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Abstract: For several decades, PID (Proportional-Integral-Derivative) control has succesfully been
applied to numerous industrial processes for regulating them. The PID controller has indisputably
become a backbone of every automation system being available for controlling a large scale of industrial
processes. However, it has also other capabilities than just that for regulating processes by manipulating
actuators. A PI controller can be designed to identify continuous-time parameters for a given process
model using recorded real process data. This paper proposes a PI controller -based identification method
for identifying parameters of simple continuous-time linear and time-invariant single-input single-output
process models. The method is presented and simulation examples are shown to address its applicability

for identification problems.
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1. INTRODUCTION

For numerical applicability and simplicity, most of the
available system and parameter identification methods known
in literature are given in discrete-time domain. The discrete
parametric models can be characterised in different ways
depending on the model structures and chosen inputs and
outputs. There are several rather thorough references on
system identification such as the books by Séderstréom and
Stoica (1989) and Ljung (1999).

Later, there has been research on developing identification
methods for continuous-time systems e.g by Young (2002)
and a bit earlier by Garnier and Mensler (2000) which was
later updated by Garnier et. all (2006). A couple of years
later, the methods and numerical routines were collected in
the book by Garnier and Hugues (2008). However, several
other transient-based or numerically simple methods had
been developed and reported earlier e.g by Chen (1989) and
Astrém and Hagglund (1995).

A PID controller has a fundamental position in process
control. It has spread basically everywhere as a relatively
simple numerical routine to be implemented. Consequently, it
is available practically in every automation system and it is
applied and adopted to various and sometimes rather different
control problems. It is a bread-and-butter tool and a true
workhorse for every automation engineer.

Both Astrém (2000) and Visioli (2012) have published
articles where they have presented their views on the future
trends of PID control research. It is quite interesting to see
that in these publications, a PID controller is solely
considered as a processs controller without considering any
other functions that PID controllers might have. Vilanova and
Visioli (2012) has neither expanded this control-oriented
view in their latest, rather elaborate, book on PID control.

In addition to its control usage, a Pl controller can be used as
a workhorse for identifying continous-time system
parameters. The basic idea on how to use a PI controller for
model parameter estimation has been given in Friman and
Airikka (2012). In their publication, the Pl controller was
streched to work as a numerical routine for providing model
parameters for a dynamic simulator the models of which are
being updated by using PI controllers executed parallel to a
DCS system.

The PI controller has an interesting resemblance with a
common recursive parameter estimation formula where a
previous parameter estimate is updated using an estimation
error amplified by an estimator gain. This observation gives
rise to a belief that perhaps a PI controller can be used for
system identification. To accomplish that, the idea is simply
to feed the identification cost function subject to
minimisation to a Pl controller that provides a new parameter
estimate for the given model type at each execution cycle.
Then, the process model is updated by the parameter estimate
to generate a new process model output for the next
execution cycle. Finally, the parameter estimate converges if
certain assumptions hold.

Figure 1 illustrates the concept of using a Pl controller for
parameter identification. The process measurements (input u
and output y) are taken at each identification execution cycle
to a system model block. The continous-time system model
block generates an estimated process output y using the given
updated process data and the latest model parameter estimate

6. The modelling error (residual) e = y—y is then taken to a

cost function block that calculates the identification cost
function J based on the residual e. Given a zero setpoint r =0
and the cost function value J as a measurement yp, = J, the PI
controller yields an output which is the new model parameter
estimate. The updated estimate is taken to the system model
to produce a new model output for the next execution cycle.
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Figure 1. Principle of using a PI controller for SISO (Single-
Input-Single-Output) system model parameter identification.

In PID control design, one Pl controller can basically
manipulate only one variable at a time. The same applies to
identification as illustrated in figure 1. A single PI controller
allows to identify only one model parameter at a time.
However, there are a few ways to bypass this restriction for
allowing simultaneous identification of more than one
parameter. These methods are discussed in the next chapter 2.

There are many things to be considered when designing PI
controllers for system identification. Most of them are of
general nature and, therefore, apply to any system
identification method. For example, these common design
issues are selection of model type to be fitted into process
data, selection of model order, process data filtering and
process excitation to allow sufficiently rich process data for
identification.

This paper proposes some simple cost function types to be
used for system identification. At its simpliest, the cost
function block can be treated as a bypass gate with y,; = €. In
that case, the PI controller receives a model residual as a
measurement for producing the model parameter estimate of
6. Selection of appropriate parameter for identification is
discussed with limitations on model types. The PI controller
tuning is dealt with some general practicalities on e.g
controller saturation and control signal scaling.

The paper introduces the proposed method making
comparison to a common recursive parameter estimation
method. Limitations of the proposed method are addressed
and some design guidelines are given. The method is
enlightened through a few simulation examples.

2. PI CONTROLLER AND PARAMETER
ESTIMATION

A PI controller in parallel form can be expressed as
t
o(t) =k, e(t) +k, j e(r)dz (1)
0

where 6(t) is controller output, e(t) =r(t) - y(t) is control
error between setpoint r(t) and measured output y(t) and

proportional gain k, and integral gain k; are the PI
controller parameters.

After derivating both sides of the Pl controller (1) with
respect to time t, the following is obtained

do(t) de(t)
—==k,——= +ke(t 2
ot g e 2
Now, by approximating dé(t) ~ AO(t), de(t)~Ae(t) and

dt~ At >0, the Pl controller can be expressed in its
incremental form

A0 _y Ao |y ety
At At ®)
AO(t) =k, Ae(t) + k;Ate(t)

In (3), AO(t) represents the PI controller output change

between two consequtive execution periods
AO(t)=0(t,)-0(t,_,) for a constant control execution

period At=t, —t, . Now, if the incremental Pl controller (3)

is reduced to an integral controller by setting k, = O, the
following equation is obtained

AQ(t) = k,Ate(t)
o(t,) = 0(t,,) +ke(t,) = Ot ;) +k(r(t,) - y(t,))

with k =k,At .

(4)

The equation (4) is actually a common update equation used
in recursive parameter estimation. By applying (4), the
previous estimate O(t, ,) is updated based on an estimation

error e(t) between the targeted process output r(t) and its
estimated output y(t) . The update equation also has a gain k

which is a tuning parameter allowing a trade-off between
convergence speed and robustness to measurement noise.

In parameter estimation (fig. 1), the setpoint given to the PI
controller is set r=0. The feedback signal y, to the PI
controller is the cost function value J that is subject to
minimisation. Consequently, the Pl controller output for
parameter estimation can be given as

0(t,) = 0(t, 1) —ky(t,) = 0(t, 1) - kI () ()

It has been now shown that the I controller (or a PI controller
with k, = 0) has a dual representation in recursive parameter
estimation. This encourages to continue with the idea of
using a Pl controller for parameter estimation. However,
there are several questions that rise as a result.

2.1 Cost function

In (5), the cost function J taken to the controller could be the
model residual e = y— §. However, as illustrated in figure 1,
the cost function could be anything that describes the model

mismatch in that particular case. However, for avoiding
complexity, the cost function is suggested to be of form



y(t) = J(t) =sign{e(t)}-|e(t)|”, p=05,1,2 (6)

where e(t) = y(t) - y(t) is the residual between the process
output y(t) and the model output Y(t), sign(e) is the sign of
the residual e. Selection of p = 0.5 results in a square root of
the residual, p = 1 to the residual and p = 2 in a squared
residual. Other cost functions, such as MSE (Mean of
Squared Error) or standard deviation of the error can be

equally used but they require a buffer of recorded values for
calculating them.

2.2 Proportional control in parameter estimation

It was shown that an integral controller formula has a lot in
common with a recursive parameter estimation update
equation being actually its dual representation. However, the
duality proven in (4) does not include a proportional control.
Now, the question rises if the proportional control could be
used if it is even needed to be used at all for parameter
identification.

The idea of applying the proportional control for estimation is
exactly the same than that of process control. By introducing
the proportional control and by tuning it more aggressive, the
closed loop system can be speeded wup. Similarly,
identification and parameter convergence is expected to be
speeded up by introducing the proportional gain. However,
there is a clear drawback of doing that as it is shown in an
example given later in this paper.

2.3 Controller tuning for parameter estimation

The PI controlled process in parameter estimation is the
system model and its cost function calculation as illustrated
in figure 2. Having setpoint r = 0, the PI controller receives
the cost function J as a measurement for calculating the
parameter estimate @ for the system model. Then, having the
parameter value 6 as a generated control signal, the system
model provides a residual e and, eventually, a cost function
value J.
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Figure 2. Pl controller oriented approach to parameter
estimation.

The controllable process (system model + cost function) can
be linear or non-linear and from simple to complex. Luckily,
the controllable process does not include dead times as the
system output and the residual-based cost function J can be
calculated within the same execution period for the generated
PI controller output 8. Therefore, no compensation for dead
time is required. Yet, the PI controller is at its best for linear

processes which then encourages to use the PI controller for
estimating parameters only for simple process models with
only a few parameters to be identified.

Real process variables, that is, process input u and process
output vy, act as measured load disturbancies when using a PlI
controller for parameter estimation (figure 2). In real process
control, load disturbances are quite often undesired guests
that need to be compensated. In this context, they are warmly
invited guests for carrying sufficiently rich information for
parameter estimation.

Closed loop stability and robustness of the closed loop
system (fig. 2) for parameter estimation need to be
considered. The system model and the cost function together
determine the dynamics that must be carefully addressed in
PI controller design. The PI controller tuning is not treated in
this paper but, instead, it is advised to apply an auto-tuning
technique to tune a PI controller as proposed by Friman and
Airikka (2012).

2.4 Selection of estimation parameter

The process model subject to parameter estimation can be
basically anything: e.g static or dynamic, time-based or
frequency-based, linear or non-linear. Despite the model
type, the parameter for estimation should always be selected
in such a way that it has an impact on the process output.
General identification principles and guidelines equally hold
in this context as well.

In process controls, a single Pl controller can have one
manipulated variable for regulating one controlled variable.
Fundamentally, the same principle holds for a PI controller in
parameter estimation as well. By manipulating one model
parameter, the system model output can be regulated to
match the real process output. Luckily, there are some ways
to bypass loosen this restriction.

Consider a following static process model of two unknown
parameters a and b to be fitted in input-output data {y(t),u(t)}

y(t) =au(t) +b (7

Selecting the coefficient a to be manipulated by a PI

controller, the coefficient é(tk):é(tk) is updated at each
control cycle allowing also estimation of the constant b

bt,) = y(t,) — &t u(t,) = y(t,) -0t Jut,)  (8)

As a result, two model parameters can be estimated for a
single-input single-output model using only one PI controller.
A number of identifiable parameters using only one PI
controller can also be increased by sharing the PI controller
output for different model parameters

o(t) =al(t)+(1-a)d(t) =0,(t)+6,(t), forO<a<l (9)
The idea of sharing the same PI controller output for two
parameters is illustrated in figure 3. The proposed structure,
however, assumes that the parameters have rather equal



parameter value ranges like two time constants of a process
model might have.
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Figure 3. Several parameters can be estimated using one PI
controller if the controller output is divided for different
parameters.

2.5 Multivariable models

The proposed method allows parameter estimation for a SISO
model. This paper does not suggest detailed methods for
dealing multi-input multi-output (MIMO) or not even multi-
input single-output (MISO) models with several process
inputs. Yet, by having several cost functions for parameter
estimation, such as separate residuals for each process output,
a number of the PI controllers can be increased to cover more
model parameters for identification.

2.6 Some practicalities

Signal filtering and detrending of data is of essence for
parameter estimation. Unwanted frequencies and offsets
should be filtered out before sampling process data. Noise
filtering is equally important for parameter estimation using a
Pl controller than that for process control. For succesful
signal filtering, appropriate measures are recommended for
dealing with noise effects in parameter estimation.

Parameter saturation, that is, control signal saturation must be
considered when applying a Pl controller containing
integration. First of all, for not allowing goofy parameter
values, the admissible parameter range 6,,..6,,,, should be
used for limiting the Pl controller output. Also, appropriate
measures for avoiding integrator anti-windup should be taken
not to risk parameter estimation convergence speed due to
integral windup.

For practical reasons, it is convenient to deal with a limited
Pl controller output range, eg -1<u,(t)<1. Then, a

parameter estimate @ is obtained by using the allowable scale
AB =06, —0,,and its minimum value 6, as follows

) = O + L1, 05" (10

A good initial parameter estimate 6, =6(0) reduces

estimation effort also in PI controller -based parameter
estimation. Process impact direction is essential to know a
priori for a Pl controller also in parameter estimation. An
increasing change in a Pl controller output & may have either
an increasing or a decreasing change in the cost function J.
The PI controller is given this information for enabling
correct control actions for succesful parameter estimation.

3. SIMULATION DERIVED RESULTS

3.1 Simple static process with gain

Consider a simple static process model
y(t) = ku(t) + &(t)

where gain 0 =k =0.5 is to be estimated from input-output
data of {y(t)u®t=0} with white noise &(t). The PI
controller is designed with k, = 0 and k; = 0.002 and the cost
function is the pure residual e(t) = y(t) — y(t) = y(t) - Izu(t) .

(11)

Figure 4 illustrates input-output data, cost function J,
estimated gain k and PI controller output u, with respect to
time. The parameter scale is Ak = 2with k., =0 and the
initial value is k,=1. As a result, the estimated gain
converges to 0.5 in less than two minutes.
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Figure 4. Convergence of static gain of process (11). Top:
process data: output (left), input (right). Second top: cost
function. Second bottom: estimated gain. Bottom: control
signal.

3.2 Controller tuning and cost functions

Figure 5 compares PI controller tunings (k, = 0) for different
integral gains k; = 0.002, 0.004, 0.008 and 0.016. Every time
the tuning is tightened by doubling the integral gain, the
estimated parameter converges faster. However, with ki =
0.016, the estimate starts introducing noise.

Figure 6 shows the impact of having an unchanged PI tuning
but different cost functions (5) with p = 0.5 (square root), 1
and 2 (squared). It can be seen in fig. 6 that by increasing the
value of p, the convergence gets faster but with increasing
noise.
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Figure 5. Convergence of estimated parameter for different
integral controller gains k; = 0.002, 0.004, 0.008, 0.016.

11
|\ \ 1
Vo
|\ .
0.8} \ ~ il
'\ U oo
\‘ \ \7\ quare roof
L \ N B
07 \‘ \ C
\ S \\
\ T
06r P { | ™ ™~ ~ |
\_ ure residual ~
\ \\ \\“\,
/_\_\\JV_A/ — e
T e
0.5 Squared SRR |
0.4 : s
0 50 100 150

Figure 6. Convergence of estimated parameter for various
cost function types (squ root p = 0.5, p =1, squared p = 2).
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Figure 7. Convergence of estimated parameter for different
proportional gains. Top: k, = 0. Middle: k, = 0.02. Bottom: k;
=0.04.

Figure 7 illustrates the impact of having a proportional
control involved. When having no proportional control (k, =
0 and k; = 0.002), the yielded estimate is rather smooth. By
introducing the proportional control (k, = 0.02), the estimate
does not converge much faster but introduces some noise. By
doubling the proportional gain (k, = 0.04), noisiness
increases. The proportional part clearly amplifies the
modelling error but does not contribute greatly to the
parameter estimate itself.

3.3 Dynamic process with time constant and gain

Next, consider a dynamic first order system with static gain k
and time constant T

k
Ts+1

y(s) = u(s) +(s) (12)

The time constant T is selected to be estimated by a PI
controller. Then, using (12), the static gain k can be solved as

Tsy(s) + y(s)
u(s)

Consequently, the PI controller generates the time constant
estimate T (t) at each execution cycle, after which, the gain
estimate can be updated by k(t)=(T (t)y(t) + y(t))/u(t)
where y(t) is time derivative of y(t). Assume the process
(12) with k = 0.5 and T = 20 sec. The parameter scale for T is
AT =50 with T_,, =0 and the parameter is initialised as
T, =100. The PI controller is designed with k, =0and

k; =0.5. Figure 8 shows results with cost function J and

estimated parameters T and k with respect to time. It takes
approximately two minutes for the PI controller output to
settle and produce a correct time constant estimate T = 20 but
less time for the static gain to reach its correct value k = 0.5.

Tsy(s) + y(s) =ku(s) +e(s) = k = (13)
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Figure 8. Convergence of model (12) parameters. Top:
process data (left: output, right: input). Second top: cost
function. Second bottom: estimated gain (left) and estimated
time constant (right). Bottom: control signal.



4. CONCLUSION

This paper proposed a continuous-time parameter estimation
method using an industrial Pl controller. The method seems
to be applicable to simple SISO system models with one or
two model parameters to be identified. The proposed method
can be explained by comparing it to a general recursive
parameter estimation method which is shown to be a dual
representation of the proposed method.

From a practical point of view, the method can be justified by
its reliance on the industrial Pl controller which is the only
numerical routine required for identification. Pl controllers
are basically everywhere and easily available for system
identification purposes. A control engineer is familiar with a
Pl controller making it rather easy to adopt the proposed
method for system identification.

The proposed method is limited to simple process models
and, similarly, simple model residual —based cost function
formulations were suggested to avoid complexity of the
dynamics of identifiable parameters in the PI controlled
closed identification loop. For PI controller tuning, auto-
tuning methods are proposed to make the control design less
troublesome.

It was shown that using only an integrating controller (I) can
be adequate for parameter estimation. The proportional
controller (P) may speed up parameter convergence but,
unfortunately, at the cost of noise amplification. And to
recover from cases where the zero value of the cost function
may not be reached at all, the PI controller must have an
integrator anti-windup feature implemented to avoid
excessive controller output saturation.

A good initial parameter estimate is useful along with an
appropriate parameter selection for estimation. The parameter
should be selected in a way to avoid strongly non-linear
dependence between the estimated parameter and its impact
on the selected cost function. After all, the process to be
controlled by the Pl controller for parameter estimation
consists of the model structure and the cost function.
Obviously, this justifies the selection of a simple model
structure and a simple cost function.

The suggested method is equally applicable to on-line and
off-line system identification. An interesting application of
the proposed method is to apply it for updating critical
process models of an operator training simulator (OTS) using
existing real process data. By retrieving recorded process data
from a process data archive or reading it on-line, selected
system models of the simulator can be updated without
interfering the real process. This can be done using a method
given in this paper totally in parallel with a real process
control system but without affecting the real control system
or real processes as the communication takes place only in
one way: from the real process to the OTS system having PI
controllers for identifying critical process parameters.
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