and the
dynamics of the filter is accounted for by changing the
apparent delay L and the apparent time constant T .

Figures 3 shows that filtering has a significant effect on
the trade-off between performance and noise attenuation.
The trade-off is governed by the design parameter α.
A small value of α emphasizes performance and larger
values emphasize noise rejection. The choice is problem
dependent, but a α = 0.05 is a reasonable nominal value.

For the example the filter time constant is related to the
gain crossover frequency, however for design rules it is
useful to relate the filter time constant to the controller
parameters. The example as well as others [Romero and
Hägglund and Åström (2013)] not included here for space
reasons, show that the filter time constant depends on
the process. Figure 4 which has been obtained using
FOTD models illustrates this dependency, it shows the
ratios Tf/T

0

i and Tf/T
0

d as a function of the relative time
delay τ for different values of the design parameter α.
The parameters T 0

i and T 0

d are the integral time and
the derivative time computed for the controller without
filtering.

Simple parameter fits in Figure 4 give the following ap-
proximate rules for PI and PID control

Tf = 6ατT 0

i (PI) Tf = 4.5αT 0

d (PID) (11)

The rules hold for α < 0.1. The rule for PI control is
valid for all τ but the rule for PID control only holds
for lag-dominated and balanced systems. Derivative action
is however of little value for delay-dominated systems. A
reasonable standard value is α = 0.05.
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Figure 4. Filter time constant as a function of τ for PI (left)
and PID (right) control. The filter time constant is
given by (9) with α = 0.01 (bottom blue), 0.02, 0.05,
0.1, 0.15 and 0.2 (green).

5. SUMMARY

A drawback of feedback is that measurement noise is
fed into the system, but the undesired control actions
generated by the noise can be reduced using filtering.
Filtering introduces additional dynamics which have to be
considered in the control design. Insight into the choice of
filtering has been obtained by investigating design of PI
and PID controllers as a trade-off between performance
and robustness.

The design problem has been solved iteratively. Process
dynamics has been approximated by FOTD models and
controller parameters have been determined using the
AMIGO rule which give sensitivities less than 1.4. The
filter has been chosen as a second order Butterworth filter
which is characterized by one parameter, the filter time
constant Tf . The iterative process starts with the nominal
process dynamics P . The crossover frequency ωgc has been
determined and the filter time constant has been chosen
as α/ωgc. A new process model has then been determined
by fitting an FOTD model to PGf and the process has
been repeated until convergence.

The results have shown that the control actions generated
by measurement noise can be reduced significantly by
filtering with only a moderate decrease of performance
while maintaining robustness.

Simple design rules for choosing the filter time constant
have also been developed (11).

The analysis has been made based on a particular design
method AMIGO and the matching method of fitting
FOTD models. It would be interesting to investigate if the
design rules are similar if other methods for PID design
are used.
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