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Abstract: Dual decomposition is applied to power balancing of flexible thermal storage units.
The centralized large-scale problem is decomposed into smaller subproblems and solved locally
by each unit in the Smart Grid. Convergence is achieved by coordinating the units consumption
through a negotiation procedure with the dual variables.

Keywords: Decomposition methods, Decentralized Control, Model Predictive Control, Smart
Grid, Smart power applications

1. INTRODUCTION

A large number of flexible thermal storage units, e.g.
electrical heating in buildings or cooling in refrigeration
systems, will soon part of the Danish power system.
These units could potentially provide a large flexible
consumption by aggregating or pooling them together.
This will enable them to be coordinated and help follow
the fluctuating energy production from renewables such
as wind power. We formulate an optimization problem
of tracking a power reference. To solve this large-scale
control problem in real-time, we decompose the original
problem into smaller subproblems to be solved locally by
each unit. Each unit has its own model and variables and
can make decisions based on its own local control strategy.
The need for system level flexibility is communicated
to the units from an aggregator that broadcasts dual
variables to the units and coordinates the negotiation until
global convergence is reached. This negotiation procedure
is required in every time step and requires fast evaluation
of the subproblems that can be cast as linear quadratic
optimal control problems. The subgradient method is used
to minimize the system level power imbalance. The cost
function of this imbalance can be non-differentiable, which
is the case in power balancing, due to the nonlinear
penalties on imbalances. A simple example with models of
thermal storage systems is used to show how an aggregator
can apply dual decomposition for power balancing in a
smart energy system. Power capacity constraints in the
distribution system can also be accounted for by the
aggregator.

2. PROBLEM FORMULATION

The centralized large-scale problem to be solved at every
time instant t is

minimize g(p(t), q(t))

subject to p(t) =

n∑
k=1

uk(t)

xk(t + 1) = Akxk(t) + Bkuk(t)

yk(t) = Ckxk(t)

ymin
k ≤ yk(t) ≤ ymax

k

umin
k ≤ uk(t) ≤ umax

k .

(1)

q(t), t = 1, ..., N represents a desired power consumption
profile over a period of length N .p(t) is the actual power
demand and is a sum of the power demands pk(t), k =
1, ..., n for each of the n units. A power capacity limitation
can also be included by adding the inequality constraint
p(t) ≤ pmax(t). yk(t) is the output of a linear system with
input uk(t). The variables are p(t), pk(t), xk(t), and uk(t).

We define the set Fk as a bounded polyhedron containing
the linear state space system and its constraints in (1). To
lighten notation further the time argument will be omitted
from here on. The unit constraints in Fk can be moved to
the objective by expressing them as an indicator function

fk(uk) =

{
0 if uk ∈ Fk

+∞ otherwise

Finally, the optimization problem to be solved by the
receding horizon controller at every time instant is

minimize g(p) +
∑
k

fk(uk)

subject to p =
∑
k

uk

(2)

3. DUAL DECOMPOSITION

We solve the problem (2) by solving its unconstrained dual
problem with the subgradient descent method Vanden-
berghe (2011); Bertsekas (1999). The dual is obtained via
the Lagrangian L



L =
1

2
||p− q||2 +

∑
fk(uk) + zT

(
p−

∑
k

uk

)
where z is the dual variable. The dual function is

inf
p
L =

1

2
||z||2 + qT z − ||z||2 +

∑
k

inf
uk

(
fk(uk)− zTuk

)
= −1

2
||z||2 + qT z −

∑
k

sup
uk

(
zTuk − fk(uk)

)
Finally, the dual problem is

maximize − 1

2
||z||2 + qT z −

∑
k

Sk(z) (3)

with

Sk(z) = sup
uk∈Fk

zTuk .

Sk(z) is the support function of Fk. If Fk is a bounded
polyhedron, we can evaluate Sk by solving an LP sub-
problem

u+
k = argmin

uk∈Fk

(
zTuk

)
(4)

and the optimal uk gives us a subgradient of Sk at z.
Solving (3) with the subgradient projection method gives
us the updates

z+ = z + t+

(∑
k

u+
k − (z + q)

)
. (5)

The step size t+ must be decreasing at each iteration j,
i.e. t+ = t

j → 0, for j → ∞. If t doesn’t decrease the

subgradient method will not converge to the minimum.

With the chosen LP subproblems the dual gradient
method converges but the primal solution is not easily
recoverable from the dual. An extra strictly convex term
can be added to the subproblems, e.g. a temperature
reference on the output

minimize
1

2
||
∑
k

uk − q||2 +
1

2

∑
k

||yk − rk||2

subject to uk ∈ Fk .

The LP subproblems from (4) are now QPs on the form

u+
k = argmin

uk∈Fk

(
1

2
||yk − rk||2 + zTuk

)
.

This problem formulation is equivalent to the ordinary
optimal control problem with an added linear term, that
can be solved efficiently by methods based on the Riccati
recursion Jørgensen et al. (2004, 2012).

If an upper bound on the power p is added, the dual
variable z can be clipped in (5) by keeping 0 ≤ p ≤ pmax.

4. NUMERICAL EXAMPLE

An example with two different first order thermal storage
systems is was simulated. The models have unity gain, time
constants 5 and 10, and both a temperature reference equal
to rk = ymin

k . The results for step size t = 0.3 after 100
iterations is shown in Fig. 1. The power tracking profile
is seen match most of the time, but it is not possible
to control the consumption amplitude of each unit very
accurate through the dual variables, since each unit has
its own objective leaving the tracking at some compromise.
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Fig. 1. Simulation of power balancing with two first or-
der systems. The two input/output pairs (blue/red)
with constraints (dotted) are shown above the result-
ing power tracking profile. The lower plot shows the
converged dual variable (black), its iterations (gray),
and the optimal dual variable of the original problem
(dotted blue). Also the optimal dual variable when
using (4) as the subproblem is shown (dotted green).

However, shifting the load in time is quite accurate, since
the sharp variations in the dual variables, that can be
interpreted as prices, causes the consumption to be placed
in this cheap period.

5. CONCLUSION

Controlling the consumption of a large number of flexible
thermal storage units in a Smart Grid was achieved
by distributing the optimization problem to be solved
and coordinating the total consumption through dual
variables. The resulting power balancing performance is
a compromise between system level balancing needs and
the state and objectives of each unit.
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