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17th Nordic Process Control Workshop 
 
Welcome to the 17th Nordic Process Control Workshop (NPCW-17) and to the Technical University 

of Denmark. The NPCW-17 is held this year at the Technical University of Denmark (DTU) and jointly 
organized by DTU Informatics, Center for Energy Resource Engineering (CERE) and CAPEC at DTU 
Chemical Engineering.  

The Nordic Process Control Workshop has been and continues to be an informal gathering that brings 
together academics and researchers from Nordic universities as well as professionals from industry in the 
process control area to present and discuss recent advances, share experiences and expand and consolidate 
networking in the process control field. The workshops are organized once every one and half year and the 
venue alternates between Denmark, Finland, Norway and Sweden.  

The workshop is organized by the Nordic Working Group on Process Control currently consisting of 
the following members: Dr. John Bagterp Jørgensen, DTU, Denmark (Chair); Dr. Jeno Kovacs, Foster 
Wheeler Co., Finland (co-chair); Prof. Sirkka-Liisa Jamsa-Jounela, Helsinki Univ. Tech., Finland; Dr. 
Elling W. Jacobsen, KTH, Sweden; Prof. Sigurd Skogestad, NTNU, Norway; Dr. Kaj Juslin, VTT, 
Finland; Dr. Jan Peter Axelsson, Pfizer, Sweden; Prof. Claes Breitholtz, CTH, Sweden; Prof. Kurt Erik 
Häggblom, Åbo Akademi, Finland; Prof. Bjarne Foss, NTNU, Norway; Dr. Annika Leonard, Vattenfall, 
Sweden; Dr. Alf Isaksson, ABB, Sweden; Prof. Bernt Lie, Telemark Univ. College, Norway; Dr. Hans 
Aalto, Neste Jacobs, Finland; Dr. Bjørn Glemmestad, Telemark Univ. College, Norway; Prof. Tore 
Hägglund, Sweden; Dr. Gürkan Sin, DTU, Denmark; Dr. Tommy Mølbak, Dong Energy, Denmark. 

Another important feature of the workshop is the Nordic Process Control Award appointed by the 
Nordic Working Group on Process Control. The Award is given to outstanding process control 
professionals, who have made “lasting and significant contributions to the field of process control”. The 
2012 Nordic Process Control Award is given to Prof. Lorenz T Biegler from Department of 
Chemical Engineering, Carnegie Mellon University, USA.  We warmly  congratulate Prof. Biegler and 
look forward to his award lecture entitled “A Nonlinear Programming Path to NMPC and Real-Time 
Optimization”. 

On behalf of the local organizing committee, we wish to thank many of our PhD and postdoctoral 
students for their help during the organization. In particular we thank Mrs. Anne Mette Eltzholtz Larsen 
for her excellent secretarial support, as well as Laura Standardi and Jason Anthony Price for their valuable 
help in compiling the preprints of the workshop.  

Finally we would like to wish you a very productive and constructive workshop rich with scholarly 
discussions, increased networking and stimulating ideas for further research and cross collaboration across 
the board in the field of process control. 

Lyngby, January 2012 
 
 

John Bagterp Jørgensen 
DTU Informatics & CERE 

Jakob Kjøbsted Huusom 
CAPEC, DTU Chemical Engineering 

Gürkan Sin 
CAPEC, DTU Chemical Engineering 
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How to get to DTU 

 

From Kastrup Airport directly to DTU (through Nørreport station): 

 Step A- from the airport to Nørreport station: 

⋅ Take the Metro (M2) from the airport in the direction of Vanløse station. 
⋅ Get off at Nørreport station. 

 or 

⋅ Take the bus 5A from the airport in the direction of Husum Torv. 
⋅ Get off at Nørreport station. 

 or 

⋅ Take the Øresund train in the direction of Helsingør station (Elsinore st.) or Nivå station. 
⋅ Get off at Nørreport station.  

 Step B- from Nørreport station to Lyngby station (and Rævehøjvej, DTU w/Bus 150S or 173E): 

⋅ From Nørreport station there are two S-trains and three buses to choose between: 
∗ S-train B in the direction of Holte station     
∗ S-train E in the direction of Hillerød station. 

⋅ Get off at Lyngby station. 

or 

⋅ Bus 184 in the direction of Lyngby station. 
⋅ Get off at Lyngby station. 

or  

⋅ Bus 150S in the direction of Kokkedal station. 
⋅ Get off at Rævehøjvej, DTU. 

 or 

⋅ Bus 173E in the direction of Fredensborg station. 
⋅ Get off at Rævehøjvej, DTU. 

  

  



 Step C - from Lyngby station to DTU: 

⋅ Bus 190 in the direction of Holte station. 
⋅ Get off at your destination at DTU Campus.  

 or 

⋅ Bus 300S in the direction of Nærum station. 
⋅ Get off at your destination at DTU Campus. 

 or 

⋅ Bus 353 in the direction of Helsingør station (Elsinore st.). 
⋅ Get off at your destination at DTU Campus. 

 or 

⋅ Bus 591P in the direction of Lyngby station. 
⋅ Get off at your destination at DTU Campus. 

 or 

⋅ Bus 590E in the direction of Lyngby station. 
⋅ Get off at your destination at DTU Campus. 

 Below are basic information about the mentioned busses and trains:  

 The Metro 
(M2)  

The metro comes approximately every 3 minutes from 5 a.m. to 12 p.m. on friday - 
sunday nights it comes every 15 minute.  

The Øresund 
Train 

The Øresund train comes approximately every 20 minutes from 4 a.m. to 12 p.m. In 
the night it comes once an hour. 

The S-trains S-trains comes approximately every 6 minutes from 5 a.m. to 12 p.m. In the night it 
comes approximately every 30 minutes. 

Bus 5A  Bus 5A comes approximately every 8 - 15 minutes from 4.55 a.m. to 12.10 a.m.  

Bus 184 Bus 184 comes approximately every 20 minutes from approximately 5.30 a.m. to 12 
p.m. Weekend and holidays not included.  

Bus 190  Bus 190 comes every 30 minutes from approximately 6 a.m. to 6 p.m. Weekend and 
holidays not included. 

Bus 300S Bus 300S comes every 15 minutes from approximately 5 a.m. to 12 p.m. Weekend 
and holidays not included.  



Bus 353  Bus 353 comes approximately every 30 minutes from 6.40 a.m. to 8 p.m. Weekend 
and holidays not included. 

Bus 591P  Bus 591P comes approximately every 20 minutes from approximately 11 a.m. to 5.30 
p.m. Weekend and holidays not included. 

Bus 590E  Bus 590E comes approximately every 7 minutes from 7.32 a.m. to 9.45 a.m. Weekend 
and holidays not included.  

Bus 150S  Bus 150S comes approximately every 10-15 minutes from 5.55 a.m. to 00.13 a.m. 
Weekend and holidays not included.   

Bus 173E  Bus 173E comes approximately every 15 minutes from 6.43 a.m. to 8.47 a.m. 
Thereafter from 1.51 p.m. to 5.31 p.m. Weekend and holidays not included. 

  

 

From central stations in Copenhagen to DTU 

It is the same S-trains (E, B) that stops at the four main stations (Copenhagen Central station, 
Vesterport-, Nørreport- and Østerport station) and continues to DTU. 

Here there is a guide to how to get to DTU from the four main stations: 

First: 

⋅ S-train E in the direction of Hillerød station; 
⋅ Get off at Lyngby station. 

 or 

⋅ S-train B in the direction of Holte station; 
⋅ Get off at Lyngby station. 

As you are at Lyngby st., you should take one of these busses to reach DTU: 

⋅ Bus 190 in the direction of Holte station; 
⋅ Bus 300S in the direction of Nærum station;  
⋅ Bus 353 in the direction of Helsingør station (Elsinore st.); 
⋅ Bus 591P in the direction of Lyngby station; 
⋅ Bus 590E in the direction of Lyngby station. 

 Good advice: 

• DTU is a big campus therefore the mentioned busses stops at several places at campus. 
Make sure beforehand to know precisely at which bus stop to get off. 



• Find out where to go by checking on a map of DTU Campus.  

• When taking the bus, it is a good idea to ask the bus driver if it goes to DTU, and ask if the 
bus driver can announce in the speakerphone, when you have to get off. 

 Below are basic information about the mentioned busses and trains: 

  The S-
trains 

S-trains come approximately every 6 minutes from 5 a.m. to 12 p.m. In the night it 
comes approximately every 30 minutes. 

Bus 184 
Bus 184 comes approximately every 20 minutes from approximately 5.30 a.m. to 12 p.m. 

Weekend and holidays not included. 

Bus 190 
Bus 190 comes every 30 minutes from approximately 6 a.m. to 6 p.m. Weekend and 

holidays not included. 

Bus 300S 
Bus 300S comes every 15 minutes from approximately 5 a.m. to 12 p.m. Weekend and 

holidays not included. 

Bus 353 
Bus 353 comes approximately every 30 minutes from 6.40 a.m. to 8 p.m. Weekend and 

holidays not included. 

Bus 591P 
Bus 591P comes approximately every 20 minutes from approximately 11 a.m. to 5.30 

p.m. Weekend and holidays not included. 

Bus 590E 
Bus 590E comes approximately every 7 minutes from 7.32 a.m. to 9.45 a.m. Weekend 

and holiday not included. 

 

How to get to Old Fellow Palæet 

 

More information are available on the web-site http://www.oddfellowpalaeet.dk/.  

The restaurant is place in Bredgade 28, DK-1260 København K. 

It’s 1.3 km from Nørreport St. and 500 m. from the metro station Kongens Nytorv, which can be 
reached from Nørreport St. trough metro  M1 to Vestamager or M2 to Lufthavnen (please see maps 
below). 

 

http://www.oddfellowpalaeet.dk/




 



Program 

17th Nordic Process Control Workshop (NPCW-17) 

Technical University of Denmark, Kgs Lyngby, Denmark 

Thursday, January 26, 2012 
 

         08:30 Registration  

 Session 1: Award Session (Chair: John Bagterp Jørgensen) 

09:00  Welcome and opening 
09:10  Award ceremony 
09:20  Award lecture - A Nonlinear Programming Path to NMPC and Real-Time Optimization 

                  Lorenz T. Biegler. Carnegie Mellon University 
 

Session 2: Identification and Monitoring (Chair: Sten Bay Jørgensen) 

10:30  Fuel Moisture Soft-sensor and its Validation for the Industrial BioGrate Boiler 
 Jukka Kortela & Sirkka-Liisa Jämsä-Jounela. Aalto University   .............................  1 

 
10:50 Temperature Modelling of the Biomass Pretreatment Process  

Remus M. Prunescu, Mogens Blanke, Jakob M. Jensen & Gürkan Sin.                  
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Fuel moisture soft-sensor and its validation
for the industrial BioGrate boiler
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Abstract: This paper presents a soft-sensor for on-line monitoring of fuel moisture in a furnace.
The method utilizes combustion power estimation and the dynamic model of the secondary
superheater. In addition, the time delay for detecting a change in the moisture content of the
fuel is small enough for the method to be used for controlling air and fuel feed preventing
any steam and pressure oscillations. To verify the fuel moisture soft-sensor, experiments were
performed at a BioPower 5 CHP plant, which utilizes BioGrate combustion technology for very
wet biomass fuels with a moisture content as high as 65%. Finally, the results are analyzed and
discussed.

Keywords: biomass, combustion, control, fuel moisture, industrial application

1. INTRODUCTION

Usage of biomass fuel for heat and power production
is growing due to increasing demand for replacing fossil
energy sources with renewable energy. The fuel is usually
a blend of different batches, for example spruce bark and
dry woodchips and with the moisture content between 30%
and 55% (Yin et al. (2008)). The varying moisture content
of the fuel results in uncertainty in the energy content of
the fuel and complicates operation of the combustors. The
typical procedure to determine moisture content of the
fuel in small or medium-scale grate furnaces is to analyze
manually collected samples of each fuel batch delivered to
the plant. This method, however, is not accurate enough
to predict moisture content of the fuel mix that enters the
furnace. A change in moisture content of the fuel has to be
detected at a resolution of seconds that the control system
is able to make a correct response to the combustion air
and the fuel feed system. There is, thus, a special need for
a control system or for an operator to have information
about moisture content for necessary adjustments of the
combustors to be made.

On-line measurement of the fuel moisture content can be
carried out with direct measurements or indirect meth-
ods. Direct measurements include dual X-ray, near in-
frared spectroscopy (NIR), radio frequent (RF), microwave
and nuclear magnetic resonance (NMR) (Nyström and
Dahlquist (2004)). Nordell and Vikterlöf (2000) performed
series of experiments to verify if dual energy x-ray can be
utilized as a technique to measure the moisture content
in biofuels. They used standard medical X-ray equipment
in the tests including ten different kind of wood fuels and
grouped the results into three main groups depending on
fuel type, wood-based, peat-based, willow and mixtures.
Standard error of performance (SEP) 2% was achieved
for individual fuel type. However, when the results were
combined, correction coefficients were needed to take into
account different carbon content of fuel. Therefore, more

research in this area is needed for taking into account
varying fuel compositions.

Several studies have been made to investigate NIR for
different types of peat and wood. Ayalew and Ward
(2000) tested NIR on three peat types (low-, medium-
, and high-density peats) with moisture content ranging
from ca. 33-63%. Based on the computed standard error
of estimate, the 95% confidence limits of the moisture
meter were 2.75, 1.75, 3.2, respectively, for low-, medium
and high-density peats. However, when all peat types
were grouped together, the 95% confidence limit increased
to a higher error 5.3. Therefore, it is necessary to be
able to distinguish between peat types. In another study,
Axrup et al. (2000) evaluated NIR measurements with
a silicone array spectrometer for the on-line analysis of
wood chips and bark. They reported promising results
with the root mean square error of prediction (RMSEP)
of 2.3% for moisture content of wood chips and 5.1% for
moisture content of bark. To conclude, NIR is the most
promising method to be used in continous fuel flow, it is
very well tested and adjustments to the problems with
wood chips have been done. The disturbances such as
distance from a sample and varying fuel composition in
NIR are compensated for by using multivariate calibration
and PLS. However, if some parameters change, for example
fuel composition, a new calibration for NIR must be done.

James et al. (1985) tested microwave beam for measur-
ing moisture content. They showed that the attenuation
predominantly reflects moisture content, phase change re-
flects both moisture and density, and details of the de-
polarization indicate grain angle. The results showed that
the microwave system is potentially capable of providing
information about moisture. Okamura and Zhang (2000)
found out however that the moisture content can be de-
termined without any measurements of weight, thickness
and microwave attenuation of the sample by using phase
shifts in two microwave frequencies. These findings are in
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agreement with James et al. (1985). The standard error of
this method is 2.1% in the moisture range from 2 to 30%.
Nevertheless, the method is influenced to a minor degree
by temperature and grain direction.

Rosenberg et al. (2001) carried out a number of mea-
surements to test NMR for measuring moisture content
of spruce and pine. The difference between the NMR
instrument and oven-dry measurements varied from -0.7%
to +0.4% with an average of -0.13%. The results can be re-
ported to be promising. However, the instrument has to be
combined with density measurement, as it measures num-
bers of detected thermalized neutrons (counts/second).

A typical indirect method for determining fuel moisture
content is to determine first moisture content of the flue
gas from which the moisture content can be then derived
by a mass balance calculation (Kortela and Marttinen
(1985)). The only delay of the measurement signal in this
setup is the transport time of the gas from the furnace
to the measurement position. This time delay can be
measured in seconds and it opens up thus possibilities of
controlling both combustion air and fuel feed.

The Fourier-transform infrared (FT-IR) technology is one
indirect method of determining the gas moisture content
(Bak and Clausen (2002)). Jaakkola et al. (1998) inves-
tigated the feasibility of a transportable, low resolution
FT-IR-gas analyzer for wet extractive stack gas analysis.
They reported the relative standard deviation of 4.1% for
moisture content. However, the accuracy of the FT-IR has
been reported to be sensitive to the absolute temperature
level, pressure, temperature gradients and particles carried
with the gas, complicating measurements directly in the
flue gas duct and this weakens its usability.

Another method for measuring the gas moisture content
using a relative-humidity (RH) sensor was developed with
the aim of improving the accuracy level of indirect deter-
mination of the moisture content of the fuel in a biomass
furnace (Hermansson et al. (2011)). The accurate imple-
mentation was achieved by cooling of an extracted flue
gas stream, elevating the RH of the flue gases, before per-
forming the measurement. The results of the tests showed
that the method is able to detect variations in moisture
content in seconds. However, in order to use this method,
new devices, measurements and calibration are needed.

All above methods have their strengths and weaknesses.
There is thus a need for more cost efficient method for
measuring fuel moisture, especially for a small scale boiler.
This paper presents an indirect method for estimating
the fuel moisture utilizing combustion power estimation
and the dynamic model of the secondary superheater. The
paper is organized as follows. In Section 2, the BioPower 5
CHP plant process is presented. Section 3 presents the fuel
moisture soft-sensor. The test results are given in Section
4 and Section 5, followed by the conclusions in Section 6.

2. DESCRIPTION OF THE PROCESS

In the BioPower 5 CHP plant, the heat used for steam
generation is obtained by burning solid biomass fuel: bark,
sawdust and pellets, which are fed to the steam boiler
together with combustion air. As a result combustion heat

and flue gases are generated. The heat is then used in the
steam-water circulation process.

Fig. 1 shows the boiler part of the BioPower 5 CHP plant.
The essential components of the water-steam circuit are
an economizer, a drum, an evaporator and superheaters.
Feed water is pumped from a feed water tank to the boiler.
First the water is led to the economizer (4) that is heated
by flue gases. The temperature of flue gases is decreased by
the economizer and the efficiency of the boiler is improved.

Fig. 1. 1. Fuel, 2. Primary air, 3. Secondary air, 4.
Economizer, 5. Drum, 6. Evaporator, 7. Superheaters,
8. Superheated steam

From the economizer, heated feed water is led to the
drum (5) and along downcomers into the bottom of the
evaporator (6) tubes that surround the boiler. From the
evaporator tubes the heated water and steam return back
to the steam drum, where steam and water are separated.
Steam rises to the top of the steam drum and flows to
the superheaters (7). Steam heats up furthermore so it
superheats. The superheated high-pressure steam (8) is
led to a steam turbine, where electricity is generated.

In the BioGrate system, the fuel is fed onto the center of
a grate from below by a stoker screw. The grate is divided
into concentric rings with alternate rotating rings and
the rings between remaining stationary. Alternate rotating
rings are pushed hydraulically clockwise or counterclock-
wise respectively. This design distributes the fuel evenly
over the entire grate with the burning fuel forming an even
layer of the required thickness. Wärtsilä (2005)

The water content of the wet fuel in the centre of the
grate evaporates rapidly due to the heat of the surrounding
burning fuel and thermal radiation from the brick walls.
The gasification and visible combustion of the gases and
solid carbon take place as the fuel moves to the periphery
of the circular grate. Finally, at the edge of the grate ash
falls into a water-filled ash basin underneath the grate.
Wärtsilä (2005)

The primary air for combustion, and the recirculation
flue gas, are fed from underneath the grate and penetrate
the fuel through slots in the concentric rings. Secondary
air is fed above the grate directly into the flame. Air
distribution is controlled by dampers and speed-controlled
fans. Wärtsilä (2005)
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Fig. 2. BioGrate including the stoker screw and a water-
filled ash basin underneath the grate

2.1 Fuel composition and fuel quality

The composition and the quality of fuel have big effect
on its heat value. Thus fuel quality is playing a key role
when designing a control strategy of a biopower plant and
guaranteeing its optimal operation. Common elements to
all biomass fuels are carbon (C), hydrogen (H), oxygen
(O) and nitrogen (N). In addition, biomass fuels contain
substances from soil, such as water, minerals, rock materi-
als and sulphur (S). The actual combustible components
of fuels are carbon, hydrogen and sulphur. Sulphur is an
unwanted component, because it forms harmful sulphur
dioxide, when it is burned. Part of nitrogen reacts with
oxygen forming harmful nitrogen oxides. Water in fuel
requires heat for its evaporation. Because of this, moisture
decreases the heat value of fuel. Table 3 lists the elemental
composition and typical moisture content of wood fuels
burned in the BioPower 5 CHP plant.

Table 1. The composition of wood fuels burned
in the Biopower 5 CHP plant

Fuel Dry content (%) Moisture (%)

wC wH wO wN Ash w
Pine 54.5 5.9 37.6 0.3 1.7 60
Spruce 50.6 5.9 40.2 0.5 2.8 60
Wood mix 50.4 6.2 42.5 0.5 0.4 50

The heat value of fuel can be determined by the equation
that has been derived from heat values between com-
bustible components and oxygen (Effenberger (2000)). The
effective heat value of a dry fuel is

qwf = 0.348 · wC + 0.938 · wH + 0.105 · wS

+0.063 · wN − 0.108 · wO[MJ/kg] (1)

where wC is mass fraction of carbon in fuel (%), wH is
mass fraction of hydrogen in fuel (%), wS is mass fraction
of sulphur in fuel (%), wN is mass fraction of nitrogen in
fuel (%), and wO mass fraction of oxygen in fuel (%). The
effective heat value of a wet fuel is obtained from equation

qf = qwf · (1− w/100)− 0.0244 · w[MJ/kg] (2)

where w is moisture content of the wet fuel (%). In order to
use Equation (2), the composition of fuel has to be known.

3. FUEL MOISTURE SOFT-SENSOR

The fuel moisture soft-sensor is based on combustion
power estimation and the dynamic model of the secondary
superheater. Firstly, fuel flow m̂f (w) is estimated in the
combustion model as shown in Fig. 3. Secondly, the
estimated fuel flow m̂f (w) is used to calculate the flue
gas flow mfg and flue gas temperature Tfg. Thirdly, the

flue gas flow m̂fg and flue gas temperature T̂fg are used
together with input enthalpy h1 and steam flow m1 for

predicting the output enthalpy ĥ2(i) of the secondary
superheater model. Finally, the unknown fuel moisture
disturbance w can be then estimated with least squares
method.

min J(w) =
N∑
i=0

|h2(i)− ĥ2(i)|2 (3)

where N is moving window, h2 is measured output en-

thalpy of the secondary superheater (MJ/kg), and ĥ2
estimated output enthalpy of the secondary superheater
(MJ/kg).

The details of the models are presented in the following
Sections 3.1 and 3.2.

Fig. 3. The fuel moisture soft-sensor

3.1 Estimation of fuel flow, flue gas flow and temperature

The combustion reaction in biopower plants occurs mainly
between carbon and oxygen. Therefore, the oxygen con-
sumption and flue gas composition are good measures
of heat generation in the furnace (Kortela and Lautala
(1981)). The amount of oxygen needed for fuel combustion
can be determined from the reaction equations. Table 2
gives moles per unit of fuel from mass fractions of the fuel.
Summarizing, the oxygen needed for different components
and subtracting the amount of oxygen in the fuel, the
theoretical amount of oxygen needed to burn completely
one kilogram of the fuel is
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Table 2. Moles of the components of the fuel
per unit mass

Comp. Mass fraction (%) Mi(g/mol) ni (mol/kg)

C wc(1− w/100) 12.011 wc(1− w/100)10/MC

H wh(1− w/100) 2.0158 wh(1− w/100)10/MH

S ws(1− w/100) 32.06 ws(1− w/100)10/MS

O wo(1− w/100) 31.9988 wo(1− w/100)10/MO

N wn(1− w/100) 28.01348 wn(1− w/100)10/MN

Water w 18.0152 10/MW

Ng
O2

= nC + 0.5 · nH2
+ nS − nO2

[mol/kg] (4)

In addition to combustion products, nitrogen N that
comes with the air, is included in flue gases. There is
thus 3.76 times more nitrogen compared with needed
oxygen in flue gas calculations. Incombustible components
for example water are included in the equations as such.
Therefore, flue gas flow for one kilogram of fuel is

Nfg = nC+nH2
+nS+3.76·Ng

O2
+nN2

+nH2O[mol/kg] (5)

The estimated amount of fuel burned is given as follows
(Kortela and Jämsä-Jounela (2010))

m̂f (w) =
(0.21− XO2

100 )nAir

Ng
O2

+
XO2

100 (Nfg − 4.76 ·Ng
O2

)
[kg/s] (6)

where XO2
(t + τ) is oxygen content of flue gas (%), and

nAir total air flow (mol/s). Therefore, flue gas flow is

m̂fg = m̂f (w) ·Nfg[kg/s] (7)

and flue gas temperature is

T̂fg = (qf + 0.21(FAir/(22.41 · 10−3 · m̂f (w))CO2

+0.79(FAir/(22.41 · 10−3 · m̂f (w))CN2
)/

(nCCCO2 + nSCSO2 + (nH2O + nH2)CH2O

+(3.76 ·Ng
O2

+ nN2
)CN2

+ 0.21 ·NExAirCO2

+0.79 ·NExAirCN2
)[◦C] (8)

where FAir is total air flow (m3/s), and Ci specific heat
capacity i (J/molT).

NExAir = (FAir/(22.41 · 10−3 ·mf )

−4.76 ·Ng
O2

[mol/kg] (9)

3.2 Secondary superheater model

The behaviour of the boiler is captured by global mass
and energy balances. The heat released by the combustion
of fuel is transferred to the water and steam of the
boiler where each section can be considered as a thermal
system (Åström and Bell (2000)). In this paper fuel quality
is estimated using the dynamic model of the secondary
superheater. The Energy balance of the boiler section and
temperature of metal walls are considered separately for
improving the model accuracy.

Heat transfer from flue gas to metal walls for mixed
convection and radiation heat transfer is (Lu (1999) and
Lu and Hogg (2000))

Qw = αwm̂
0.65
fg (T̂fg − Tw) + kw(T̂ 4

fg − T 4
w)[MJ/s] (10)

where αw is convection heat transfer, Tw is temperature
of metal walls (◦C), and kw radiation heat transfer coeffi-
cient. Energy balance for tube walls is

dTm
dt

=
1

mtCp
(Qw −Qt)[K/s] (11)

where mt is mass of the metal tubes (kg), and Cp specific
heat of the metal (MJ/kgK). Heat transfer from metal
walls to steam/water for convection heat transfer (super-
heaters) is

Qt = αcm
0.8
2 (Tm − T )[MJ/s] (12)

where αc is convection heat transfer coefficient.

T = (T1 + T2)/2[◦C] (13)

where T1 is input steam/water temperature (◦C), and T2
output steam/water temperature (◦C).

Finally the energy balance for output steam enthalpy is

dĥ2
dt

=
1

%V
(Qt +m1h1 −m2ĥ2)[MJ/(s · kg)] (14)

where ĥ2 is specific output enthalpy of steam/water
(MJ/kg), % is specific density of steam/water (kg/m3), V
is volume of steam/water (m3), m1 is input steam/water
flow (kg/s, h1 is specific input enthalpy of steam/water
(MJ/kg), and m2 output steam/water flow (kg/s).

4. DESCRIPTION OF THE TESTING
ENVIRONMENT

All the experiments were conducted at the BioPower 5
CHP plant that produce 13.5 MW heat and 2.9 MW elec-
tricity. The plant utilizes BioGrate combustion technology
as presented in Fig. 2. This technology has been developed
for very wet biomass fuels with a moisture content as high
as 65%.

Fig. 4. Measurement set-up for fuel feed sampling
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Fig. 5. Measurement set-up of the FT-IR analyzer in the
flue gas duct

Two fuels were used to test moisture soft-sensor: spruce
bark with an average moisture content of 57% and a
typical composition for bark (carbon 51% , hydrogen 6.2%,
nitrogen < 0.2%, sulphur < 0.2%, and ash 0.5%) as shown
in Table 3, and dry woodchips (spruce) with the moisture
content of 20%.

Table 3. The fuel composition of the tests

Fuel composition (%)

Carbon 51.0
Hydrogen 6.2
Nitrogen <0.2
Sulphur <0.2
Ash 0.5

To ensure the stepwise changes of the moisture content, the
automatic feeding system was disabled and dry biomass
was fed manually into the screw conveyor between wet
fuel through the extra feeding box. The arrangement for
sampling of fuel feed is shown in Fig. 4. The samples
were taken from fuel dropping from the fuel silo just
before the stoker screw every 5 minutes. The measurement
arrangement for Servomex 2500 FT-IR analyzer is shown
in Fig. 5. The flue gas was extracted from the flue gas
duct and led to the analyzer. Samples were recorded every
second.

Calculations presented in Section 3 were performed to
obtain the current rate of water evaporation (fuel moisture
soft-sensor value) and the current rate of thermal decom-
position of the biomass based on measurements of current
air mass flows, current flue gas oxygen content, current
steam temperatures, current steam flow and current steam
pressure as well as the results of dry fuel analysis. All val-
ues were recorded every second. The following assumptions
were made: complete combustion, the constant composi-
tion of dry biofuel, and simultaneous devolatilization and
char burnout.

5. TEST RESULTS OF THE FUEL MOISTURE
SOFT-SENSOR

Experiments were conducted to validate the fuel moisture
soft sensor. In the test, 10m3 dry biomass was fed manually

into the screw conveyor at a time step marked by a vertical
line in Fig. 6. Temperature after the secondary superheater
and drum pressure first increase but decrease rapidly due
to control action that decrease primary air. Furthermore,
flue gas oxygen content is kept at 4% using secondary air.
Temperature increase in grate rings 2, 4 and 10 is due to
dry fuel that moves to the periphery of the grate as shown
in Fig. 7. Furthermore, temperature after the secondary
superheater increases again and thus causing fluctuation
in process variables. Regardless of disturbances in process
variables, fuel moisture soft-sensor shows a decrease in fuel
moisture 20 minutes before drum pressure drop and thus
opening new possibilities to control combustion.

Fig. 6. Boiler measurements during the second test. The
top picture includes fuel moisture soft-sensor (thick
line), sampled fuel moisture (stars), and fuel moisture
calculated from the FT-IR measurement (thin line)
for comparison.

The accuracy of the fuel moisture soft-sensor was inves-
tigated in the BioPower 5 CHP plant during the tests by
sampling fuel feed and with the FT-IR analyzer. According
to the fuel sampling, the wet fuel contained 54.4% mois-
ture per kg fuel on average. To compare, the estimated
fuel moisture soft-sensor content resulted in an average
fuel moisture content of 54.6% per kg fuel. The dry fuel
contained 25.9% moisture per kg fuel on average. The
estimated fuel moisture soft-sensor content resulted in an
average fuel moisture content of 27% per kg fuel. There-
fore, the fuel moisture soft-sensor value and the sampled
moisture content match really well.

The dynamic behaviour of the fuel moisture soft-sensor
was studied in the BioPower CHP plant by producing a
step function of moisture in the flue gases by feeding dry
biomass manually between wet fuel. The results, presented
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Fig. 7. Grate temperatures during the second test. The
grate rings are numbered from the center (Grate ring
2) to the edge of the grate (Grate ring 12)

in Fig. 6, show that the fuel moisture soft-sensor responds
to step changes within 1 minute compared with FT-IR in
which the 1 minute filter was used. Furthermore, the delay
by cross-correlation between combustion power in the oxy-
gen content measurement position and temperature over
the secondary superheater is only 45 seconds. Moreover,
fuel moisture soft-sensor shows no sign of hysteresis re-
sponding equally to both a positive and a negative change
in moisture content. This verifies method for detection of
varying moisture to be small enough for the method to be
used for controlling air and fuel feed.

6. CONCLUSIONS

The fuel moisture soft-sensor based on combustion power
estimation and the dynamic model of the secondary su-
perheater was presented in this paper. The experiments
were conducted to validate the fuel moisture soft sensor.
Two fuels were used to test moisture soft-sensor: spruce
bark with an average moisture content of 57%, and dry
woodchips (spruce) with the moisture content of 20%.
Regardless of disturbances in the process variables, fuel
moisture soft-sensor showed a decrease in fuel moisture 20
minutes before drum pressure dropped and thus opening
new possibilities to control combustion.

The accuracy of the fuel moisture soft-sensor was inves-
tigated in the BioPower 5 CHP plant during the tests by
sampling fuel feed and with the FT-IR analyzer. According
to the fuel sampling, the wet fuel contained 54.4% mois-
ture per kg fuel on average. To compare, the estimated
fuel moisture soft-sensor content resulted in an average
fuel moisture content of 54.6% per kg fuel. The dry fuel

contained 25.9% moisture per kg fuel on average. The
estimated fuel moisture soft-sensor content resulted in an
average fuel moisture content of 27% per kg fuel. There-
fore, the fuel moisture soft-sensor value and the sampled
moisture content matched really well.

The dynamic behaviour of the fuel moisture soft-sensor
was studied in the BioPower CHP plant by producing a
step function of moisture in the flue gases by feeding dry
biomass manually between wet fuel. The results showed
that the fuel moisture soft-sensor responds to step changes
within 1 minute compared with FT-IR in which the 1
minute filter was used. Thus, the fuel moisture soft-sensor
can be used in the control strategy to control both the fuel
feed and the combustion air in the furnace.
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Abstract: In a second generation biorefinery, the biomass pretreatment stage has an important
contribution to the efficiency of the downstream processing units involved in biofuel production.
Most of the pretreatment process occurs in a large pressurized thermal reactor that presents
an irregular temperature distribution. Therefore, an accurate temperature model is critical for
observing the biomass pretreatment. More than that, the biomass is also pushed with a constant
horizontal speed along the reactor in order to ensure a continuous throughput. The goal of this
paper is to derive a temperature model that captures the environmental temperature differences
inside the reactor using distributed parameters. A Kalman filter is then added to account for
any missing dynamics and the overall model is embedded into a temperature soft sensor. The
operator of the plant will be able to observe the temperature in any point of the thermal reactor.
Real data sets were extracted from the Inbicon biorefinery situated in Kalundborg, Denmark,
and will be utilized to validate and test the temperature model.

Keywords: dynamic modelling, computational fluid dynamics, bioethanol, biomass pretreatment,
thermal reactor, biorefinery, Inbicon

1. INTRODUCTION

The worldwide economy is nowadays based on fossil fuels
like coal, petroleum and natural gases, which have become
increasingly more demanded and difficult to obtain as
the current deposits are getting closer to depletion. Fossil
fuels are also responsible for most of the climate changes
humanity is facing and alternatives to such energy sources
receive increasingly more interest. Bioethanol is thought
to become the primary renewable liquid fuel (Datta et al.,
2011) and solutions to its large scale production from
agricultural wastes are intensively investigated.
In this context, DONG Energy built a bioethanol demon-
stration plant in 2009 at Kalundborg, Denmark, in order
to prove that second generation technology of conversion of
lignocellulosic biomass waste into ethanol can be profitably
applied on a large scale. The conception principle of the
plant is the Integrated Biomass Utilization System (IBUS)
developed by DONG Energy, which is based on a symbiosis
between a biorefinery and a power plant. The IBUS process
is commercially exploited by Inbicon A/S, the biomass
refinery division of DONG Energy. A detailed description
of the refinery process has been documented by Larsen
et al. (2008) and is graphically represented in figure 1.
The production cycle starts with the pretreatment stage,

necessary to break down the biomass into smaller fibres in
order to facilitate the subsequent enzymatic digestibility.
The pretreatment step is based only on steam from the
power plant and recycled water. The next step is the
enzymatic liquefaction of the pretreated fibre fraction
characterized by a high dry matter content. The resulted
slurry is sent to the fermentation tank and is followed by
the distillation subprocess. Lignin is recovered as bio-pallets
and is utilized as solid fuel in the power plant. Another
by-product of the biorefinery is the C5 molasses, a syrup
high in nutritional value for livestock.
The successfulness of biomass conversion to ethanol highly
depends on the pretreatment stage, which is also responsible
for the appearance of inhibitors that affect the enzymatic
digestibility (Thomsen et al., 2009). Modelling endeavours
have been conducted by Petersen et al. (2009) in order to
determine optimal parameters of the pretreatment process.
According to (Overend et al., 1987), the pretreatment stage
can be characterized by two parameters i.e. the retention
time and the steam temperature. These parameters were
gathered in a single indicator called the severity factor.
Petersen et al. (2009) succeeded in finding a relation
between the severity factor and the chemical composition
of the slurry that enters the enzymatic treatment stage
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Fig. 1. The IBUS Process (Larsen et al., 2008).

thus offering an estimate of the conversion of biomass to
ethanol.
One of the drawbacks of the severity factor developed by
Overend et al. (1987) is the fact that it assumes a uniform
environment with constant temperature. Therefore, the
goal of this article is to find a more accurate mathematical
model of the temperature given an irregular moving envi-
ronment. Knowledge from computational fluid dynamics
will be applied in order to account these spatial temperature
differences. To simplify simulations, the model is serialized
and expressed in a standard state space formulation. In the
end, a Kalman filter is added and the overall model will
be embedded into a temperature soft sensor that allows
the operator to observe how the biomass is treated in any
point of the reactor.

2. DESCRIPTION OF THE BIOMASS
PRETREATMENT PROCESS

Kristensen et al. (2008) investigated the effects of various
pretreatment processes on biomass and his results show that
cellulose is not degraded in the hydrothermal pretreatment
process but rather becomes more accessible to enzymes
due to relocation of lignin and substantial removal of
hemicellulose.
The main component of the Inbicon pretreatment process
is a pressurized thermal reactor presented in figure 2.
Soaked biomass is released from a pressurization unit
every 2min through the left inlet of the tank and, with
the help of a motorized snail, the biomass is pushed
horizontally with a constant speed till the outlet. The
optimal values of the retention time i.e. 15min and of the
reactor temperature i.e. 195 ◦C(≈ 13bar) were determined
based on the experiments of Petersen et al. (2009). The
horizontal speed is set to a constant value in order to meet
the retention time constraint. The optimal temperature is
ensured by a pressure control system that injects saturated
steam from the bottom of the reactor through several inlets.
Two temperature measurement belts of 5 sensors each are
installed at the beginning and at the end of the tank. The

M

Steam

Pressurized
soaked
biomass

Pretreated
biomass

TI-21

TI-22

TI-23

TI-24

TI-25

TI-31

TI-32

TI-33

TI-34

TI-35

PI-01PIC

TI-01

Fig. 2. The thermal reactor schematic diagram with
instrumentation.

labels of the temperature sensors, enumerated from top to
bottom, are TI-21, TI-22, TI-23, TI-24 and TI-25 for the
left group and, respectively, TI-31, TI-32, TI-33, TI-34 and
TI-35 for the right series. The reactor pressure is measured
by PI-01 and the pressure controller is notated as PIC. A
layer of steam is formed in the top part of the reactor as
the tank is not fully filled with biomass and its temperature
is monitored by TI-01.

3. MATHEMATICAL MODELLING OF THE
THERMAL REACTOR

3.1 Preliminary Analysis

The purpose of the thermal reactor modelling is to
obtain a temperature gradient that accurately describes
the temperature distribution inside the reactor in a two
dimensional space. The temperature variations along the
width of the reactor are neglected due to its reduced length.
Figure 3 contains temperature sensor data that was logged
during a nominal operational mode of the plant.
Figure 3 presents temperature variations inside the reactor
both on horizontal and vertical axes. A preliminary analysis
of the temperature measurements illustrates that the
temperature is not uniform but it rather varies considerably
mainly on vertical. A difference of about 10 − 15 ◦C is
recorded between the top and the bottom parts of the
reactor. The right end of the reactor is open to another
subcomponent of the process and it is responsible for a
temperature drop on horizontal as the outlet is approached.
It is hard to properly model the energy loss due to the open
end of the reactor and a Kalman filter will be implemented
to account for these effects.

3.2 Temperature Modelling

In order to describe the thermal effects accurately both in
space and time, partial differential equations are needed.
Computational fluid dynamics collects the tools and
methods for describing the heat diffusion in a moving
environment such as the heat convection diffusion equation
(Egeland and Gravdahl, 2002):

∂ (ρcT )
∂t

+∇T (ρcuT ) = ∇T (Γc∇T ) + ST (1)
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Fig. 3. Preliminary analysis of the temperature inside the
reactor. The top subplot contains the temperature
recorded by the sensors from the beginning of the
reactor while the bottom subplot describes the tem-
perature at the right end of the tank.

where the first term on the left hand side of the equation
is the rate of change of temperature T in a fluid element,
the second term on the left hand side is the temperature
loss due to convection, the first term on the right side is
the rate of change due to heat diffusion and the last term
is the change caused by the heat source ST . The density
of the material is denoted as ρ, c is the specific heat, u is
the velocity vector and Γ is the diffusion coefficient. The
product between the diffusion coefficient Γ and the specific
heat c is notated as κ and is called the thermal conductivity
of the material:

κ = Γc (2)

In two dimensions, equation (1) can be explicitly written
as:

ρc
∂T

∂t
+ ρc

∂ (uT )
∂x

+ ρc
∂ (uT )
∂y

=

= ∂

∂x

(
κ
∂T

∂x

)
+ ∂

∂y

(
κ
∂T

∂y

)
+ ST

(3)

where ρ, c and κ are considered constant. The slurry is
pushed horizontally with a constant speed and, therefore,
the velocity vector u has a single constant component ux

on the x axes:
u = [ux 0 0]T (4)

Any other mixture effects that might occur due to the
movement are neglected. Equation (3) is then rewritten
considering the movement on a single axes:

ρc
∂T

∂t
+ ρcux

∂T

∂x
= ∂

∂x

(
κ
∂T

∂x

)
+ ∂

∂y

(
κ
∂T

∂y

)
+ ST (5)

Equation (5) is parabolic in time and the finite volume
method is a way to solve it (Egeland and Gravdahl, 2002).
The first step in the finite volume method is to break down
the two dimensional space into control volumes or in a grid
as in figure 4 where only one central control volume P and
its neighbours north N , south S, east E and west W are
shown. The central points of the neighbours are denoted
with capital letters while the boundaries are notated as

north n, south s, east e and west w. The distance from
the west w to the east e boundaries is δxwe and represents
the width of the control volume. The distance from the
north n to the south s boundaries is shown as δxns and
is also called the height of the control volume. In order
to simplify calculations it is convenient to choose square
control volumes i.e. δxwe = δxns = ∆x.

Fig. 4. A control volume with its neighbours from a two
dimensional grid.

The Finite Volume Method The solving procedure of
equation (5) including its discretization has been moved
to appendix A.1 and A.2. The following solution was
determined:
an+1

P Tn+1
P = an

PT
n
P + an

ET
n
E + an

WTn
W + an

ST
n
S + an

NT
n
N +

+ an+1
E Tn+1

E + an+1
W Tn+1

W + an+1
S Tn+1

S +
+ an+1

N Tn+1
N + Su

(6)
with coefficients an

P , an
E , an

W , an
S , an

N and an+1
P , an+1

E , an+1
W ,

an+1
S , an+1

N :

an
P = ρc

∆V
∆t − θ (4D + F )

an
E = θD

an
W = θ (D + F )
an

S = θD

an
N = θD

an+1
P = ρc

∆V
∆t + (1− θ) (4D + F )

an+1
E = (1− θ)D
an+1

W = (1− θ) (D + F )
an+1

S = (1− θ)D
an+1

N = (1− θ)D

(7)

where θ is the integration method parameter, D is the
diffusion term, F is the convection term, ∆V is the volume
of the control object and ∆t is the integration step. The
integration parameter θ can be 0, 1 or 0.5 corresponding to
an implicit Euler, explicit Euler or Crank-Nicholson solver.
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A Crank-Nicholson solver is preferred due to its accuracy.
Coefficients F and D were explicitly identified as below in
appendix A.2:

F = ρcuxA

D = κA

∆x
(8)

where A is the side area of the control volume. Because
the physical changes of the material along the reactor are
neglected i.e. ρ and κ remain constant in any point of the
reactor, the diffusion coefficient D becomes also constant
regardless of the boundary. If the horizontal speed ux is
held constant then the convection coefficient F becomes
constant. If the physical parameters of the biomass change
or the horizontal speed is modified then D and F must be
updated every simulation step.
The control volumes situated near the borders do not have
certain neighbours and are treated differently. The changes
that occur in the coefficients are also referred to as the
boundary conditions.

Boundary Conditions The boundary conditions are set
as suggested by (Bingham et al., 2010). There are two
types of boundary conditions depending on whether the
temperature is considered known (Dirichlet condition) or
the temperature gradient or energy loss is estimated at the
border (Neumann type). Figure 5 illustrates the Dirichlet
and Neumann setup for a general grid where the boundary
condition is notated as Ti or Di where i is one of the
borders i.e. east e, west w, south s or north n.

Fig. 5. Dirichlet and Neumann boundary conditions. Dirich-
let boundary conditions are denoted as Ti where i is
the boundary while Neumann conditions are notated
as Di.

The boundary conditions reflect in several changes of the
model coefficients corresponding to the border control
volumes. The entire derivation procedure of the coeffi-
cients update can be found in appendix A.3. Briefly, a
virtual neighbour is created and equation (6) is rewritten
considering the extra neighbour.
The reactor is only partially filled with biomass, so the
top temperature sensor i.e. TI-01 actually measures the
temperature of a steam layer. This measurement constitutes

one of the borders and its value is considered the same along
the x axes due to the layer of steam. This is a Dirichlet
condition and the model coefficients of the northern control
volumes change as below:

(an+1
P + an+1

N )︸ ︷︷ ︸
an+1

P
←

Tn+1
P = (an

P − an
N )︸ ︷︷ ︸

an
P
←

Tn
P + an

ET
n
E+

+ an
ST

n
S + an

WTn
W + an+1

E Tn+1
E +

+ an+1
S Tn+1

S + an+1
W Tn+1

W +
+ Su + 2Tn(an

N + an+1
N )︸ ︷︷ ︸

Su←
(9)

After the above updates are performed, coefficients an+1
N

and an
N are set to 0 in order to disregard the virtual

neighbour. The same Dirichlet conditions apply to the
western border of the reactor since the temperature is
directly measured.
The energy losses through the bottom part of the reactor are
neglected and this fact is translated into a Neumann border
condition. The computations can be found in appendix A.3.
The following coefficients updates were determined:
(an+1

P − an+1
E )︸ ︷︷ ︸

an+1
P
←

Tn+1
P = (an

P + an
E)︸ ︷︷ ︸

an
P
←

Tn
P + an

WTn
W + an

ST
n
S

+ an
NT

n
N + an+1

W Tn+1
W + an+1

S Tn+1
S +

+ an+1
N Tn+1

N +
+ Su −∆xDe(an

E + an+1
E )︸ ︷︷ ︸

Su←
(10)

The same Neumann conditions are applied to the eastern
border of the reactor, which is also considered perfect
insulated. The types of boundary conditions have been
summarized in figure 6.

M

Dirichlet Boundary
Conditions

Neumann Boundary
Conditions

Fig. 6. Dirichlet and Neumann boundary conditions in the
thermal reactor case.

An important thing to notice is the fact that, if coefficients
(7) do not change in time, then the temperature model
described by equation (6) becomes linear and the model
can be formulated in a state space manner such that to
facilitate fast simulation.

State Space Model In order to derive a state space model,
the first step is to serialize and to assign a number to the
control volumes from the thermal reactor grid as in figure
7. The first control volume is positioned in the lower left
corner of the reactor and the last control volume nxny is
situated in the top right corner where nx and ny are the
dimensions of the grid.
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Fig. 7. The control volumes are assigned a number starting
from the lowest left corner till the right top corner

Given the coordinates of a volume in the two dimensional
space i.e. row ic and column jc then the corresponding
index ix in the state vector is found using the relation:

ix = (ic − 1)nx + jc (11)
Since the model estimates temperatures, the hat notation
will be used from now on to denote the temperature
state vector. Let x̂T comprise the temperatures in the
sequentialized control volumes:

x̂n
T =

[
Tn

1 Tn
2 · · · Tn

nx
· · · Tn

nxny

]T
x̂n+1

T =
[
Tn+1

1 Tn+1
2 · · · Tn+1

nx
· · · Tn+1

nxny

]T
un

T =
[
Sn

u1
Sn

u2
· · · Sn

unx
· · · Sn

unxny

]T (12)

where x̂n
T is the state vector at time step n, x̂n+1

T is the
state vector at the next time step and un

T gathers all the
source terms in the control volumes. Input vector un

T will
be simplified later because not all of the control volumes
have an input source term.
The state space model can be comprised in the following
standard equation:

ETx̂
n+1
T = ATx̂

n
T + BTu

n
T (13)

and can be reformulated as:
x̂n+1

T = E−1
T AT︸ ︷︷ ︸
ÃT

x̂n
T + E−1

T BT︸ ︷︷ ︸
B̃T

un
T

x̂n+1
T = ÃTx̂

n
T + B̃Tu

n
T

(14)

where ÃT is the dynamic matrix and B̃T is the input
matrix of the model.
Matrices ET, AT and BT have special structures and are
determined by writing equation (6) for each control volume:

ET =



an+1
P1

−aE1 . . . . . . −aN1 0 . . . 0
−aW2 an+1

P2
−aE2 . . . 0 −aN2 . . . 0

...
0

−aSnx+1 0
0 −aSnx+2 0
...


(15)

AT =



an
P1

aE1 0 . . . . . . aN1 0 0 . . . 0
aW2 an

P2
aE2 0 . . . 0 aN2 0 . . . 0

0 aW3 an
P3

aE3 . . . 0 0 aN3 . . . 0
...
0

aSnx+1 0
0 aSnx+2 0
...


(16)

The input matrix BT is simplified by keeping only the
relevant columns. The temperature of the steam layer
is considered the first input into the model and its
corresponding column in the BT matrix is found from
equation (9), where Tn is the input:

BT(:, 1) = [ 0 . . . 0 2D 2D . . . 2D ]T (17)

The temperatures of the western border are directly
measured and constitute the remaining inputs:

BT(:, i) = [ 0 . . . 0 2(D + F ) 0 . . . 0 ]T (18)
where i is temperature sensor TI-21, TI-22, TI-23, TI-24
and TI-25. The non-zero coefficient from this column is
selected with the help of equation (11) as the coordinates
of the control volume where the sensor is positioned are
known.
The output ŷn

T of the system is defined as:
ŷn

T = C̃Tx̂
n
T (19)

where C̃T is the output matrix of the system and is set such
to select the temperatures of the control volumes situated
on the eastern border.
A system with 6 inputs i.e. TI-01, TI-21, TI-22, TI-23,
TI-24 and TI-25 and 5 outputs i.e. TI-31, TI-32, TI-33,
TI-34 and TI-35 is, therefore, obtained.

3.3 Kalman Filter

Because the system from equation (14) might be inaccurate
when describing the temperature dynamics inside the
reactor, a Kalman estimator would be appropriate. Missing
dynamics might comprise the rotations of the snail, which
contributes to the slurry mixing, gaps in the material where
steam can be trapped and contributes to a non-uniform
heating or the steam injection from the bottom, which
heats the material as the steam travels to the top layer.
A static Kalman gain K̃T is designed such that to ensure
best fitting. This is achieved by formulating the state space
model as a grey box model with an unknown state noise
covariance matrix Rv.
The real system may be written in the following state space
formulation:{

xn+1
T = ÃT · xn

T + B̃T · un + G̃Tvn

yn
T = C̃T · xn

T + en
(20)

where matrices ÃT, B̃T and C̃T are defined as in (14)
and G̃T is the state noise propagation matrix. Since all
states represent temperatures, it is assumed that the noise
is of the same type for all states. All control volumes are
affected by its own noise sequence and when augmenting
the system together, vn becomes a column vector with
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the same length as xn
T . The noise vectors vn and en are

assumed to be normally distributed white sequences with
0 mean and Rv and, respectively, Re covariance matrices:{

vn ∈ N(0,Rv)
en ∈ N(0,Re)

(21)

The derivation of matrix G̃T is performed by deviating
the temperature variable T from the convection-diffusion
equation (5) by a random amount v assumed to be normally
distributed with 0 mean and variance Rv. It turns out
that G̃T = ÃT, which is expected since the system was
considered linear.
After the static Kalman gain is found, it is desired to bring
the model to its innovation form:{

x̂n+1
T = ÃT · x̂n

T + B̃T · un + K̃T · en
T

ŷn
T = C̃T · x̂n

T + en
T

(22)

where en
T is the innovation defined as:

en
T = yn

T − C̃T · x̂n
T (23)

3.4 Model Estimation and Validation

Two pairs of input-output data are extracted from the
logged sensor information presented in figure 3. One set is
used for model estimation and the other one for validation.
The grey-box estimation procedure is run and the below
state noise variance is found:

rv = 0.0037 (24)
which corresponds to a variation of ±0.1566 ◦C (2.5758σ).
Variance rv is positioned on the main diagonal of the state
noise covariance matrix Rv.
The predicted outputs and the real sensor data are
compared. Only the results for one output i.e. TI-35 are
presented in figure 8 due to space considerations. The
predicted output illustrated with a blue line stays within
the yellow confidence interval as shown in the top two
subplots. The innovations drawn in the bottom subplots
look white and stay within the confidence interval most of
the time, which proves that the Kalman filter has a good
performance.
Good fitting results were also obtained in the case of the
other outputs i.e. TI-34, TI-33, TI-32 and TI-31.

4. SENSOR MOUNTING

The model obtained in equation (22) is embedded into a
temperature soft sensor and is connected to the current
thermal reactor setup as in figure 9. The soft sensor requires
information mainly from the temperature sensor stripes.
If the horizontal speed is held constant then the system
matrices also remain constant and can be computed offline
resulting in a linear model. If the horizontal speed is
changed then the system matrices have to be updated
as the convection coefficient F needs to be recomputed
every time step.
In a block diagram formulation, the temperature soft sensor
is connected as in figure 10. The required signals and the
outputs of the sensor are explicitly shown in this figure.
The temperature soft sensor provides x̂T , which describes
the temperature distribution inside the reactor in a two
dimensional space.

Innovation Validation Set

e
1

[C
]

Time [hh:mm:ss]

Innovation Estimation Set

e
1

[C
]

Time [hh:mm:ss]

Model Validation TI-35

T
[C

]

Time [hh:mm:ss]

Model Estimation TI-35

T
[C

]
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08:00 09:00 10:0019:00 20:00 21:00
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Fig. 8. Model validation TI-35. A fitting of 87% is achieved
on both datasets. The top plots present the fitting
results while the bottom plots show the innovation or
the error estimation.

M

PC

PI-01 -/+

Steam

T

Fig. 9. Sensor mounting. The temperature soft sensor T
requires information from the installed temperature
measurements and from the nominal horizontal speed.
The pressure control system is also illustrated.

Real Plant
Thermal Reactor :

:

TI-01

TI-35

Temperature
Sensor

:
:

TI-21

Fig. 10. Temperature sensor mounting block diagram.

5. SIMULATION RESULTS

The temperature soft sensor has been implemented defining
a 60x5 grid i.e. 60 divisions on horizontal and 5 on vertical,
resulting in an overall model with 300 states. A resolution
of 5 divisions on vertical was preferred due to the existing
5 sensors distributed on the height of the reactor.
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Real logged data is fed into the sensor and a snapshot
is taken during the simulation. Figure 11 displays the
temperature distribution constructed from x̂T as isothermic
lines. This figure proves that the temperature model is able
to capture the temperature difference between the top and
the bottom part of the thermal reactor in real time. As
it was seen in figure 3, the temperature is subjected to
sinusoidal disturbances. The disturbances are more severe
in the upper part of the container and this is also visible
in figure 11. The lower right corner of the reactor has an
opening towards a downstream component, which acts like
a cold source. This is why the temperature decreases as
approaching the right ending of the reactor and the effect
is well captured by the temperature soft sensor.

 

 

Snapshot of the Reactor Temperature
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Fig. 11. Snapshot of isothermic lines.

The simulation was run assuming that the thermal reactor
is fully filled with biomass, which is, in fact, wrong. There
is no direct indication of the biomass level as it is difficult
to measure but it could be determined based on the results
from the new soft sensor. In figure 11 it is seen that the
upper part of the tank changes temperature more rapidly
than the lower half portion of the reactor, which rather
remains almost constant. This is an indication that the
internal environment does not have a constant density.
Therefore, the level of biomass can be estimated and, in
the current simulation case, a half filled reactor would
explain the isothermic lines.
After estimating the level of biomass, the density and
thermal conductivity of the control volumes not occupied
by biomass can be changed and a more accurate result
would be obtained.

6. CONCLUSIONS

A distributed model for the reactor temperature was
successfully derived given an irregular environment charac-
terized by temperature differences on both horizontal and
vertical axes. The heat convection diffusion equation from
computational fluid dynamics proved to give good results
in describing the temperature gradient. The Kalman filter
also proved to perform well and the obtained temperature
gradient captures most of the effects that occur. The state
space representation of the model was valuable for efficient
simulations and can be further used for monitoring or
control purposes.
The operator of the plant is now able to observe how the
biomass is treated in any point of the reactor. The operator
is also able to analyse the effects of the subsequent com-
ponents on the reactor temperature, like the temperature
drop that occurs near the opening end of the tank.

Valuable information can be obtained from the temperature
gradient with respect to the efficiency of the current
architecture of the thermal reactor. Ideally, the temperature
inside the reactor should be the same in any point of the
tank (a uniform environment). The plant operators are now
able to observe how efficient the bottom inlets of steam can
be and reconfiguration of the reactor can occur in order to
achieve a temperature environment closer to the ideal one.

Appendix A. TEMPERATURE MODELLING

A.1 The Finite Volume Method

The key step of the finite volume method is to integrate
equation (5) over the control volume:∫

∆V

ρc
∂T

∂t
dV +

∫
∆V

ρcu
∂T

∂x
dV =

∫
∆V

∂

∂x

(
κ
∂T

∂x

)
dV+

+
∫

∆V

∂

∂y

(
κ
∂T

∂y

)
dV +

∫
∆V

ST dV

(A.1)
Using the divergence theorem (Egeland and Gravdahl, 2002,
p. 403), the integrals containing partial derivatives with
respect to x and y from equation (A.1) can be rewritten
like below:∫

∆V

ρcu
∂T

∂x
dV =

∫
∆V

∂

∂x
(ρcuT ) dV =

∫
A

nT (ρcuT ) dA

∫
∆V

∂

∂x

(
κ
∂T

∂x

)
dV =

∫
A

nT
(
κ
∂T

∂x

)
dA

∫
∆V

∂

∂y

(
κ
∂T

∂y

)
dV =

∫
A

nT
(
κ
∂T

∂y

)
dA

(A.2)
where n is a unit vector normal to the surface. The
temperature in the control volume is assumed uniform
and this allows the evaluation of integrals (A.2) at the east
and west or south and north boundaries respectively:∫

A

nT (ρcuT ) dA = (ρcuAT )e − (ρcuAT )w∫
A

nT
(
κ
∂T

∂x

)
dA =

(
κA

∂T

∂x

)
e

−
(
κA

∂T

∂x

)
w∫

A

nT
(
κ
∂T

∂y

)
dA =

(
κA

∂T

∂y

)
s

−
(
κA

∂T

∂x

)
n

(A.3)

The results from (A.3) are substituted into (A.2) and then
into (A.1) and the following result yields:∫

∆V

ρc
∂T

∂t
dV + (ρcuAT )e − (ρcuAT )w =(
κA

∂T

∂x

)
e

−
(
κA

∂T

∂x

)
w

+

+
(
κA

∂T

∂y

)
s

−
(
κA

∂T

∂y

)
n

+ S̄∆V

(A.4)

where the source term in a control volume is averaged as S̄
and, therefore, considered constant inside the volume. The
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partial derivative with respect to time is isolated on the
left hand side of the equation:∫

∆V

ρc
∂T

∂t
dV =

(
κA

∂T

∂x

)
e

−
(
κA

∂T

∂x

)
w

+

+
(
κA

∂T

∂y

)
s

−
(
κA

∂T

∂y

)
n

+

(ρcuAT )w − (ρcuAT )e + S̄∆V

(A.5)

Equation (A.5) tells that the accumulation in time of
thermal energy is a result of three effects i.e. diffusion,
convection and generated heat by the control volume itself.
Diffusion occurs on horizontal and vertical, from west to
east and from north to south respectively. Accumulation of
energy is a balance between energy that enters the control
volume plus generated energy minus the amount of energy
that leaves the volume.

A.2 Discretization

Equation (A.5) is solved by integrating in time and then
is discretized using a parameterized method θ:

ρc∆V Tn+1
P = ρc∆V Tn

P +

∆t
[
θf (Tn

P , n, x) + (1− θ)f
(
Tn+1

P , n+ 1, x
)] (A.6)

where f is a function that gathers all the terms on the
right hand side of equation (A.5). The integration method
depends on parameter θ. If θ = 1 then, from equation
(A.6), the temperature in control volume P at time step
n+ 1 depends only on previous information from time step
n. This procedure is also known as the explicit Euler or
backward integration method and is equivalent to building
a rectangle from time step n. Parameter θ can also be 0
and then the rectangle is built from step n + 1 to step
n or, in other words, the temperature in control volume
P at time step n + 1 depends only on information from
time step n+ 1. When θ is 0, the procedure is also called
the implicit Euler or forward integration method. A more
accurate method is the Crank-Nicolson procedure, which
relies on trapezoids instead of rectangles and it corresponds
to θ = 1/2.
Equation (A.6) is divided by the integration time ∆t:

ρc
∆V
∆t T

n+1
P = ρc

∆V
∆t T

n
P +

θf (Tn
P , n, x) + (1− θ)f

(
Tn+1

P , n+ 1, x
) (A.7)

where f (Tn
P , n, x) gathers all the variables from time step

n. The partial derivatives from (A.5) can be approximated
like in the following example:

∂T

∂x

∣∣∣∣
e

≈ TE − TP

δxP E
(A.8)

where the partial derivative of temperature T with respect
to x is evaluated at the east boundary of the control
volume as the ratio between the difference of temperatures
in the centers of the control volumes E and P and the
distance between their centers δxP E . By conducting these
approximations, the following expression for f (Tn

P , n, x) is
found:

f (Tn
P , n, x) = κeAe

Tn
E − Tn

P

δxP E
− κwAw

Tn
P − Tn

W

δxW P
+

κsAs
Tn

S − Tn
P

δxP S
− κnAn

Tn
P − Tn

N

δxNP
+

+ρcuAwT
n
w − ρcuAeT

n
e + S̄∆V

(A.9)

The constant coefficients from (A.9) are grouped into:

{
Fe = ρcuAe

Fw = ρcuAw



De = κeAe

δxP E

Dw = κwAw

δxW P

Dn = κnAn

δxNP

Ds = κsAs

δxP S

(A.10)

where F is also known as the convection term and D is
called the diffusion term.
Two more temperatures remain to be evaluated i.e. the
temperature at the east boundary Te and the temperature
at the west boundary Tw. The flow direction is known as
being from west to east. It was assumed in the introduction
section of this chapter based on the real data that there
is not a lot of heat diffusion and the convection part has
a higher effect. In such cases, it is recommended to use
the upwind difference scheme (UDS), which considers the
temperatures at the east and west boundaries Te and Tw

as:
Te = TP Tw = TW (A.11)

The choice of the difference scheme can be quantized by the
use of the Peclet number, which defines the transportiveness
and is a measure of the ratio between convection and
diffusion:

Pe = F

D
(A.12)

If the Peclet number Pe is greater than 2 then the
convection effect is more prominent and an UDS scheme
is more appropriate. If Pe < 2 then heat diffusion is
more important and another approximation scheme is
recommended (Bingham et al., 2010) i.e. the central
difference scheme (CDS).
The source quantity of volume P from (A.9) can vary in
time and it would be preferred to linearize it around Tn

P :
S̄∆V = Su + SPT

n
P (A.13)

and then equation (A.9) becomes:
f (Tn

P , n, x) = De (Tn
E − Tn

P )−

−Dw (Tn
P − Tn

W ) +Ds (Tn
S − Tn

P )−Dn (Tn
P − Tn

N ) +

+FwT
n
W − FeT

n
P + Su + SPT

n
P

(A.14)
f (Tn

P , n, x) = (SP −De −Dw −Ds −Dn − Fe)Tn
P +

+DeT
n
E + (Dw + Fw)Tn

W +

+DsT
n
S +DnT

n
N + Su

(A.15)
Function f is also evaluated at time step n+ 1:
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f
(
Tn+1

P , n+ 1, x
)

= De

(
Tn+1

E − Tn+1
P

)
−

−Dw

(
Tn+1

P − Tn+1
W

)
+

+Ds

(
Tn+1

S − Tn+1
P

)
−Dn

(
Tn+1

P − Tn+1
N

)
+

+FwT
n+1
W − FeT

n+1
P + Su + SPT

n+1
P

(A.16)

f
(
Tn+1

P , n+ 1, x
)

=

= (SP −De −Dw −Ds −Dn − Fe)Tn+1
P +

+DeT
n+1
E + (Dw + Fw)Tn+1

W +DsT
n+1
S +DnT

n+1
N + Su

(A.17)
The expressions of function f at time steps n and n+ 1 are
substituted into equation (A.7) and all constant coefficients
are grouped as below:
an+1

P Tn+1
P = an

PT
n
P + an

ET
n
E + an

WTn
W + an

ST
n
S + an

NT
n
N +

+ an+1
E Tn+1

E + an+1
W Tn+1

W + an+1
S Tn+1

S +
+ an+1

N Tn+1
N + Su

(A.18)

Coefficients an
P , an

E , an
W , an

S , an
N and an+1

P , an+1
E , an+1

W ,
an+1

S , an+1
N are detailed next:

an
P = ρc

∆V
∆t − θ (De +Dw +Ds +Dn + Fe − SP )

an
E = θDe

an
W = θ (Dw + Fw)
an

S = θDs

an
N = θDn

(A.19)

an+1
P = ρc

∆V
∆t +

+ (1− θ) (De +Dw +Ds +Dn + Fe − SP )
an+1

E = (1− θ)De

an+1
W = (1− θ) (Dw + Fw)
an+1

S = (1− θ)Ds

an+1
N = (1− θ)Dn

(A.20)
If coefficients (A.19) and (A.20) remain constant in time
then the temperature model described by equation (A.18)
is linear.

A.3 Boundary Conditions

The boundary conditions are set as suggested by (Bingham
et al., 2010) and will be explained next. There are two
types of boundary conditions depending on whether the
temperature is considered known at the border or the
temperature gradient or energy loss is estimated at the
border. When the temperature is set to a value, the
boundary condition is also called a Dirichlet condition.
Figure 5 illustrates the Dirichlet setup for a general grid
where the boundary condition is notated as Ti where i is
one of the borders east e, west w, south s or north n.
In the case of the thermal reactor, the temperature on the
northern boundary is directly measured with 3 sensors and

is considered constant and known on the x axes. This is
the indication of a steam layer that is formed on the top
part of the reactor. A virtual or auxiliary control volume is
created at the boundary with a temperature TaN

that has
to be determined such that at the boundary a temperature
Tn or T north is reached. A linear interpolation is used
between the temperature from the centers of the auxiliary
aN volume and current P volume:

T (y) = Tn + TP − TaN

∆y y (A.21)

where T (y) is the temperature along the y axes, Tn is the
temperature at the northern border, TP is the temperature
in the control volume P , TaN

is the temperature of the
auxiliary control volume and ∆y is the distance between
P and aN . Temperature T (y) is evaluated at the center of
the auxiliary volume considering that the y axes has its
origin at the northern border and pointing downward:

T

(
−∆y

2

)
= TaN

⇒

TaN
= Tn −

TP − TaN

∆y
∆y
2 = Tn −

TP − TaN

2

(A.22)

from where the center temperature of the auxiliary control
volume TaN

is found:

TaN
= Tn + TaN

2 − TP

2 ⇒
TaN

2 = Tn −
TP

2 ⇒ TaN
= 2Tn − TP

(A.23)

Equation (A.18) is evaluated for the control volumes that
have a known temperature at the boundaries considering
the auxiliary control volumes. In the case of a northern
auxiliary neighbor equation (A.18) becomes:

an+1
P Tn+1

P = an
PT

n
P + an

ET
n
E + an

N (2Tn − Tn
P )+

+an
ST

n
S + an

WTn
W + an+1

E Tn+1
E +

an+1
N (2Tn − Tn+1

P ) + an+1
S Tn+1

S + an+1
W Tn+1

W + Su

(A.24)

The source term and the coefficients of Tn+1
P and Tn

P of
the control volumes subjected to the boundary conditions
change as below:

(an+1
P + an+1

N )︸ ︷︷ ︸
an+1

P
←

Tn+1
P = (an

P − an
N )︸ ︷︷ ︸

an
P
←

Tn
P + an

ET
n
E+

+ an
ST

n
S + an

WTn
W + an+1

E Tn+1
E +

+ an+1
S Tn+1

S + an+1
W Tn+1

W +
+ Su + 2Tn(an

N + an+1
N )︸ ︷︷ ︸

Su←
(A.25)

It is important to set an+1
N and an

N to 0 after the
previously indicated updates have been performed in order
to disregard the auxiliary control volume.
The same Dirichlet boundary conditions are applied on
the western boundary of the reactor. Remember from the
process description chapter that there are several sensors
i.e. TI-1211621, TI-1211622, TI-1211623, TI-1211624 and
TI-1211625 positioned on the y axes at the beginning of
the reactor. The temperature inside the reactor will be
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modeled starting from this position onward and, therefore,
these sensors constitute the western boundary conditions.
If the tank is insulated then the partial derivative of the
temperature with respect to the x or y axes is considered
null. If there are losses of heat energy due to insulation
then this derivative may have a non-zero value. The reactor
is considered perfect insulated at all of its borders although
one might include the opening towards the hydrocyclone
as a loss of energy. It will be later shown that this energy
loss can be neglected. Boundary conditions with known
temperature derivatives are also called Neumann type
conditions and are illustrated in the same figure 5 where
the derivatives Dn, Dw, De and Ds are positioned at the
borders.
An auxiliary control volume is created just as in the Dirchlet
case (Bingham et al., 2010) but this time, the derivative
at the border is known and approximated as:

De ≈
TP − Ta

∆x ⇒ TaE
= TP −∆xDe (A.26)

where De is the derivative at the eastern border considered
as an example to illustrate the procedure. The temperature
of the auxiliary control volume is then easily found as in
(A.26). Equation (A.18) is then reevaluated at the eastern
boundary:

an+1
P Tn+1

P = an
PT

n
P + an

E(Tn
P −∆xDe) + an

WTn
W +

+an
ST

n
S + an

NT
n
N +

+an+1
E (Tn+1

P −∆xDe) + an+1
W Tn+1

W +

+an+1
S Tn+1

S + an+1
N Tn+1

N + Su

(A.27)

The source term and the coefficients of Tn+1
P and Tn

P are
updated as below:
(an+1

P − an+1
E )︸ ︷︷ ︸

an+1
P
←

Tn+1
P = (an

P + an
E)︸ ︷︷ ︸

an
P
←

Tn
P + an

WTn
W + an

ST
n
S

+ an
NT

n
N + an+1

W Tn+1
W + an+1

S Tn+1
S +

+ an+1
N Tn+1

N +
+ Su −∆xDe(an

E + an+1
E )︸ ︷︷ ︸

Su←
(A.28)

Again, it is important not to forget to set an
E and an+1

E to
0 in order to disregard the auxiliary point. Following the
example for the eastern boundary, the southern border can
be processed. Notice that, if the derivative is considered
null as in this case, the source term does not need to be
updated.
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Introduction

Switching systems have the property that their dynamical behaviour may switch
between a number of different modes. Identification of switching systems con-
sists of identifying both the individual models which describe the system in
the various modes, as well as the time instants when the mode changes have
occurred. The problem therefore consists of a numerically demanding coupled
parameter identification and clustering problem. Support vector machines are
a robust and powerful technique for data classification and black-box system
identification problems, whereas novel sparse optimization techniques provide
an efficient method for finding sparse solutions of identification problems. In
this study, support vector regression is applied in combination with sparse op-
timization to the switching system identification problem.

Method

System identification is the field of modelling dynamic systems to construct a
mathematical model from measured data which describes how the input, the
output and the disturbances are related. In this paper we are trying to identify
the switching system which has the different dynamic form. Switching system
described by two sets of states:

discrete state: determines the active mode
continuous state: evolves according to the dynamics of the active mode.

In mathematical form we are trying to find model parameter θ of the system

y(k) = ϕ(k)T θi + e(k)

where
ϕ(k)T = [y(k − 1), ..., y(k − r), u(k), ..., u(k − r)]

i ∈ {1, 2, ...}
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In our method we are going to identify switching system by using Support
Vector Regression and Sparse Optimization together.
Support vector regression tries to find parameter such that the maximum num-
ber of data points lie within the epsilon-wide insensitivity tube [Vapnik, 1995].

Figure 1: ε-insensitive tube

Identify the parameter θ in yk = ϕT
k θ by solving :

Min
1

2
‖ θ ‖2 +C

N∑
K=1

(ξk + ξ∗k)

subject to

yk − ϕT
k ≤ ε+ ξk

ϕT
k − yk ≤ ε+ ξ∗k

ξk, ξ
∗
k ≥ 0

The key idea is to construct a Lagrange function from the primal objective
function and the corresponding constraints, by introducing a dual set of vari-
ables. It can be shown that this function has a saddle point with respect to the
primal and dual variables at the solution [Smola and Scholkopf ,2003].

In dual problem form, the saddle point condition can be used to eliminate
the primal variables(θ, ξ, ξ∗)and Optimal Lagrange multipliers (α, α∗)are deter-
mined. The optimal parameters are given by:

θ =
N∑

K=1

(αk + α∗
k)ϕk

In sparse optimization we are looking for simple approximate solution of opti-
mization problem. LASSO is a sparse optimization method for linear regression
with L1-penalty at the cost of least squares fit. It Shrinks some coefficients and
sets others to zero [Tibshirani 1996].

Minu‖y −Au‖22 + λ‖u‖1
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Dual problem in Support Vector Regression can be written as a LASSO
problem for sparse optimization. The crucial question is whether the solution
u of the dual problem is sufficiently sparse. Here we can use the fact that our
problem is equivalent to LASSO regression. Hence our dual problem approaches
the LASSO problem as C →∞ .

Minu‖y −Au‖22 + ε‖u‖1
subject to

−C ≤ u ≤ C

where
uk = αk + α∗

k

With this method, we can select the sparse data points that belong to one mode
and find the model parameter of this mode, by applying this method iteratively
all of the modes are discovered. As in LASSO, for good results reweighting may
have to be performed iteratively.

Example

Consider the simple switching system:

y(k) = a(k)y(k − 1) + b(k)u(k) + e(k)

where
a(k) = 0.9 , b(k) = 1 for k = (30n+ 1 : 30n+ 20)

a(k) = 0.4 , b(k) = −0.5 for k = (30n+ 21 : 30(n+ 1))

Figure 2: Switching the parameters of system
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Figure 3: The first iteration to find the first mode and data points

Figure 4: Output,Predicted Output,Predicted Error

U(k) and e(k) are normally distributed with standard deviation 1 and 0.1.
SVR design parameters C = 100 and ε = 0.15, the following parameter estimates
were obtained:

â1(k) = 0.8901 , b̂1(k) = 1.0065

â2(k) = 0.3930 , b̂2(k) = −0.4976

RMSE(Prediction error) = 0.1283 RMSE(Noise) = 0.1085

Proceedings of the 17th Nordic Process Control Workshop 
Technical University of Denmark, Kgs Lyngby, Denmark 
January 25-27, 2012

21



ModelID, an Interactive Program for
Identification of MPC Relevant State-Space

Models.

Jørgen K. H. Knudsen ∗

∗ 2-control Aps, Frimodtsvej 11, DK-2900 Hellerup, Denmark
(e-mail: JoeK@2-control.dk)

Abstract: This paper describes a practical work flow during identification of linear time
invariant state space models for MPC controllers using the new ModelID system identification
program. ModelID is designed for process engineering practitioners, who want to develop models
without having a detailed knowledge of system identification theory or computer programming.
After preprocessing of process data, the user is guided through a set of MISO identifications.
After inspection of the impulse responses from the MISO models, the MISO models are combined
into a MIMO state space model, using SVD decomposition of Hankel matrices. Finally the state
space model is tested in a MPC control loop.
Estimation of time lags in the process are demonstrated using simple (known) processes with
different levels of process and measuring noise. The same processes are used to illustrate the
problems encountered, when the processes cannot be described as ARX processes. The use of
instrumental variable methods and linear filtering provides a solution to these problems.
The identification cycle is supported by many graphical outputs, providing valuable information
about the process and the evaluated model.
ModelID is developed for the windows platform, using the C#/.NET based library MPCMath.

Keywords: system identification,instrumental variable methods, state-space models, MPC

INTRODUCTION

The most time consuming task in implementation of MPC
control is the development of the model, required for the
controller. In many cases linear time invariant models
are used for the controller, and typically the models are
derived from plant data. Plant data can be historical
data from data logging systems, or data generated from
carefully planned experiments on the plant. ModelID is an
identification program aimed at assisting the development
of models. ModelID is designed for people who does not
have a deep theoretical background in system identifica-
tion or computer programming.

ModelD is a GUI based tool, developed for the windows
platform, using the C#/.NET based library MPCMath
(Knudsen, 2010b).

The purpose of this paper is to illustrate the practical
work flow during system identification using ModelID. The
paper demonstrates how time delays in the system can
be estimated from whitening filtered cross correlations or
from impulse responses calculated during the identification
cycle. Finally the paper demonstrates the use of instru-
mental variable algorithms, in cases where the system
cannot be adequately described by ARX models

ModelID consist of a set of tools running in a graphical
portal. These tools are invoked sequentially during the
identification work flow.

The steps and tools in the work flow are:

Tool Tasks
Data tool Read data from file and perform

initial data treatment.
Model tool Set model dimensions and process

delays.
Perform MISO identifications.

Impulse tool Set impulse response length and cal-
culate impulse responses.
Evaluate model quality from im-
pulse responses.

Reduction tool Perform SVD reduction. Select di-
mension of state space model and
calculate MISO state space models
in innovation form.

MPC tool Initial tuning and test of MPC con-
troller.

DATA TOOL

Process data, read from a comma separated file, is dis-
played for removal of outliers and removal of fall-outs.

The four tank process is used to illustrate the work-flow.
The four tank system, illustrated in Fig. 1, was introduced
by Johanson (2000) as a benchmark for control design. Fig.
2 illustrates simulated raw data for this process.

The Controlled variables are the water levels in the four
tanks, H1, H2, H3 and H4. The manipulated variables are
the two inflows, F1 and F2.
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Fig. 1. Four Tank Process used to illustrate process iden-
tification work flow

Fig. 2. Simulated raw process data for the four tank
process.

The left panel of ModelID’s GUI have buttons for the
controlled variables and the manipulated variables. These
are used to display and edit detailed information for the
variables. Fig. 3 illustrates the removal of spikes and fall
outs by selection of a threshold parameter for spikes and
the value for a fall out situation. Finan et al. (2010)
describes the handling of these problems.

After removal of spikes and fall outs the data set is divided
into a part used for identification and a part used for
validation

MODEL TOOL

The identification procedure

The linear time invariant system is given by

Y (t) = G(q)U(t) +H(q)E(t) (1)

where

Fig. 3. Spikes and fall outs removal.

Y (t) ∈ Rny Controlled variables.
U(t) ∈ Rnu Manipulated variables.
E(t) ∼ Niid(0, I) White noise, with I being the

identity matrix.
G(q) ∼ Rny×nu Deterministic transfer func-

tion between the controlled
variables and the manipu-
lated variables.

H(q) ∼ Rny×ny Transfer function of the dis-
turbance model.

q The time shift operator
qx(t) = x(t + 1) and
q−1x(t) = x(t− 1).

The controlled variables, Y (t), are split into a determin-
istic part Yd(t) and a stochastic part W (t), with Y (t) =
Yd(t) +W (t). The transfer functions in (1) are assumed to
have the structure

G(q) =
B(q)

A(q)
(2)

H(q) =
Λ

D(q)
(3)

where the polynomials are

A(q) = I −
sy∑
j=1

Ajq
−j Aj ∈ Rny×ny (4)

B(q) =
su∑
j=1

Bjq
−j Bj ∈ Rny×nu (5)

Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λny

 (6)

D(q) = I −
sd∑
j=1

Djq
−j Dj ∈ Rny×ny (7)

The deterministic one step predictor for this system is

Ŷ (t|t− 1) =

sy∑
j=1

AjY (t− j) +

su∑
j=1

BjU(t− j) (8)
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The deterministic predictor for the individual controlled
variable is

ŷi(t|t− 1) =

sy∑
j=1

ai,jY (t− j) +
su∑
j=1

bi,jU(t− j) (9)

where ai,j and bi,j are the i rows of Aj and Bj , 1 ≤ i < ny.

The prediction errors for the individual controlled vari-
ables are defined by

εi(t) = yi(t)− ŷi(t) (10)

Having n samples of Y (t) and U(t) , 0 ≤ t < n , estimated

Â(q) and B̂(q) can be determined minimizing ny MISO
problems

Vi =
n∑

t=1

`i(Fi(q)εi(t)) (11)

where `i are suitable norm functions. In ModelID the
`2, `1, `∞ and `Huber norms are provided.

Fi(q) are linear low pass filters reducing the effect of high
frequency noise signals, defined by

F (q) =
1− f

1− fq−1
0 ≤ f < 1 (12)

No filtering is obtained by setting f = 0. Selecting f → 1
blocks all information.

Having identified the deterministic part Ĝ(q) as the com-
bined result of ny MISO identifications, the stochastic
noise signal can be estimated

W (t) = Y (t)− Ŷ (t) = Y (t)− Ĝ(q)U(t) (13)

with the one step predictor:

Ŵ (t|t− 1) =

sd∑
j=1

DjW (t− j) + ΛE(t) (14)

Cross correlations and model dimensions

The cross correlations between the manipulated variables
and the controlled variables reveal important information
about model structure and time delays in the process. Pure
cross correlations, as shown in Fig. 4, show that there is no
or limited interaction between the pairs F1-H3 and F2-H4.

Filtering the u(t) and y(t) with a filter Fwh(q), which
tries to make the manipulated variable u(t) as white as
possible, increases the information content (as well as the
noise level).

uF (t) = Fwh(q)u(t) (15)

yF (t) = Fwh(q)y(t)

The whitening filter Fwh(q) is determined by modelling the
manipulated variable as an AR-process with dimension 10.

Fig. 4. Model Tool Four Tank Process correlations

Fig. 5. Model Tool Correlations with white filter option.
The correlations show first order dynamic between the
pairs F1-H1, F1-H4. F2-H2, F2-H3 and higher order
dynamics between F1-H2, F2-H1.

Fwh(q)u(t) = e(t) (16)

Fig. 5 shows the correlation plot using the white filter
option. The correlations indicates that the relations be-
tween F1-H1, F1-H4, F2-H2 and F2-H3 could be first order
dynamics, and the relations between F1-H2 and F2-H1
second order or higher dynamics. The correlation plot also
indicates that there are no pure time delays involved in
the plant dynamics.

At this stage the user has to enter estimated delays for
the manipulated variables and the dimensions sy, su and
sd in equations (8) and (14). This is an iterative process,
where the user returns from the subsequent tools to this
point, until a satisfactory result is obtained.

Having selected the model dimensions, the results of the
individual MISO identifications are displayed by clicking
the controlled variable buttons at the left side of the GUI
panel. In Fig. 6, the upper left graph shows the plant
measurements and the the output of the one step predictor
(9). The lower left graph shows the prediction error εi
(10). The upper right graph shows the distribution of εi,
the normal distribution curve corresponding to εi and the
penalty function corresponding to the selected norm.

The lower right quadrant displays the obtained MISO
model for the deterministic and stochastic part of the
MISO model. At this point the Dj in (14) are assumed
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Fig. 6. Model Tool MISO Identification

to be diagonal matrices, giving a ”MISO” estimate of the
stochastic noise.

At this point the user selects the desired norms and filters
for the MISO identifications. Application of the different
norms are described in Finan et al. (2010).

The `2 norm is the standard norm for system identification
tasks. The problem can be solved efficiently using either
QR or Cholesky factorization algorithms. The disadvan-
tage of the `2 norm is the sensitivity to outliers. The `1
norm is less sensitive to outliers and leads to the so called
robust identification algorithms.

The Huber Norm, `Huber, defined by (17), is a compromise
between `2 and `1 norms

`Huber(εi) =

{ 1

2
ε2i |εi| ≤ γ

γ|εi| −
1

2
γ2 |εi| > γ

(17)

`1 and `∞ norms problems are solved as Linear Pro-
gramming problems. The problems with a Huber-norm
are solved as Quadratic Programming problems. Even
though parameter estimation using these norms requires
more computer resources than least-squares parameter
estimation, such problem are solvable in acceptable time
on standard laptop computers.

When satisfactory result has been obtained for all the
ny identifications, a ”MIMO” model for the stochastic
noise (3) is calculated before calling the impulse tool. The
stochastic model is determined by regression of the pre-
dictor equation (14), assuming Di to be general matrices.

IMPULSE TOOL

The impulse responses for the deterministic part of the
identified model are calculated using (8) with

ui(t) = 1 t = 0 1 ≤ i ≤ nu
ui(t) = 0 t > 0

A sufficiently long length of the calculated impulse re-
sponses, M , must be entered, ensuring that they end close
to zero.

If the model dimensions sy and su are chosen too high, the
impulse responses will start with oscillating components.

Fig. 7. Impulse responses for the deterministic model.

Fig. 8. The impulse responses for the MIMO disturbance
model

The impulse responses will also display pure delays be-
tween the controlled variables and the manipulated vari-
ables. Here the user can return to the Model tool and mod-
ify the model dimensions and delays for the manipulated
variables.

The impulse responses for the stochastic part are calcu-
lated using (14) with

wi(t) = 1 t = 0 1 ≤ i ≤ ny
wi(t) = 0 t > 0
E(t) = 0 t ≥ 0

The user can select the desired structure for the stochastic
part of the model (DMIMO, DMISO or DARX). The DARX

option setsDi = Ai resulting in the noise model of an ARX
process. This option is useful if the plant data hos no or
negligible stochastic components.

The stochastic model is interesting for two reasons. Pri-
marily it shows to what degree the processes can be
described as ARX processes. If the process is not well
represented by an ARX structure, the `2, `1 and `Huber

norm produces biased estimates. The bias increases with
the noise level. Secondly, the stochastic model is used to
calculate the Kalman gain, K, of the final state space
model (18). The Kalman gain is required for tracking
between the physical plant and the internal model in the
MPC controller. If neither the ”MIMO”, MISO” or the
”ARX” stochastic models are applicable, the Kalman gain
must be specified using other methods.
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Fig. 9. The reduction tool creates state space models in
innovation form.

REDUCTION TOOL AND STATE-SPACE MODEL

In the reduction tool a block-Hankel matrix is constructed
from the impulse responses. The Hankel matrix is factor-
ized using a singular value decomposition (SVD)algorithm.
As described in Appendix A, the state space model in
innovation form can be realized by model reduction in
balanced form using the SVD of the Hankel matrix. The
state space model in innovation form is

X(t+ 1) = AX(t) +BU(t) +KE(t) (18a)

Y (t) = CX(t) + E(t) (18b)

The rank of the Hankel matrix is equal to the minimal rank
for a state-space system representing the process. For a
NDim system, the first NDim singular values are non zero
and the subsequent singular values close to zero.

The result of the SVD reduction is shown in Fig. 9. The
upper left graph shows the singular values from the SVD.
The values show that the system can be represented by a
state-space model of dimension NDim = 4. The user enters
the desired dimension, NDim, and ModelID calculates the
state space model as shown in the lower half of Fig. 9.

The upper right part of the diagram show the open and
closed loop eigenvalues (A−C ∗K in eq. (18))for the state
space model.

If the length of the impulse responses is chosen too
short, the singular values will decrease gradually, making
the selection of the state-space model dimension, NDim,
difficult.

MPC TOOL

ModelID includes a MPC module, where tuning of normal
MPC and soft constrained MPC (Prasath et al., 2010;
Knudsen, 2010a) for the derived State-Space model can
be tested simulating the MPC control loop.

ESTIMATING TIME DELAYS

Proper estimation of time delays between the manipulated
variables and the controlled variables is important in
order to minimize the dimension of the identified state
space model. Data from first order and second order

Fig. 10. MPCTool Controlling the Four Tank Process

Fig. 11. First order ARX processes signal with increasing
noise level

Fig. 12. First order ARX processes cross correlations

processes with pure time delays will be used to illustrate
the problem.

The first order system, with a delay of 5 second and a time
constant on 10 seconds, is given by

y(t) = 0.9048y(t− 1) + 0.0952u(t− 6) + σ ∗ e(t) (19)

Fig. 11 shows three responses from (19) with noise variance
σ2 = (0.0, 0.01, 0.1). With these noise levels, the time delay
of 5 second is shown on all three response. Fig. 13 shows
the impulse responses with MISO model dimension sy = 1
, su = 6. All the three responses clearly shows the delay.
The user should return to the Model tool at set su = 1
and set a delay of 5 seconds for the manipulated variable.
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Fig. 13. First order ARX processes Impulse responses

Fig. 14. Second order ARX processes signal with increasing
noise level

The second order ARX system, with with a time delay of
5 second, a time constant of 10.0 second and damping of
0.5, is given by

y(t) = 1.8953y(t− 1)− 0.9048y(t− 2)

+ 0.0047u(t− 6) + 0.0047u(t− 7) + σe(t) (20)

Fig. 14 shows three responses from (20) with noise vari-
ance σ2 = (0.0, 0.01, 0.1). With increasing noise level, the
proper time delay cannot be determined from the corre-
lation plots on Fig. 15. The impulse responses obtained
setting sy = 2 and su = 7 is shown on Fig. 16. It is
evident from Fig. 16 that the proper delay is obtained for
all three noise levels. The user should return to the model
tool at set su = 2 and set a delay of 5 seconds for the
manipulated variable.

INSTRUMENTAL VARIABLE METHODS

Regressions using the the `2, `1, `∞ and `Huber norms
delivers unbiased estimates if we are dealing with ARX
processes. If the process cannot be properly described as
an ARX process, the estimate will be biased.

An example is data from a second order Output Error
process with a time constant of 10.0 sec and a damping of
1.5. This process is described by

y(t) =
b1q
−1 + b2q

−2

1− a1q−1 − a2q−2
u(t) + σe(t) (21)

Fig. 15. Second order ARX processes cross correlations.

Fig. 16. Second order ARX processes impulse responses.

with a1 = 1.7322 , a2 = −0.7408, b1 = 0.0045 and
b2 = 0.0041

Regression results with the `2 norm, using ModelID are
shown if Table 1. The parameters for σ2 = 0.0 are the
correct ones. The results obtained with σ2= 0.01 and 0.1
are very biased.

Table 1. `2 norm estimates

σ2 a1 a2 b1 b2
0.0 1.7322 -0.7408 0.0045 0,0041
0.01 0.5515 0.3382 0.0028 0,0730
0.1 0.4376 0.4282 0.0262 0,0954

The Instrumental Variable methods (Ljung, 1999; Söderström,
2000) are a possible solutions to his problem. ModelID
has implemented the IV4 algorithm (Ljung, 1999) , which
can be selected during the MISO identifications with the
Model tool. The results obtained with the IV4 algorithm
are shown if Table 2.

Table 2. IV4 estimates with Filter = 0.5

σ2 a1 a2 b1 b2
0.0 1.7322 -0.7408 0.0045 0,0041
0.01 1.8953 -0.9048 0.0126 0.0031
0.1 1.9390 -0.9447 0.0126 0,0069

The IV4 algorithm gives a much better estimate. In some
cases the IV4 algorithm gives an unstable predictor, which
luckily is very clearly seen. The predictor can be stabilised
using the filter option. If stable, the prediction are rather
insensitive to the selected value of the filter.
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CONCLUSION

The ModelId is a convenient tool to estimate linear time
invariant model for MPC controllers. The aim is to present
a tool which is relatively simple to use for the practical
user.

In he future it would be natural to include sub-space meth-
ods, and support for Identification of closed loop data.
Further investigations of Instrumental Variable algorithms
is another interesting field.
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Appendix A. GENERATING THE STATE SPACE
MODEL

The Markov parameters for the process can be formed
from the impulse responses (Maciejowski, 2002).

H(t) =
h11(t) h11(t) . . . h1nu

(t) he11(t . . . he1ny
(t)

h21(t) h21(t) . . . h2nu
(t) he21(t) . . . he2ny

(t)
...

...
. . .

...
...

. . .
...

hny1(t) hny1(t) . . . hnynu
(t) heny1(t) . . . henyny

(t)


(A.1)

where hij(t) is the deterministic impulse response for
Controlled variable i to Manipulated variable j at time t
and heij(t) is the stochastic impulse response for Controlled
variable i to Manipulated variable j at time t

From this the Hankel matrices HM,M and H̄M+1,M+1 can
be formed:

HM,M =


H(1) H(2) . . . H(M)
H(2) H(3) . . . H(M + 1)

...
...

. . .
...

H(M) H(M + 1) . . . H(2M − 1)

 (A.2)

H̄M+1,M+1 =


H(2) H(3) . . . H(M + 1)
H(3) H(4) . . . H(M + 2)

...
...

. . .
...

H(M + 1) H(M + 2) . . . H(2M)


(A.3)

Singular Value Decomposition, SVD, gives

HM,M = [K1K2]]

[
Λ1

Λ2

]
[L1L2]

′ ≈ K1 ∗ Λ1L
′
1 (A.4)

From this the matrices for the State-Space model in
innovation form can be calculated

X(t+ 1) = AX(t) +BU(t) +KE(t) (A.5a)

Y (t) = CX(t) + E(t) (A.5b)

where

A = Λ
−1/2
1 ∗K ′1H̄M+1,M+1L1Λ

−1/2
1 (A.6a)

B̃ = Λ
1/2
1 [(L1)1:nu+ny,:]

′ (A.6b)

B = B̃1:nu,: (A.6c)

K = B̃nu:nu+ny,: (A.6d)
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Data Mining for Process Identification 
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SE-581 83 Linköping, Sweden 
 
Krister Forsman  
 
Perstorp AB 
SE-284 80 Perstorp, Sweden 
 
 

Abstract 
 
Performing experiments for system identification is often a time-consuming task 
which may also interfere with the process operation. With memory prices going 
down, it is more and more common that years of process data are stored (without 
compression) in a history database. The rationale for this work is that in such stored 
data there must already be intervals informative enough for system identification. 
Therefore, the goal of this project was to find an algorithm that searches and marks 
intervals suitable for process identification (rather than performing completely 
automatic system identification). For each loop, 4 stored variables are required; 
setpoint, manipulated variable, process output and mode of the controller. 
 
The proposed method requires a minimum of knowledge of the process and is 
implemented in a simple and efficient recursive algorithm. The essential features of 
the method are the search for excitation of the input and output, followed by the 
estimation of a Laguerre model combined with a chi-square test to check that at least 
one estimated parameter is statistically significant. The use of Laguerre models is 
crucial to handle processes with deadtime without explicit delay estimation. The 
method was tested on three years of data from more than 200 control loops. It was 
able to find all intervals in which known identification experiments were performed as 
well as many other useful intervals in closed/open loop operation.  
 
 
*also ABB Corporate Research, Västerås, Sweden 
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Abstract 

Statoils Kalundborg Refinery has a wide use of MPC (Model Predictive Control). 

The Advanced Process Control history at Kalundborg Refinery goes many years back. The 

first Distributed Control System (DCS) was implemented in 1986, but before that, some 

Advanced Process Control (APC) was done using a PMX computer. With the DCS system the 

start came of the current APC use. For the first many years the APC work was done in close 

cooperation with Exxon, using their experience, know-how and software. Later, in 1999, the 

use of MPC started, based on a close cooperation with Statoils Research Centre in Trondheim, 

Norway.  

 

The MPC tool currently used is based on in-house technology called SEPTIC, Statoil 

Estimation and Prediction Tool for Interactive Control. SEPTIC is used widely within Statoil, 

both in upstream and downstream oil production. 

 

Since 1999 a total of 17 MPC applications have been implemented at Kalundborg refinery 

with a total of 119 Manipulated Variables and 247 Controlled Variables. Total incentive in 

running MPCs is 135 MDkr/year. Still the MPC implementation continues. 

 

The MPC applications include a major system that uses Dynamic Real Time Optimization in 

order to control the refinery’s gasoil production. Another MPC controls the gasoline blending 

operations which is a batch type process. Most of the MPCs control distillation columns, 

whereas some optimize whole process units. 
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Industrial Challenges from the Cement and Mining Industry 
 

 
B. Recke*, H. Yazdi,* 

 


*FLSmidth A/S,Vigerslev Alle 77, 2500 Valby, Denmark 
DK (Tel: +45 36182700; e-mail:bre@ flsmidth.com). 

 

Abstract: Model predictive control is widely used in industry today and has been used now for several 
decades. However some challenges in applying the technique still exist and remains as open questions to 
be addressed by the academic community or in cooperation between academia and industry. This 
presentation will try to exemplify some of these challenges. This first challenge in applying model based 
techniques is to get a model that fits well with the plant dynamics. This should preferably be obtained 
without disturbing the normal operation of the plant. In an industrial environment where the system has 
large damping effects and all measurements are quite noisy the traditional academic approach of making 
small perturbations to the actuator signals does not work very well. In this area more work is needed to 
come up with a good solution that can give 'good enough' models to be used in control. This raises the 
second issue how well does the model have to fit the plant in order to be good enough for closed loop 
control? And by which error calculation method do you get the best numbers to judge this? Assuming 
that a model is somehow obtained the next open question is tuning rules for MPC. These are lacking from 
the theoretical considerations and that leave the tuning of e.g. weights and limits as more of an art work 
or gut and experience based assignment. This makes it very difficult to effectively train responsible 
persons on the plant that should maintain the system how exactly they should be doing this. Furthermore 
these maintenance people on plants normally do not have a Ph.d.-degree or similar advanced math 
education which further emphasizes the need for simple and understandable tuning rules. These and other 
related practical issues will be given in the presentation with the practical application in the industry of 
Cement and Mining. 

Keywords: Industrial examples, MPC, tuning rules. 
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Novozymes Fermentation Pilot Plant 
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Novozymes, arguably the largest enzyme producer in the world, is constantly looking for innovative 
control strategies and novel methods for optimizing the key unit operation for production of enzymes; the 
fermentation process. For this purpose the central fermentation pilot plant plays a key role and extensive 
collaboration with academia has resulted in many fruitful results over the years. This presentation will 
provide a review of some of the projects that has been conducted within the areas of fed-batch process 
control, multivariable control, oxygen control in fungal fermentations and probing control. Finally, a 
general overview of the control set-up used in the Novozymes pilot plant will be given and possibilities 
for future collaboration with academia presented. 
 
Keywords: Novozymes, fermentation, probing control, fed-batch control, oxygen control, multivariate 
control 
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Using computer models to save energy: An early warning model for tunnel 
pasteurizer energy consumption 

 
Falko Jens Wagner* 

 

* Sander Hansen Competence Centre, Krones Nordic,  
2840 Holte, Denmark (e-mail: falko.wagner@krones.dk) 

 

Abstract: The Sander Hansen Virtual Pasteurizer (VP) is a system for monitoring pasteurizer 
performance. It serves as an early warning model for possible component failures by comparing the 
theoretical and actual utility consumptions. Typically, the utility consumption of a filling line in a 
brewery is monitored on a long term basis, e.g. 3-6 months. A component failure on any equipment can 
therefore cause increased utility consumption for a very long period of time, where production typically 
is running 24-7. Using a mathematical model to calculate the theoretical consumption and comparing this 
to the measured, actual consumption proves to be an efficient way to detect possible component failures 
on a per shift basis, thus potentially saving large amounts of utilities. 

Keywords: Tunnel pasteurizer, energy consumption, utilities, prediction model, early warning model. 

 

1. INTRODUCTION 

Product models to calculate and predict PUs have been used 
for a long time to control the performance of a tunnel 
pasteurizer. 
The Virtual Pasteurizer takes mathematical modeling one 
step further by applying an energy model for the entire 
pasteurizer to monitor energy and water consumptions for the 
machine. 
Until now, energy and water consumptions have only been 
measured and recorded, but it has been up to the operators to 
use this information to analyze and judge the performance of 
the pasteurizer.  
Using the Virtual Pasteurizer, the machine can analyze and 
judge the current consumption by itself and give an alarm 
message to the operator as soon as a deviation between the 
actual and theoretical consumption is detected, usually within 
1-2 hours. This enables the operator to correct any 
component failures or malfunctions immediately, thus 
reducing waste of energy and water for months. 

2. PROCESS 

Pasteurization means increasing shelf life by killing bacteria 
through heat treatment. Unfortunately, the heat treatment also 
impacts and controls the flavor of the product. 
The tunnel pasteurization process consists of heating, 
pasteurizing and cooling filled products, typically cans or 
bottles, which are moving through the machine on a flat belt 
conveyor. The heating section increases the temperature of 
the product from a typical inlet temperature of 5°C to just 
below the pasteurization temperature, around 50°C. During 
the pasteurization phase the products are heated to the final 
pasteurization temperature slightly above 60°C, where the 
products remain for a certain period of time. The cooling 
section reduces the temperature to a typical discharge 

temperature of 30-35°C for subsequent handling. Each 
section is divided into several zones, to keep the temperature 
jumps, and thus thermal tensions, to a minimum. 
To minimize the total energy consumption, the heating and 
cooling sections are regeneratively connected and in energy 
balance, i.e. the total amount of heating energy equals the 
total amount of cooling energy during steady state operation. 
So for normal operation heat is only added in the 
pasteurization section of the machine. Examples of typical 
temperatures are shown in Fig. 1. 

 
Fig. 1: Picture of Krones Shield Pasteuriser with typical 
temperatures 
 
A time-temperature representation is shown in Fig. 2. The 
blue curve represents the spray temperature of the individual 
steps (zones), the red curve represents the product 
temperature and the yellow curve represents the degree of 
pasteurization, or pasteurization units (PU). The green curve 
shows the prediction model, which is used by the PU Control 
to control the temperature set points of the pasteurization 
zones. 
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Fig. 2: Pasteurization process 
 

2.1  Pasteurization Units 

As indicated in Fig. 2, the goal of the process is to give the 
products a certain level of pasteurization, measured in 
Pasteurization Units (PU). Pasteurization Units are 
empirically defined by the equation: 

 

where X = 60°C, Z=6.94 and PUs are measured per minute. 
The function is normalized around 60°C giving 1 PU per 
minute and increasing exponentially with temperature. 
Therefore the typical pasteurization temperature lies just 
above 60°C. For beer, the typical lower limit of 
Pasteurization Units is 10 PUs. 

2.2  Energy flows 

With the given process as described in the beginning of this 
chapter, the energy flows in the system can be described as 
depicted in Fig. 3: 

 

Fig. 3: Energy flows in system 

During the heating phase at the beginning of the process, heat 
is added to the entering cold products through the spraying 
water. In the central pasteurization phase, further heat is 
added through heating valves supplying hot water (approx. 
85°C) for mixing with the spray water, while keeping the 
temperatures at an exact set point that reflects the desired 
Pasteurization Unit uptake. Through the final cooling phase, 
heat is removed from the products through the spraying 
water. This spraying water is in turn exchanged with the 
zones in the heating phase, while the temperatures of these 
zone pairs are matched carefully so the energy balance is 
maintained, i.e. the amount of energy added to the products in 
the heating phase closely matches the amount of energy 

removed during the cooling phase. The energy is transported 
by the spraying water from the cooling phase to the heating 
phase for each connected zone pair, see also Fig. 1. 

Throughout the system energy is lost to the environment, as 
well as heat exchange takes place between adjacent zones 
with different temperatures. The residual energy is removed 
by the warm products leaving the machine. 

The entire process is controlled by the PU Control system, 
which monitors and calculated the PU uptake in real-time, 
while providing the optimal set points for the pasteurization 
zones to ensure the optimal product treatment. For this 
purpose a prediction model is used, see also Fig. 2. 

2.3  Non-steady-state operation 

Now, while the typical steady-state operation of the machine 
generates a constant energy consumption and thus is easy to 
calculate, the goal of the early warning model described in 
this paper is to portrait the energy consumption throughout 
non-steady-state operation accurately as well. 

While the temperatures in the pasteurization zones are kept at 
a constant temperature during uninterrupted operation, in 
order to obtain the minimum PU requirement, it is necessary 
to take action during interruptions that causes the pasteurizer 
transport belt to stand still. Without taking action, i.e. 
keeping the temperatures at their normal set points, when the 
machine is standing still, the PU uptake will increase above 
the minimum requirement. However, there is also a 
maximum requirement, which should not be exceeded. To 
accomplish this, temperatures in the pasteurization zones 
need to be lowered to a certain level, where the PU uptake is 
no longer significant. This lower level is typically around 
50°C. 

When the machine is restarting the conveyors, thus moving 
the products through the machine, the temperatures in the 
pasteurization zones are again increased to their typical level 
for pasteurization during steady-state operation. 

3. MATHEMATICAL MODEL OF ENERGY 
CONSUMPTION 

The following section describes the measurement of energy 
in detail, followed by the calculation of the theoretical 
consumptions. 

3.1  Measurement of actual energy consumption 

The actual energy consumption is measured by the flow 
through and temperature difference across the CHESS 
(Central Heat Exchanger Supply System). The total energy 
consumption is calculated by 

QH = m Cp dT η 

where m denotes the mass flow through the CHESS, Cp is 
the heat capacity for water, dT is the temperature difference 
across the CHESS and η is the efficiency of the heat 
exchanger in the CHESS. 
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Given the total actual energy, this must be distributed to the 
individual zones. The total flow is the sum of the flows to the 
individual zones, given by 

FTotal = Σ( fi vi φi ) = m 

where F is the total flow, fi is the maximum flow through the 
heating valve of the particular zone i, vi is the opening of the 
heating valve of zone i (between 0 and 1) and φi is the design 
factor (see also section 6) for the particular valve in zone i 
depending on the situation in the water system. 

The flow through the individual zone is then found by 

fi = FTotal (vi φi) / Σ(vi φi) 

The total energy is then distributed to the individual zones by 

qi = QH fi / FTotal 

3.2  Calculation of theoretical energy consumption 

The theoretical energy consumption consists of three parts: 
energy uptake in products, energy loss to environment and 
energy loss between zones. 

3.3  Energy uptake in products 

For each step, the energy uptake in one product is calculated 
by the energy difference between the temperature before and 
after (Tcontent and Tcontent_OLD). Since the cycle time for each 
step is 1s, the energy flow into one product is easily 
calculated by 

)( _ OLDcontentcontentPPP TTCmQ −=
 

which in turn has to be multiplied by number of products 
standing side by side in the machine 

π

θ

4

2
P

decksP

D
nbDn =

              

which reduces to           

π
θ

P

decks

D
nbn 4

=
 

(DP: diameter of products, b: treatment width of pasteurizer, 
ndecks: number of decks, θ: fill factor) 

This has to be accumulated for all products in each zone 

∑=
zoneinRows

PZoneP nQQ ,

 

One important information required for the calculation to be 
accurate is the fill factor. Therefore a measurement of the 
number of products entering the pasteurizer must be supplied. 
This can either be accommodated by a product counter at the 
infeed of the pasteurizer or by using the speed of the filler 

before the pasteurizer as a delayed signal to the pasteurizer 
itself. 

3.4  Energy loss to environment 

For each zone the energy loss to the environment is 
calculated by 

)( envZZL TTkAQ −=  

(k: heat transfer coefficient to environment, TZ: temperature 
in zone, Tenv: temperature of environment, AZ: surface area of 
zone) 

The most important information here is the existence of an 
environment temperature measurement, which must be 
accommodated. 

3.5  Energy loss to neighboring zones 

The energy loss to neighboring zones is calculated by the 
heat transfer coefficient between zones and the temperature 
difference of the particular zone to the preceding zone and to 
the following zone: 

)()( 11 +− −+−= ZZNNZZNNN TTAkTTAkQ  

(kN: heat transfer coefficient between zones, TZ: zone 
temperature, AN: area of heat transfer between zones (cross 
section area)) 

3.6  Total energy consumption of zone 

Finally, the total energy consumption of each zone is the sum 
of all energy consumptions calculated above: 

NLPZ QQQQ ++=  

4. APPLICATION 

To analyze the running state of the pasteurizer, the actual 
energy consumption of each zone is compared to the 
theoretical energy consumption of that zone. If the difference 
is greater than a fixed percentage for a specific period of 
time, a warning message is displayed. Performing this 
analysis on zone level gives the operator an indication of the 
location of the problem. 

4.1 Examples of trouble shooting 

If one particular zone is using too much energy, compared to 
the theoretical value, this could indicate one of the following 
problems: 

- The cooling valve in a zone could be leaking. The 
additional infusion of cold water, which is not detected by the 
system, is counteracted by an increased heating energy 
consumption of that zone. 

- Water mixing between the zone and its neighbouring 
(colder) zone could exist. The additional infusion of cold 
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water, which is not detected by the system, is counteracted by 
an increased heating energy consumption of that zone. 

On the machine scale, the total actual energy consumption 
can also be used to find a problem when comparing it to the 
theoretical total energy consumption. If the actual energy 
consumption of the entire pasteurizer is higher than the total 
theoretical energy consumption, this could indicate one of the 
following problems: 

- The heat exchanger is clogged and cannot give the desired 
flow through the system.  

- A structural problem in the buffer system of the pasteurizer 
has occurred and water mixing in the buffer system is taking 
place. 

5.  RESULTS 

The following picture (Fig. 4) shows the recorded actual 
energy consumption compared to the theoretical 
consumption. 

Virtual Pasteuriser
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Fig. 4: Comparison of actual (measured) and theoretical 
(calculated) energy consumption 

During normal operation, the result shows a good match. (VP 
Heat Energy C++ denotes the theoretical energy consumption 
calculated by the Virtual Pasteuriser, VP Heat Energy PLC 
denotes the measured actual energy consumption) (Fig. 5): 

 
Fig. 5: Actual and theoretical energy consumption based on 1 
hour average 

6. CASE 

The following pictures (Fig. 6) show how a mismatch in the 
theoretical and actual consumption can be used to display an 
alarm, telling the operator where to look for possible 
component failures in the system. First, the measured energy 
consumption (PLC) in zone 7 is higher than the theoretical 
(C++). This is displayed on a bar graph and indicated with a 
red error: 

 
Fig. 6: Visualization of Virtual Pasteurizer 

The alarm indicates a possible component failure in the 
vicinity of zone 7. A closer investigation of the machine in 
this area revealed the following problem (Fig. 7): 

 

Fig. 7: Water overflow from one zone to another 

Water is constantly overflowing from the neighboring, colder 
zone (8). This causes a decrease in zone temperature of zone 
7, which is counteracted by the control system by opening a 
hot water valve in zone 7 in order to keep the zone at the 
desired set point. 

The normal control system (PU control) does not realize this 
as being a failure of the machine. Its goal is only to keep a 
constant temperature by means of adding hot or cold water. 

The Virtual Pasteurizer, however, interprets this as a possible 
error, since the actual energy flow into zone 7 (water from 
hot water valve) is larger than the theoretical process dictates. 

 

Water flowing from colder, neighboring zone into hot 
zone, causing control system to counteract by opening 
heating valve to keep constant temperature 
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In this case the malfunction could be retraced to a defect 
pump in zone 8. This disturbed the water balance between the 
connected zones, causing water to overflow on one end.  

As another example a leaking valve should be mentioned, as 
it can easily have the same effects as described in this case. 

6. CHALLENGES 

The first tests and installations have shown a working model, 
but present also some challenges for future development. 

6.1  Water distribution 

The water distribution model is too simple and assumes 
certain linearity in the behavior of the flow. For the first 
implementation the design factor φi was chosen to be the 
diameter or kws value of the individual valve.  However the 
flow through any given valve is also depending on the other 
valves and their respective openings in the system. 

The challenge here is to derive a model that captures the 
behavior more accurately. 

6.2  Average calculation 

As shown above, the average calculation is necessary to get a 
sufficiently clear picture of the actual status. Especially the 
digital valves present a challenge, since the flow through 
these are either very high (40-60 m3/h) or nothing. And 
because the valves are only open for approx. 20 seconds at a 
time, the fluctuations in the assumed energy flow are 
extreme. 

Here the period and/or method of the average calculation 
plays a significant role and must be chosen carefully. On one 
hand the smoothing should cancel out the noise, while on the 
other hand allow to portrait the actual fluctuations accurately 
enough to avoid accumulation of errors. 

The period should be matched to the intrinsic transportation 
delays in the system as well as production plans and 
operating schedules. 

7. CONCLUSION 

By calculating and comparing the theoretical energy and 
water consumptions of the individual zones and the total 
pasteurizer with the actual, measured values, an early 
warning model for possible component failures as well as 
other malfunctions is established. 

This can drastically reduce the energy and water consumption 
of a tunnel pasteurizer because it gives the operator an 
immediate warning. Instead of waiting several months before 
the energy and water household is analyzed and compared to 
earlier periods, the problem can now be realized (directly on 
the operator control panel) and fixed the same day as it 
occurs, thus minimizing the waste of energy and water.  

Cases have proven the application of the model, as the model 
was able to detect a possible failure. 

Improvements of the model are needed to make it more 
accurate. Particularly the water distribution model needs to be 
extended from its assumed linearity to the actual behavior. 

An extension of the model to also include electrical and 
compressed air consumption is planned. 
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Optimal Controlled Variables for Parallel Process Units
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During the lifetime of a process plant, the capacity of the plant is often increased due to a
rising demand for products. Starting with some initial capacity, a common solution to cater
for increased demand is to add one or more parallel process lines. The resulting parallel plants
will be similar, but not entirely identical.

In many cases, the parallel processes share one or several common feed streams, which
are distributed to the different lines. An important question which has to be answered for
these kinds of parallel processes is how to distribute the feed stream optimally between the
individual lines. In practice, it cannot be expected that the optimal value of the split remains
constant. It rather is a function of changing disturbances and operating conditions in each
line.

This work deals with finding a simple control structure, which guarantees the optimal split
between the parallel lines. In particular, this implies finding controlled variables, which can be
controlled at a constant setpoint, and which will yield optimal operation even if a disturbance
changes the performance in one of the lines.

We assume that the overall operating cost is composed of the sum of the n individual flow
dependent costs for each line, J =

∑
n

i
Ji, and that the total flow q is fixed, i.e. the total flow

is the sum of the flow through all lines q =
∑

n

i
qi. This results in n− 1 degrees of freedom to

optimize the total cost J , namely the split of the flow rates between the n lines.
A basic result from [1] states that optimal operation with respect to the split can be

achieved by ensuring that the individual gradients for each pair of lines are equal, that is
δJi/δFi = δJk/δFk is controlled to zero for each pair (i, k). The interpretation of this is
that at the optimum, an increase in production of one line must lead to an equally large
decrease in performance on another line. In this work, this insight is exploited further, and
we show using the ideas from [2] how the individual gradients can be expressed as functions
of measurements only. The measurement expressions can then be controlled using simple
feedback controllers. We present some case studies, where the optimality condition is used
to find simple combinations of controlled variables, which result in the optimal split under
varying operating conditions. Examples include parallel operation of CSTRs, furnaces, and
optimized oil production from several oil wells.
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EXTENDED ABSTRACT

Model predictive control (MPC) has been employed ex-
tensively in industrial process control systems to deal with
constrained multi-variable control problems. In highly au-
tomated plants, the goal of optimal economic operation is
often addressed by an integrated two-layer control struc-
ture, encapsulated within a multi-layer hierarchical con-
trol architecture. The first layer, usually referred to as a
real-time optimization (RTO) layer, takes economic ob-
jectives into account, and subsequently performs a static
optimization. In the second layer, MPC is utilized as an
advanced regulatory control strategy, whose objective is
to dynamically regulate the process to some steady-state
operating conditions, as determined in the RTO layer, and
furthermore reject any process disturbances.

Control performance monitoring and assessment is an
important asset-management technology in maintaining
highly efficient operation of any multi-layer hierarchical
structure as implemented in process industries. Monitoring
of process plants implies watching specific process statis-
tics that reflects the control performance over a period
of time. In an regulatory control layer, such statistics
can typically include the variance of regulation to desired
steady-state set-points, and steady-state tracking errors.
These statistical measures give an indication of how well
a control strategy is performing its task of regulating
the process at desirable set-points. However, what these
statistics do not give, is insight into how different con-
trol strategies will perform with respect to each other, as
they asymptotically steer the process to these set-points
in closed-loop operation, given some economic objectives
(the latter gives rise to the term closed-loop asymptotic
performance used in this text).

Since the ultimate objective of the regulatory control
layer, incorporating MPC, is to promote economic objec-
tives, any attempt to evaluate MPC control performance
should be quantified in terms of closed-loop asymptotic
performance. Furthermore, it is desirable to have stabi-
lizing MPC formulations that can serve as a safeguard
against sporadic process behavior, which can cause plant-
wide instabilities and performance deterioration. It is
therefore desirable to find a global control Lyapunov func-
tion that establish sufficient conditions for global stability.
However, for systems with state and control constraints,
it is difficult to obtain a global control Lyapunov function.
Hence, we restrict ourselves to the goal of obtaining a
local control Lyapunov function in conjunction with some

1 Corresponding author (J.P. Maree) phillip.maree@itk.ntnu.no

control invariant region. The latter gives rise to terminal
penalty and constraint MPC formulations, whose value
functions admit a Lyapunov candidate value function.

In this work we investigate, first-most, case studies
where the operational set-points (as propagated from the
RTO layer), or their respective control invariant regions,
are unreachable for a N-step receding horizon policy due to
a short receding horizon. Proposed solutions in literature,
which adopted the name Safe-park strategies, address such
infeasible scenarios. Characteristics of such MPC strate-
gies is typically a shifted stage cost (replacing unreachable
set-points received from RTO layer with reachable set-
points) such that the process is admissibly steered to the
closest feasible steady-state. The MPC strategy then pe-
nalizes the intermediate feasible steady-state operational
set-point with respect to how far the process is operating
from the desirable set-point (termed as some offset cost).
Such strategies, however, is counter-intuitive when one
considers MPC whose primary objective is to promote
economic objectives, which is based on the optimal op-
erational set-points propagated from a RTO layer. The
proposed MPC strategy in this work is formulated with
a stage cost that points to the desirable steady-state set-
point, as received from the RTO, without the addition
of an additional offset cost. We, furthermore, extend the
terminal constraint region to be the convex hull of control
invariant regions of the manifold of steady-states, therefore
ensuring a feasible MPC solution. We, lastly show that by
finding a terminal control law for the extended terminal
constraint region, such that we satisfy a basic stability
assumption, we can formulate a terminal cost that admits
cost drop, using standard MPC stability theory.

We conclude this work by initiating future investiga-
tions in how to express closed-loop asymptotic perfor-
mance when we have different control laws, which both ad-
mit acceptable control performance (convergence to desir-
able set-point and minimal tracking error), however, with
different economic cost objectives. Being able to quan-
tify, and understand closed-loop asymptotic performance
better, enables us to understand how different control
laws and strategies contribute to increased economic per-
formance in closed-loop operation. Initial attempts only
establish upper bounds on closed-loop asymptotic perfor-
mance measures. However, through simulation case studies
it can been shown that the structure of a terminal cost
function may provide some additional insight.
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Abstract: Conventional recovery techniques enable recovery of 10−50% of the oil in an oil field.
Advances in smart well technology and enhanced oil recovery techniques enable significant larger
recovery. To realize this potential, feedback model-based optimal control technologies are needed
to manipulate the injections and oil production such that flow is uniform in a given geological
structure. Even in the case of conventional water flooding, feedback based optimal control
technologies may enable higher oil recovery than with conventional operational strategies. The
optimal control problems that must be solved are large-scale problems and require specialized
numerical algorithms. In this paper, we combine a single shooting optimization algorithm
based on sequential quadratic programming (SQP) with explicit singly diagonally implicit
Runge-Kutta (ESDIRK) integration methods and a continuous adjoint method for sensitivity
computation. We demonstrate the procedure on a water flooding example with conventional
injectors and producers.

Keywords: Optimal Control, Optimization, Numerical Methods, Oil Reservoir

1. INTRODUCTION

The growing demand for oil and the decreasing number
of newly discovered significant oil fields require more
efficient management of the existing oil fields. Oil fields are
developed in two or three phases. In the primary phase,
the reservoir pressure is large enough to make the oil flow
to the production wells. In the secondary phase, water
must be injected to maintain pressure and move the oil
towards the producers. In some cases, a tertiary phase
known as enhanced oil recovery is considered. Enhanced oil
recovery includes technologies such as in situ combustion,
surfactant flooding, polymer flooding, and steam flooding
(Thomas, 2008). After the secondary phase, typically the
oil recovery is somewhere between 10% and 50% (Chen,
2007; Jansen, 2011).

Optimal control technology and Nonlinear Model Predic-
tive Control have been suggested for improving the oil
recovery of the secondary phase (Jansen et al., 2008). In
such applications, the controller adjusts the water injection
rates and the bottom hole well pressures to maximize
oil recovery or a financial measure such as net present
value. In the oil industry, this control concept is also
known as closed-loop reservoir management (Jansen et al.,
2009). The controller in closed-loop reservoir management
consists of a state estimator for history matching and
an optimizer that solves a constrained optimal control
? This research project is financially supported by the Danish
Research Council for Technology and Production Sciences. FTP
Grant no. 274-06-0284

problem for the production optimization. The main dif-
ference of the closed-loop reservoir management system
from a traditional Nonlinear Model Predictive Controller
(Binder et al., 2001) is the large state dimension (106 is
not unusual) of an oil reservoir model. The size of the
problem dictates that the ensemble Kalman filter is used
for state estimation (history matching) and that single
shooting optimization algorithms compute gradient based
on adjoints (Jansen, 2011; Jørgensen, 2007; Sarma et al.,
2005; Suwartadi et al., 2011; Völcker et al., 2011).

In this paper, we propose a high order temporal integra-
tion method (Explicit Singly Diagonally Implicit Runge-
Kutta, ESDIRK) for forward computation of the initial
value problem and for backward solution of the associated
continuous-time adjoint. Conventional practice by com-
mercial reservoir simulators is limited to the use of first
order temporal implicit or semi-implicit integrators for
the initial value problem and the adjoints. Völcker et al.
(2010a,b, 2009) introduce high order ESDIRK methods
in two phase reservoir simulation. The high order scheme
allows larger steps and therefore faster solution of the
reservoir model equations. To compute the gradient of
the objective function in a single shooting optimization
method, Völcker et al. (2011) propose a method based on
adjoints for the discretized equations. Cao et al. (2002)
and Jansen (2011) provide an overview of gradient com-
putation using the adjoint. Brouwer and Jansen (2004)
and Sarma et al. (2005) explain and demonstrate gradient
computation by the adjoint equations based on the implicit
Euler discretization. Kourounis et al. (2010) suggest the
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continuous-time high order adjoint equations for gradient
computation in production optimization. Nadarajah and
Jameson (2007) compare gradients computed by discrete
and continuous adjoints for problems arising in aerody-
namics. They conclude that the gradients computed from
continuous adjoints is accurate enough to be used in
optimization algorithms. Since computation of gradients
based on continuous time adjoints is faster than gradients
based on discrete adjoints, this conclusion implies that
the gradient computations can be accelerated by using the
continuous time adjoint equations.

The novel contribution in this paper is an extension of the
adjoint based optimization method suggested by Völcker
et al. (2011) to include gradient computation based on the
continuous-time adjoint equation. Using a conventional oil
field as case study, we demonstrate the new single-shooting
optimization algorithm based on ESDIRK integration of
the initial value problem and ESDIRK integration of the
continuous-time adjoint equation. The case study illus-
trates the potential of optimal control for production opti-
mization of water flooded oil reservoirs by maximizing the
net present value. We do a parameter study to illustrate
the sensitivity of the optimal solution to the discount
factor.

The paper is organized as follows. Section 2 states the
general constrained optimal control problem using a novel
representation of the system dynamics. The ESDIRK al-
gorithm for solution of the differential equation systems is
described in Section 3, while Section 4 presents the con-
tinuous adjoint method. Section 5 describes the numerical
case study and discusses the sensitivity of the optimal
solution to the discount factor in the net present value.
Conclusions are presented in Section 6.

2. OPTIMAL CONTROL PROBLEM

In this section, we present the continuous-time constrained
optimal control problem and its transcription by the
single shooting method to a finite dimensional constrained
optimization problem. First we present the continuous-
time optimal control problem. Then we parameterize the
control function using piecewise constant basis functions,
and finally we convert the problem into a constrained
optimization problem using the single shooting method.

Consider the continuous-time constrained optimal control
problem in the Bolza form

min
x(t),u(t)

J = Φ̂(x(tb)) +

∫ tb

ta

Φ(x(t), u(t))dt (1a)

subject to

x(ta) = x0 (1b)

d

dt
g
(
x(t)

)
= f(x(t), u(t)), t ∈ [ta, tb], (1c)

u(t) ∈ U(t) (1d)

x(t) ∈ Rnx is the state vector and u(t) ∈ Rnu is the control
vector. The time interval I = [ta, tb] as well as the initial
state, x0, are assumed to be fixed. (1c) represents the
dynamic model and includes systems described by index-
1 differential algebraic equations (DAE). (1d) represents
constraints on the input values, e.g. umin ≤ u(t) ≤ umax,
c(u(t)) ≥ 0, and some constraints related to rate of move-
ment that are dependent on the input parametrization.

Path constraints

η(x(t), u(t)) ≥ 0 (2)

may render the optimization problem infeasible. For this
reason and due to computational efficiency considerations
when computing the sensitivities by the adjoint method
(Capolei and Jørgensen, 2012; Jørgensen, 2007), we in-
clude these constraints as soft constraints using the fol-
lowing smooth approximation

χi(x(t), u(t)) =
1

2

(√
ηi(x(t), u(t)

2
+ βi

2)− ηi(x(t), u(t)

)
(3)

to the exact penalty function max(0,−ηi(x(t))) for i ∈
{1, . . . , nη}.With this approximation of the path con-
straints, the resulting stage cost, Φ(x(t), u(t)), used in (1a)

consist of the inherent stage cost, Φ̃(x(t), u(t)), and terms
penalizing violation of the path constraints (2)

Φ(x, u) = Φ̃(x, u) + ‖χ(x, u)‖1,Q1 +
1

2
‖χ(x, u)‖22,Q2

(4)

2.1 Discretization

Control Parametrization Let Ts denote the sample time
such that an equidistant mesh can be defined as

ta = t0 < . . . < tS < . . . < tN = tb (5)

with tj = ta + jTs for j = 0, 1, . . . , N . We use a
piecewise constant representation of the control function
on this equidistant mesh, i.e. we approximate the control
vector on every subinterval [tj , tj+1] by the zero-order-hold
parametrization

u(t) = uj , uj ∈ Rnu , tj 6 t < tj+1, j ∈ 0, . . . , N − 1 (6)

Input Constraints The input constraints (1d) include
bound constraints umin ≤ uk ≤ umax. In the discrete
problem using the zero-order-hold parametrization, we
also include rate of movement constraints in the form
∆umin ≤ ∆uk ≤ ∆umax with ∆uk = uk − uk−1.

2.2 Single Shooting Optimization

For the single shooting approach (control vector parametriza-
tion), we introduce the function

ψ({uk}N−1k=0 , x0) ={
J =

∫ tb

ta

Φ(x(t), u(t))dt+ Φ̂(x(tb)) :

x(t0) = x0,

d

dt
g(x(t)) = f(x(t), u(t)), ta ≤ t ≤ tb,

u(t) = uk, tk ≤ t < tk+1, k = 0, 1, . . . , N − 1

}
(7)

such that (1) can be approximated with the finite dimen-
sional constrained optimization problem

min
{uk}N−1

k=0

ψ = ψ({uk}N−1k=0 , x0) (8a)

s.t. umin ≤ uk ≤ umax k ∈ N (8b)

∆umin ≤ ∆uk ≤ ∆umax k ∈ N (8c)

ck(uk) ≥ 0 k ∈ N (8d)

with N = {0, 1, . . . , N − 1}.
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3. ESDIRK METHODS

In this section, we describe our implementation of the
ESDIRK method for the computation of ψ({uk}N−1k=0 , x0)

in (7). Computation of ψ({uk}N−1k=0 , x0) consists of two
major operations: 1) For each integration step we first
compute the model states x(t) solving the initial value
problem (1c), 2) and then we compute, using the same
quadrature points, the value of the Lagrange term

ψ̄(t) :=

∫ t

ta

Φ(x(t), u(t))dt ta ≤ t ≤ tb. (9)

in the cost function (1a). Let t̃n denote the integration
times chosen by the step size controller in the integrator.
Each integration step size, hn, is chosen such that it is
smaller than or equal to the sample time, Ts. Therefore,
one sample interval contains many integration steps. The
numerical solution of the IVP (1c) by an s-stage, stiffly
accurate, Runge-Kutta ESDIRK method with an embed-
ded error estimator, may in each integration step [t̃n, t̃n+1]
be denoted (Capolei and Jørgensen, 2012; Völcker et al.,
2010a)

T1 = t̃n, Ti = t̃n + cihn (10a)

X1 = xn (10b)

φi({Xj}i−1j=1, u) = g(X1) + hn

i−1∑
j=1

aijf(Xj , u) (10c)

g(Xi) = φi({Xj}i−1j=1, u) + hnγf(Xi, u) (10d)

xn+1 = Xs (10e)

en+1 = hn

s∑
j=1

dif(Xj , u) (10f)

with i = 2, . . . , s. Xi denotes the numerical solution at
time Ti for i ∈ {1, . . . , s}. xn+1 is the numerical solution
at time t̃n+1 = t̃n + hn. en+1 is the estimated error of the
numerical solution, i.e. ‖en+1‖ ≈ ‖g(xn+1)− g(x(t̃n+1))‖.
Subsequent to solution of (10), we compute the numerical
solution of the cost function (9)

ψ̄(t̃n+1) = ψ̄(t̃n) + hn

s∑
i=1

biΦ(Xi, u) (11)

When t̃n+1 = tb, we add the Mayer term of (1a) such that

ψ({uk}N−1k=0 , x0) = ψ(tb) = ψ̄(tb) + Φ̂(x(tb)) (12)

The main computational effort in the ESDIRK method is
solution of the implicit equations (10d) using a Newton
based method. (10d) is solved by sequential solution of

Ri(Xi) := [g(Xi)− hnγf(Xi, u)]− φi({Xj}i−1j=1, u) = 0

(13)
for i = 2, . . . , s. (13) is solved using an inexact Newton
method. Each iteration in the inexact Newton method for
solution of (13) may be denoted

M∆X
[l]
i = −Ri(X [l]

i ) (14a)

X
[l+1]
i = X

[l]
i + ∆X

[l]
i (14b)

The iteration matrix, M , is an approximation

M ≈ J(X
[l]
i ) (15)

to the Jacobian of the residual function

Ji(Xi) =
∂Ri
∂Xi

(Xi) =
∂g

∂x
(Xi)− hnγ

∂f

∂x
(Xi, u) (16)

The iteration matrix, M , and its LU factorization is
updated adaptively by monitoring the convergence rate of
the inexact Newton iterations. Convergence of the inexact
Newton iteration is measured by

‖Ri(X [l]
i )‖ = max

j∈1,...,nx

|(Ri(X [l]
i )j |

max{atolj , rtoljgj(X
[l]
i )}

< τ (17)

where atol is the absolute tolerance and rtol is the relative
tolerance. Steps are accepted if this measure of the residual
is smaller than τ ≈ 0.1 In case of divergence or slow
convergence, the iterations are terminated, the step size,
hn, is decreased and the Jacobian of the iteration matrix
is re-evaluated and factorized. As explained in e.g. Völcker
et al. (2010b) and Capolei and Jørgensen (2012), the step
size controller adjust the temporal step sizes such that the
error estimate satisfies a norm similar to the norm used in
(17).

4. CONTINUOUS ADJOINT METHOD

Gradient based methods such as sequential quadratic
programming (SQP) methods for solution of (8) require
the gradient of the objective function (7) with respect
to the control vector parameters, i.e. ∂ψ/∂uk for k =
0, 1, . . . , N − 1. In this section, we describe a continuous-
time adjoint based method for computation of these gra-
dients.

Proposition 1. (Gradients based on Continuous Adjoints).

Consider the function ψ = ψ({uk}N−1k=0 ;x0) defined by (7).

The gradients, ∂ψ/∂uk, may be computed as

∂ψ

∂uk
=

∫ tk+1

tk

(
∂Φ

∂u
− λT ∂f

∂u

)
dt k = 0, 1, . . . , N − 1

(18)
in which x(t) is computed by solution of (1b)-(1c) and λ(t)
is computed by solution of the adjoint equations

dλT

dt

∂g

∂x
+ λT

∂f

∂x
− ∂Φ

∂x
= 0 (19a)

∂Φ̂

∂x
(x(tb)) + λT (tb)

∂g

∂x
(x(tb)) = 0 (19b)

Proof. See Appendix A.

Remark 2. (Computation using ESDIRK). x(t) is computed
using the ESDIRK method applied to (1b)-(1c) and inte-
gration forwards. This solution is stored. The same ES-
DIRK method is applied for computation of λ(t) by solving
(19) integrating backwards in time.

Remark 3. (Gradients Computed by Continuous Adjoints).
The gradients computed using the continuous adjoints are
not the exact gradients, ∂ψ/∂uk, when the involved differ-
ential equations and integrals are computed by discretiza-
tion using the ESDIRK method. However, they can be
made sufficiently precise for the optimizer such that they
do not affect the convergence (Nadarajah and Jameson,
2007). The advantage of the continuous adjoint equations
(19) is that they can be solved faster than the adjoint
equations for the discretized system (10)-(12).

5. PRODUCTION OPTIMIZATION FOR A
CONVENTIONAL OIL FIELD

In this section, we apply our algorithm for constrained
optimal control problems to production optimization in a
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Fig. 1. The permeability field and the location of wells. A
circle indicates the location of an injector and a cross
indicates the location of a producer.

Table 1. Parameters for the two phase model
and the discounted state cost function (20).

Symbol Description Value Unit

φ Porosity 0.2 -
cr Rock compressibility 0 Pa−1

ρo Oil density (400 atm) 800 kg/m3

ρw Water density (400 atm) 1000 kg/m3

co Oil compressibility 10−5 1/atm
cw Water compressibility 10−5 1/atm
µo Dynamic oil viscosity 2 · 10−3 Pa · s
µw Dynamic water viscosity 1 · 10−3 Pa · s

Sor Residual oil saturation 0.1 -
Sow Connate water saturation 0.1 -
no Corey exponent for oil 1.5 -
nw Corey exponent for water 1.4 -

Pinit Initial reservoir pressure 400 atm
Sinit Initial water saturation 0.1 -

ro Oil price 100 USD/m3

rw Water production cost 20 USD/m3

conventional horizontal oil field that can be modeled as
two phase flow in a porous medium (Chen, 2007; Völcker
et al., 2009). The reservoir size is 450 m× 450 m× 10 m.
By spatial discretization this reservoir is divided into 25×
25×1 grid blocks. The configuration of injection wells and
producers as well as the permeability field is illustrated in
Fig. 1. As indicated in Fig. 1, the four injectors are located
in the corners of the field, while the single producer is
located in the center of the field. The specification of the
two phase oil model consists of the injector (i ∈ I) and the
producer (i ∈ P) location, the permeability parameters
indicated in Fig. 1, and the parameters listed in Table 1.
The initial reservoir pressure is 400 atm everywhere in the
reservoir. The initial water saturation is 0.1 everywhere in
the reservoir. This implies that initially the reservoir has
a uniform oil saturation of 0.9.

The inherent discounted stage cost function (see (4))

Φ̃(t) = Φ̃(x(t), u(t))

= − 1

(1 + b)t/365

∑
j∈P

(ro(1− fw)− fwrw) qj(t)
(20)

accounts for the value of the oil produced minus the pro-
cessing cost of the produced water. In this cost function, we
have neglected the processing cost of injected water as well
as the effect of pressure on injecting water. b is the discount
factor. The fractional flow of water, fw = λw/(λw + λo),
indicates the relative flow of water. λw = ρwkkrw/µw

and λo = ρokkro/µo are the water and oil mobilities,
respectively. In the problems considered, we do not have
any cost-to-go terms, i.e. Φ̂(tb) = 0. Neither do we have
any path constraints (2). Therefore, maximizing the net
present value of the oil field corresponds to minimization
of

J(tb) = −NPV(tb) =

∫ tb

ta

Φ(x(t), u(t))dt (21)

with Φ(x(t), u(t)) = Φ̃(x(t), u(t)). The optimizer maxi-
mizes the net present value by manipulating the injection
of water at the injectors and by manipulation of the
total fluid production (oil and water) at the producers.
Hence, the manipulated variable at time period k ∈ N
is uk = {{qw,i,k}i∈I , {qi,k}i∈P} with I being the set of
injectors and P being the set of producers. For i ∈ I,
qw,i,k is the injection rate (m3/day) of water in time period
k ∈ N at injector i. For i ∈ P, qi,k is the total flow rate
(m3/day) at producer i in time period k ∈ N . Therefore,
at producer i ∈ P, the water flow rate is qw,i,k = fwqi,k
and the oil flow rate is qo,i,k = (1− fw)qi,k.

The bound constraints (8b) appear in the production op-
timization problem because the water injected at injectors
and the production at the producers must both be positive
and because each production facility has a maximum flow
capacity. In the considered problem we have

0 ≤ qw,i,k ≤ qmax i ∈ I, k ∈ N (22a)

0 ≤ qi,k ≤ qmax i ∈ P, k ∈ N (22b)

The maximum flow capacity, qmax, is the same for all
injectors and producers in this case study. The rate of
change for all injectors and producers are |qi,k−qi,k−1| ≤ 5
for i ∈ I ∪ P and k ∈ N . Since the injection of oil is zero,
qo,i,k = 0 for i ∈ I, we get |qw,i,k − qw,i,k−1| ≤ 5 for i ∈ I
and k ∈ N . This leads to the rate of movement constraints
(8c). In addition we use a voidage replacement constraint
(Brouwer and Jansen, 2004; Jansen, 2011)∑

i∈I
qi,k =

∑
i∈I

qw,i,k =
∑
i∈P

qi,k k ∈ N (23)

and enforce a constant total injection,
∑
i∈I qw,i,k = qmax

for k ∈ N . This translates into constraints of the type
(8d). By the total injection constraint, the optimization
problem reduces to a problem of redistributing the flows
among the injectors.

The prediction and control horizon is tb = 4270 days and
the sampling period is Ts = 35. Hence the prediction and
control horizon corresponds to N = 122 periods. With a
total injection at each time period of qmax = 100 m3/day,
these specifications corresponds to injection of 1.05 pore
volume during operation of the reservoir. The prediction
horizon is optimal in the reference case for a total injection
of 100 m3/day.

The optimal water injection rates computed by solution of
the constrained optimal control problem (1) for different
discount factors, b, are illustrated in Fig. 2. In addition, a
base case with constant and equal water injection rates is
illustrated. It is evident that the optimal injection rates are
very sensitive to the discount factor, b. The corresponding
cumulative oil and water production are plotted in Fig. 3.
Independent of the discount factor value, the optimized
strategies produce more oil than the base case. For the high
discount factor case, b = 0.12, less oil is recovered than in

Proceedings of the 17th Nordic Process Control Workshop 
Technical University of Denmark, Kgs Lyngby, Denmark 
January 25-27, 2012

43



0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3
x 10

5

TIME (DAY)

C
U

M
U

LA
T

IV
E

 P
R

O
D

U
C

T
IO

N
 (

m
3 )

 

 

opt oil
ref oil
opt water
ref water

(a) Discount factor b = 0.
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(b) Discount factor b = 0.06.
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(c) Discount factor b = 0.12.

Fig. 3. Cumulative oil and water productions for different discount factors, b.
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Fig. 4. The net present value (NPV), water cut (accumulated water production per produced fluid), and the water
fraction as function of time for the scenarios considered.

Table 2. Key indicators for the optimized cases. Improvements are compared to the base case.

b NPV ∆NPV Cum. Oil ∆Oil Cum. water ∆Water Oil Rec. factor ∆Oil Rec. factor
106 USD % 105 m3 % 105 m3 % % %-point

0 28.0 +8.7 3.05 +6.5 0.122 −13.2 83.7 +5.2
0.06 22.1 +5.6 3.01 +5.2 0.126 −10.5 82.6 +4.1
0.12 18.3 +4.8 2.98 +4.1 0.129 −8.2 81.7 +3.2
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Fig. 2. Optimal water injection rates for different discount
factors, b.

the low discount factor case, b = 0. However, the produced
oil is always above the reference case when b = 0.12. This
is not the case for b = 0 and b = 0.06. Fig. 4 illustrates the
net present value, the water cut and the water fraction for
the base case scenarios as well as the optimized scenarios.
The plot of NPV demonstrates that when b = 0, the NPV
is lower than the base case NPV at some time during the
production. At the end of the production the optimized

NPV is largest. In order to recover the maximum amount
of oil less oil must be produced at some times. This is
also confirmed by the water fraction curves. The results
are summarized in Table 2. Table 2 shows that most oil is
recovered in the case without discount (b = 0), while least
oil is recovered when the discount factor is high (b = 0.12).

Fig. 5 illustrates the evolution of the oil saturation for the
optimized case (b = 0) and the base case. The figures show
that initially, less oil is produced from the upper left corner
in the optimal case compared to the base case. This gives
a better sweep of the oil field and results ultimately in
higher oil recovery.

6. CONCLUSIONS

In this paper, we solve constrained optimal control prob-
lems using a single shooting method based on a quasi-
Newton implementation of Powell’s sequential quadratic
programming (SQP) algorithm. The system of differential
equations are formulated in a novel way to ensure mass
conservation and the resulting initial value problem (1c)
is solved with tailored ESDIRK integration methods. We
also introduce a high order continuous adjoint system for
efficient computation of the gradients. The algorithm is
implemented in Matlab.
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(a) Optimal solution (b = 0).

TIME: 1050 (Day)

x

y

 

 

200 400

100

200

300

400

0.2

0.4

0.6

0.8

TIME: 2135 (Day)

x

y

 

 

200 400

100

200

300

400

0.2

0.4

0.6

0.8

TIME: 3220 (Day)

x

y

 

 

200 400

100

200

300

400

0.2

0.4

0.6

0.8

TIME: 4270 (Day)

x

y

 

 

200 400

100

200

300

400

0.2

0.4

0.6

0.8

(b) Reference solution.

Fig. 5. Oil saturations at different times for the optimal solution and the reference solution.

The resulting algorithm is tested on a production opti-
mization problem for an oil reservoir with two phase flow.
For all cases considered, the dynamic optimization increase
the net present value of the oil field and give increased oil
production. However, the optimal injection rates are very
sensitive to the discount factor.
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Appendix A. PROOF OF PROPOSITION 1.

The idea in the proof stems from Cao et al. (2002). Define

G(x, ẋ, u) =
d

dt
g(x(t))− f(x(t), u(t))

=
∂g

∂x
ẋ(t)− f(x(t), u(t)) = 0

(A.1)

and introducing the Lagrange multiplier, λ(t), to define
the augmented objective function as

JA = J +

∫ tb

ta

λT (t)G(x, ẋ, u)dt (A.2a)

(A.1) implies that the derivative of the augmented objec-
tive function, JA, can be expressed as

dJA
duk

=
dJ

duk
=
∂Φ̂

∂x

∂x

∂uk

∣∣∣∣
tb

+

∫ tb

ta

(
∂Φ

∂u

∂u(t)

∂uk
+
∂Φ

∂x

∂x(t)

∂uk

)
dt

+

∫ tb

ta

λT (t)

(
∂G

∂u

∂u(t)

∂uk
+
∂G

∂x

∂x(t)

∂uk
+
∂G

∂ẋ

∂ẋ

∂uk

)
dt

(A.3)

where

∂u(t)

∂uk
=

{
I tk ≤ t < tk+1

0 otherwise
(A.4)

Integrating by part∫ tb

ta

λT (t)
∂G

∂ẋ

∂ẋ

∂uk
dt =

[
λT

∂G

∂ẋ

∂x(t)

∂uk

]∣∣∣∣tb
ta

−
∫ tb

ta

d

dt

(
λT

∂G

∂ẋ

)
∂x

∂uk
dt

(A.5)

and using ∂x
∂uk

(ta) = 0 in our case, we can rearrange

equation (A.3) as

dJ

duk
=

∫ tk+1

tk

(∂Φ

∂u
+ λT

∂G

∂u

)
dt

+

∫ tk+1

tk

(
∂Φ

∂x
+ λT

∂G

∂x
− d

dt

(
λT

∂G

∂ẋ

)) ∂x

∂uk
dt

+

[(
∂Φ̂

∂x
+ λT

∂G

∂ẋ

)
∂x

∂uk

]∣∣∣∣
tb

(A.6)

This expression gives the derivative dJ/duk for any value
(not just the optimal one) of λ(t). We choose λ(t) such
that it satisfies

∂Φ

∂x
+ λT

∂G

∂x
− d

dt

(
λT

∂G

∂ẋ

)
= 0 (A.7a)[

∂Φ̂

∂x
+ λT

∂G

∂ẋ

]∣∣∣∣
tb

= 0 (A.7b)

and gives a simple expression for evaluation of dJ/duk

∂ψ

∂uk
=

dJ

duk
=

∫ tk+1

tk

(
∂Φ

∂u
− λT ∂f

∂u

)
dt (A.8)

(A.1) implies

∂G

∂x
=

d

dt

(
∂g

∂x

)
− ∂f

∂x
(A.9a)

∂G

∂ẋ
=
∂g

∂x
(A.9b)

such that (A.7) can be rearranged to

dλT

dt

∂g

∂x
+ λT

∂f

∂x
− ∂Φ

∂x
= 0 (A.10a)

∂Φ̂

∂x
(x(tb)) + λT (tb)

∂g

∂x
(x(tb)) = 0 (A.10b)
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Abstract: Proper allocation and distribution lift gas is necessary for maximizing total oil production from 
a field with gas lifted oil wells. When the supply of the lift gas is limited, the total available gas should be 
optimally distributed among the oil wells of the field such that the production of oil from the field is 
maximized. This paper describes a non-linear optimization problem with constraints associated with the 
optimal distribution of the lift gas. A non-linear objective function is developed using a simple dynamic 
model of the oil field where the decision variables represents the lift gas flow rate set points of each oil 
wells of the field. The lift gas optimization problem is solved using the ‘fmincon’ solver found in 
MATLAB. For verification, a modified hill climbing method has also been utilized for solving the 
optimization problem. Comparison and discussion of the simulation results from both the methods of 
solving the optimization problem is also included in the paper. Using both of these methods, it has been 
shown that after optimization the total oil production is increased by about 5%. The paper also discusses 
on the possibility that one single optimization is sufficient to operate the oil field in an optimal state when 
the total supply of lift gas is taken as disturbance. Simulation results show that repeated optimization 
performed after the first time optimization has no effect in the total oil production. 
Keywords: Optimization, non-linear programming, objective function, gas lifted oil well, fmincon, hill 
climbing, constraints. 



1. INTRODUCTION 

For a gas lifted oil field where multiple oil wells share the lift 
gas supplied by the common source (see Figure 3), proper 
distribution of the available gas is an important issue for 
maximizing the total oil produced from the oil wells. The set 
points for the mass flow rate of the lift gas for each of the gas 
lift choke valves have to be allocated in a way that the 
distribution yields maximum oil production using the 
available gas. Stable or steady operation does not guarantee 
optimal operation i.e. even though the field is operating in a 
stable manner, the lift gas might have been distributed among 
the oil wells in a non-optimal way and the wells might have 
been producing less than what they can actually produce. 

For the Norne oil field with five gas lifted oil wells, the 
objective is to distribute the available gas ensuring optimal 
production of oil. The amount of lift gas available is assumed 
to be limited. Thus, optimization for the oil field for this case 
is the task of finding out the optimal set points of the five flow 
controllers. Each flow controller controls the opening and 
closing of the gas lift choke valve of each well. In other 
words, the decision variables for the optimization problem 
are the nominal set points of the flow controllers. Using these 
optimal set points for the mass flow rate of the lift gas, the 
total oil produced from the five oil wells should be 
maximized using the limited amount of gas available. 

A non-linear gas lift optimization problem has been 
formulated using a simple model of the oil field. The main 
objective of the paper is to solve this non-linear optimization 
problem using the ‘fmincon’ solver of the MATLAB 
Optimization toolbox as described in Section 4. In addition, 
the optimization problem has also been solved using 
modified hill climbing method as described in Section 5. The 
focus of this paper is to show through simulation results that 
both the optimization methods cause an increase in the total 
oil production from the field. A brief explanation of the 
model of the oil field is given in Section 2. Section 3 contains 
details about the development of the non-linear objective 
function with constraints. Comparison of the two 
optimization methods is described in Section 6. 

 
Figure 1: Optimization hierarchy 
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The optimization procedure works along with the control 
structure used in the oil field for the control of lift gas 
distribution and oil production. The optimizer loop rests on 
top of the control loop and provides the optimal set points to 
the control loop as shown in Figure 1. 

Out of the four control structures applied to the oil field as 
proposed by Sharma et al. (2011), optimization with the 
cascade control structure is discussed in this paper.  

Optimization of gas lifted oil field has been a research of 
interest to many authors. Penalty function or Sequential 
Unconstrained Minimization Technique (SUMT) which can 
accommodate both the equality constraints and inequality 
constraints needed to solve the non-linear optimization model 
of the gas allocation to a gas lifted oil field was proposed by 
Zhong et al., (2004). Daily well scheduling in gas lifted 
petroleum fields has been formulated and solved by using 
mixed integer nonlinear (MINLP) model (Kosmidis et al., 
2005) where the discrete decisions include the operational 
status of wells, the allocation of wells to manifolds or 
separators and the allocation of flow lines to separators, and 
the continuous decision include the well oil rates and the 
allocation of gas-to-gas lift wells. Dynamic programming has 
been be used for solving a gas-lift optimization problem 
(Camponogara and Nakashima, 2006) where the gas-lift 
optimization problem can be casted as a mixed integer 
nonlinear programming problem whose integer variables 
decide which oil well should produce, while the continuous 
variables allocate the gas-compressing capacity to the active 
ones. Computational scheme using genetic algorithm has 
been used to find optimum gas injection rate (Saepudin et al., 
2007; Ray and Sarker, 2007) for gas lifted oil filed and also 
for dual gas lift system (Sukarno et al., 2009). For gas lift 
optimization, a high dimensional problem has been reduced 
into one single variable problem by using Newton reduction 
method based on upper convex profile (Rashid, 2010). Gas-
lift optimization has been formulated and solved by using an 
objective function considering the annualized capital costs on 
compressor, turbine and gas pipelines, the operating costs 
related to fuel and the revenue from produced oil (Souza et 
al., 2010). 

2. MODEL OF THE OIL FIELD 

A simple model of a gas lifted oil well where all the 
necessary and important components are taken into account is 
shown in Figure 2. The oil field consists of five gas lifted oil 
wells which share the lift gas from the common distribution 
manifold. Figure 3 shows a schematic of the oil field with 
five oil wells. In this paper, the details about the development 
of the model of the oil field have not been discussed and only 
the description of the oil field is included. The model 
proposed by Sharma et al. (2011) has been used here in this 
paper. 

The compressor outputs a highly pressurized lift gas into the 
gas distribution pipeline. The lift gas enters into the annulus 
of each well from this common gas distribution manifold. 
The amount of lift gas to be injected into each well is 
controlled by the gas lift choke valve present in the well head 
of each oil well. 

 
 
      1.Lift gas distribution manifold     2. Gas lift choke valves 3.Annulus      

4. Tubing      5. Gas injection valve    6. Reservoir   7. Production choke 
valve     8. Gathering manifold      9. Multiphase meters   10. Pressure 
and temperature transducer   11. Packer 
Lt_vl = La_vl = vertical length of tubing/annulus above the gas injection 

point 
Lr_vl = vertical length of tubing below the gas injection point 
 

Figure 2: Different components of a gas lifted oil well 
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Figure 3: Schematic of an oil field with five oil wells 
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From the annulus, the high pressure lift gas is injected into 
the tubing at a proper depth through the gas injection valve 
(see Figure 2). The gas injection valve is designed in a way 
that the back flow of fluid into the annulus from the tubing 
does not occur through it. 

The injected gas mixes with the multiphase fluid (crude oil, 
water and gas produced from the reservoir) in the tubing at 
the point of injection thereby reducing its density and the 
weight of the liquid column in the tubing. This causes the 
differential pressure between the reservoir ( ܲ

, superscript ‘i’ 
represents the ith oil well for all symbols used in this paper) and 
bottom hole pressure ( ௪ܲ

 ) to be increased causing the liquid 
column to flow upwards to the surface. The production choke 
valve controls the flow rate of the fluid (ݓ ) produced from 
the reservoir. In this paper, it is left at 100% fully open and 
has not been implemented for control purpose. The mixture 
of the gas, water and oil flowing out of each of the wells 
through the production choke valves is collected together in 
the common gathering manifold and finally transported to the 
separator where they are separated into their respective 
constituents. The gas is then sent back to the compressor 
system and recycled to be used for lifting purpose. 

Pressure and temperature transducers measure the pressure 
and temperature both downstream and upstream the 
production choke vale and gas lift choke valve. A multiphase 
flow meter is installed downstream the production choke 
valve and is used to measure the flow rate of oil, gas and 
water individually. The packer is used to seal the bottom of 
the casing annulus, which funnels all of the production into 
the tubing string, so all of the available gas energy is utilized 
to lift the fluid. 

For the purpose of gas injection distribution, control and 
optimization, friction losses have not been taken into account. 
All phases of the multiphase fluid are assumed to be evenly 
distributed with no slugging. The temperature of lift gas and 
the multiphase fluid in all sections of pipeline is assumed to 
be constant at 280 K and the reservoir pressure is kept 
constant at 150 bar. It is also assumed that flashing does not 
occur. 

 

3. DEVELOPMENT OF OBJECTIVE FUNCTION 

A simple notation of the optimization problem is (Edgar et 
al., 2001): 

Minimize: ݂(࢞) Objective function 

Subject to: ℎ(࢞) = 0 Equality constraints 

(࢞)݃  ≥ 0 Inequality constraints 

Here x is the vector of decision variables. For the case of the 
oil field, the decision variables are the flow rates of lift gas 
through each of the gas lift choke valves. 

The amount of oil produced from the reservoir (ݓ ) is a 
function of the amount of lift gas (ݓ ) injected into the well. 

ݓ = ݓ)݂ ) 1.  

Due to limited supply of lift gas, the sum of the total gas 
injected into the five oil wells should be equal to that 
supplied by the compressor. This gives rise to a linear 
equality constraint as, 

ݓ
ହ

ୀଵ

= ݓ  2.  

ݓ  is the mass flow rate of lift gas through the gas lift choke 
valve of ith well and ݓ  is the mass flow rate of lift gas 
supplied by compressor. 

In order to find the lower and the upper limit of the lift gas 
injection rate, it is assumed that the gas lift choke valve of 
each well will be at least 10% open and to the maximum 80% 
open. This range could have been chosen to be from 0% 
(fully closed) to 100% (fully open), however, seldom are the 
choke valves operated at their full throttle. Also shutting 
down one of the oil wells completely would give rise to other 
factors (for e.g. re-starting the well by following the well 
unloading procedures). Moreover, the open loop as well as 
the closed loop simulation results (Sharma et al., 2011) of the 
simple model of the oil field used in this paper does not show 
the opening of the valves below 10% and above 80% under 
normal operating conditions. For calculating the gas mass 
flow rate at 10% and 80% opening of the valves, steady state 
operating condition of the field has been considered. In 
normal operating condition, the pressure upstream the gas lift 
choke valve ( ܲ) is assumed to be 200 bar and the pressure 
downstream the gas lift choke valve ( ܲ

) is assumed to be 
170 bar (this assumption is made after analyzing a year’s data 
from real oil field).  

Mass flow rate through the gas lift choke valve (ݓ ) is 
obtained by using the standard flow equation developed by 
Instrument Society of America (ANSI/ISA S75.01, 1989), 

ݓ =
ܰܥ௩൫ݑଵ ൯ ଵܻ

ටߩ max( ܲ − ܲ
 , 0)	

3600 					
݇݃
 	ܿ݁ݏ

3.  

N6=27.3 is the valve constant, ݑଵ  is valve opening of the ith 
gas lift choke valve expressed in percentage, Pc and ܲ

 are 
the pressures upstream and downstream of the ith gas lift 
choke valve in bars, 	ߩ is the density of gas in the 
distribution pipeline in kg/m3 which is a function of the 
upstream pressure Pc. ଵܻ

 is the gas expansion factor and 
ଵݑ௩൫ܥ ൯ is the valve characteristic as a function of its opening. 

We assume the gas expansion factor ( ଵܻ
) to be: 

ଵܻ
 = 1− ߙ ቆ

ܲ − ܲ


max( ܲ , ܲ
)ቇ 

௬ߙ = ݐ݊ܽݐݏ݊ܿ = 	0.66 
4.  

ܲ
  is the minimum pressure in the gas distribution 

pipeline. For ܲ= 200 bar,  ܲ
 = 170 bar and ܲ

  = 10 bar, 
the value of the gas expansion factor ଵܻ

 = 0.901. 

Valve characteristic as a function of its opening (ܥ௩൫ݑଵ ൯) is 
modelled by three linear equations as shown in Equation (5). 
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The function in Equation (5) is fitted to the data supplied by 
the choke supplier. 

ଵݑ௩൫ܥ ൯ = 
0 ଵݑ < 5

ଵݑ0.111 − 0.556 5 < ଵݑ < 50
ଵݑ0.5 − 20 ଵݑ > 50

 5.  

For ݑଵ= 80%, ܥ௩(80%) = 	20 

For ݑଵ= 10%, ܥ௩(10%) = 	0.554 

The density of the lift gas in the distribution pipeline (ߩ) at 
ܲ = 200 bar can be expressed using the gas law as, 

ߩ = 10ହ
ܯ ܲ

ܴ ܶݖ|ୀଶ
			
݇݃
݉ଷ 6.  

Here, ܯ = molecular weight of the lift gas = 20 × 10ିଷ݇݃, 
ܲ = pressure of gas distribution manifold = 200 bar,ܴ = 

Universal gas constant = 8.314 kg/mole, ܶ = gas temperature 
in the distribution manifold = 280 K and ݖ|ୀଶ = gas 
compressibility factor at a pressure of 200 bar. 

The gas compressibility factor given by Equation (7) is 
expressed as a polynomial function of gas pressure P in bar 
(assuming constant temperature of 280 K at the bottom of the 
sea). It is a curve fitted (LSQ-method) to calculations from 
PVTsim (PVTsim, 2008) using the lift gas composition and 
assuming constant temperature. 

ݖ = −2.572 × 10ହܲି଼ + 2.322 × 10ିହܲଶ −
0.005077ܲ + 1  7.  

For a pressure P =200 bar, the gas compressibility factor ݖ = 
0.7076. The density of the lift gas in the distribution pipeline 
from Equation (6) is then, ߩ= 242.83 kg/m3.  

Then using equation (3), the flow rate of the lift gas through 
the gas lift choke valve is, 

For ݑଵ  = 80% (gas lift choke valve opening of 80%), 

ݓ = 	11.66			
݇݃
 ܿ݁ݏ

For ݑଵ  = 10% (gas lift choke valve opening of 10%), 

ݓ = 0.323	
݇݃
 ܿ݁ݏ

Thus the lower and upper bounds for the gas injection rate is 
given by, 

0.323 ≤ ݓ ≤ 11.66  
௦

 8.  

Since the production of the oil from the reservoir is a function 
of the gas injection rate, let us express ݓ  as a function of  
ݓ . Flow rate of the lift gas from the annulus into the tubing 
through the gas injection valve (ݓ ) is given by 
(ANSI/ISA S75.01, 1989), 

ݓ =
ܭ

ଶܻ
ටߩ max൫ ܲ

 − ௧ܲ
 , 0൯	

3600 	
݇݃
 ܿ݁ݏ

9.  

 is the gas injection valve constant, Pୟ୧୬୨୧ܭ  is the pressure 
upstream the gas injection valve in the annulus and P୲୧୬୨୧  is the 
pressure downstream the gas injection valve in the tubing, 
ρୟ୧  is the average density of gas in the annulus. Yଶ୧  is the gas 
expandability factor given by, 

ଶܻ
 = 1− ߙ ቆ

ܲ
 − ௧ܲ



൫ݔܽ݉ ܲ
 , ܲ

൯
ቇ 

௬ߙ = 	ݐ݊ܽݐݏ݊ܿ = 0.66 

ܲ
  is the minimum pressure of gas in the annulus at the 

point of injection. Arranging and solving equation (9) we get, 

௧ܲ
 = ܲ

 −
൭
ೢೕ
 ×యలబబ

಼ೊమ
 ൱

మ

ఘೌ
    bar 

10.  

ܲ
  can also be expressed by adding the hydrostatic 

pressure drop due to lift gas inside the annulus to the pressure 
ܲ
 as, 

ܲ
 = ܲ

 +
ఘೌ ೌ_ೡ



ଵఱ
      bar 11.  

_௩ܮ
 	is the vertical depth of the annulus from the well head to 

the point of injection in meters. Combining equation (10) and 
(11) we get, 

௧ܲ
 = ܲ

 +
ߩ _௩ܮ݃



10ହ −
ቆ
ݓ × 3600

ܭ
ଶܻ
 ቇ

ଶ

ߩ
 

12.  

Similarly arranging and solving equation (3) we get, 

ܲ
 = ܲ −

൭
ೢೌ
 ×యలబబ

ಿలೡቀೠభ
 ቁೊభ

 ൱
మ

ఘ
    bar 13.  

The bottom hole pressure or well flow pressure ࢌ࢝ࡼ  is, 

௪ܲ
 = ௧ܲ

 +
ఘೝ_ೡ



ଵఱ
     bar 14.  

_௩ܮ
  is the vertical length of the tubing below the gas 

injection point up to reservoir opening in meters and ߩis the 
density of crude oil in kg/m3. From equation (10) and (14) we 
get, 

௪ܲ
 = ܲ

 +
ఘೌ ೌ_ೡ



ଵఱ
−

൭
ೢೕ
 ×యలబబ

಼ೊమ
 ൱

మ

ఘೌ
+

ఘೝೡ


ଵఱ
	   bar 

15.  

From equation (13) and (15) we get, 

௪ܲ
 = ܲ −

൭
ೢೌ
 ×యలబబ

ಿలೡቀೠభ
 ቁೊభ

 ൱
మ

ఘ
+

ఘೌ ೌೡ


ଵఱ
−

൭
ೢೕ
 ×యలబబ

಼ೊమ
 ൱

మ

ఘೌ
+

ఘೝೡ


ଵఱ
			  bar  

16.  
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The mass flow rate of crude oil flowing from the reservoir 
into the tubing (ݓ ) is calculated using the PI (Productivity 
Index) model of the well (Brown and Beggs, 1977, American 
Petroleum Institute, 1994). 

ݓ =
ூ௫ቀೝିೢ

 ,ቁ

ଷ
		   

௦
 17.  

ܲ
 is the reservoir pressure which is assumed to be constant 

at 150 bar. Then from equation (16) and (17) we get, 

ݓ =

ூ௫

⎝

⎜⎜
⎛
ೝିା

ቌ
ೢೌ
 ×యలబబ

ಿలೡቀೠభ
 ቁೊభ

 ቍ

మ

ഐ
ି
ഐೌ
 ಽೌೡ



భబఱ ା
ቌ
ೢೕ
 ×యలబబ

಼ೊమ
 ቍ

మ

ഐೌ
 ି

ഐಽೝೡ
 ,

భబఱ ,

⎠

⎟⎟
⎞

ଷ
		 
௦

  

18.  

Finally the objective function for the optimization problem 
considering all the five oil wells of the field can be expressed 
as, 

Maximize 

ࢇࢍ࢝൫ࢌ
 ൯ =

∑

࢞ࢇࡵࡼ

⎝

⎜
⎜
⎛
ାࢉࡼି࢘ࡼ

ቌ
ࢇࢍ࢝ ×

࢛ቀ࢜ࡺ
 ቁࢅ

 ቍ



ࢍ࣋
ି
ࢇࢍ࣋ ࢜ࢇࡸࢍ




ା
ቌ
ࢍ࢝
 ×

ࢅࡷ
 ቍ



ࢇࢍ࣋
ି
࢜࢘ࡸࢍ࣋

 ,


,

⎠

⎟
⎟
⎞


	

ୀ 		 ࢍ
ࢉࢋ࢙

  

19.  

Subject to the linear equality constraint, 

ࢇࢍ࢝




ୀ

=   .20 ࢉࢍ࢝

and the bounds, 

. ≤ ࢇࢍ࢝
 ≤ .							

ࢍ
  .21 ࢉࢋ࢙

Optimization problem formulated in equations (19), (20) and 
(21) is a non- linear programming with constraints. In this 
paper, two approaches to solve the optimization problem 
have been discussed. The first approach is with the use of 
‘fmincon’ solver from MATLAB optimization toolbox and 
the second approach is with the use of modified ‘hill 
climbing’ method. 

4. OPTIMIZTION USING SOLVER FROM MATLAB 
OPTIMIZATION TOOLBOX 

‘fmincon’ is a built-in function in MATLAB for finding the 
minimum of a constrained non-linear objective function of 
several variables starting at user specified initial estimate. 
However, for the case of maximizing oil production, the 
objective function has to be maximized instead of 
minimizing. This can be achieved by using ‘fmincon’ to the 
objective function reflected along the x-axis i.e. by taking the 
negative of the objective function. 

In our case, since we have the bound constraints (Equation 
21) as well as the linear constraints (Equation 20), ‘fmincon’ 
uses sequential quadratic programming (SQP) method with 
the active set optimization algorithm (MathWorks Inc., 
2011). Moreover, to get the optimal points as close as to the 

global maximum, global search algorithm has been used 
along with ‘fmincon’. The global search algorithm starts the 
‘fmincon’ solver from multiple start points (MathWorks Inc., 
2011). For details about how global search algorithm and the 
SQP method are implemented in ‘fmnicon’, refer to the 
documentation of MATLAB. 

To use fmincon’ matrices containing coefficients of the linear 
equalities (ܣܽ݊݀	ܤ) and the vectors for the lower and 
upper bounds (݈ܾ	ܽ݊݀	ܾݑ)	have to be passed as argument to 
it. Equation (20) can be arranged in matrix form ܣݔ =  ܤ
as, 

[1 1 1 1 1]ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ


⎣
⎢
⎢
⎢
⎢
ݓ⎡

ଵ

ଶݓ

ଷݓ

ସݓ

ହݓ ⎦
⎥
⎥
⎥
⎥
⎤

ᇣᇤᇥ
௫

= ตݓ


 22.  

Similarly, from Equation (21), the lower and upper bounds 
are, 

0.323ᇣᇤᇥ


≤ ݓ ≤ 11.66ᇣᇤᇥ
௨

 23.  

4.1 Optimization with the cascade control structure 

Optimization of the lift gas distribution in a gas lifted oil well 
is performed along with the cascade control structure. A 
schematic diagram of the cascade control structure is shown 
in Figure 4. In cascade control strategy, a pressure transducer 
measures the pressure of the common gas distribution 
manifold which is then taken as feedback to a pressure 
controller. The set point to this pressure controller is 200 bar. 
The output of the pressure controller gets added to the 
nominal set points of five flow controllers, the result of 
which is then given as the current set point to the five flow 
controllers. 

 
Figure 4: Schematic for cascade control structure. 
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The five flow controllers control the rate of flow of lift gas 
through each of the gas lift choke valves. The pressure 
controller is responsible for maintaining a fairly constant 
pressure of the lift gas in the gas distribution manifold by 
manipulating proper lift gas flow rates through the valves. 
The optimal flow rate set points calculated by the 
optimization algorithm is actually utilized by the cascade 
control structure as the nominal flow set points for five flow 
controllers. 

4.2 Discussion on simulation results 

The non-linear objective function with linear equality 
constraints and inequality bounds was solved using 
MATLAB optimization toolbox. It was assumed that the total 
available lift gas was 40,000 Sm3/hr. At first the nominal set-
points were distributed randomly (non-optimally) among well 
1 to well 5 consuming 15%, 17%,25%,23% and 20% of the 
total available lift gas respectively. The non-optimal flow set 
points are listed in Table 1. 

Table 1: Non- optimal distribution of lift gas flow rate set 
points 

Well no. Well
1 

Well 
2 

Well 
3 

Well 
4 

Well 
5 

Unit 

Nominal flow  
set points 

1.38 1.57 2.31 2.12 1.84 
 

 

The process was first allowed to reach the steady state with 
the controllers running alone. Optimizer loop was activated 
once the process reached the steady state. The values of the 
different process variables (like pressure of gas distribution 
manifold, valve openings, Productivity Index (PI) values etc.) 
used in the objective function (Equation 19) were taken as the 
steady state values. 

 
Figure 5(a): Total oil production without optimization 

In Figure 5(a), the total oil produced from the five oil wells 
without any optimization was about 332 kg/sec which 
resembled to the total oil production of the real oil filed at 
Norne. However, after the process reached the steady state, at 
t = 50 hours, the optimizer loop was activated once to find 
the optimal set points for the flow controller. The optimal set 

points returned by the optimizer were used and the simulation 
was continued with the controllers alone. The total oil 
produced was increased by 14 kg/sec from about 332.5 
kg/sec to about 346.5 kg/sec as shown in Figure 5(b) using 
the new optimal set points. The optimal flow set points 
returned by the optimizer are listed in Table 2. 

Table 2: Optimal flow set points calculated by optimizer 
Well no. Well

1 
Well 
2 

Well 
3 

Well 
4 

Well 
5 

Unit 

Nominal flow  
set points 

2.12 1.37 1.37 4.05 0.32 
 

 

 
Figure 5(b): Total oil production with optimization turned 
‘ON’ at t = 50 hours. 

The distribution of the lift gas through the five gas lift choke 
valve after the application of the new optimal flow set points 
and with the controllers still active is shown in Figure 6(a). 
Similarly the distribution of the lift gas through the choke 
valves without any optimization is shown in Figure 6(b). 

 
Figure 6(a): Lift gas distribution among wells with 
optimization. 

As can be seen from Figure 6(b), when the optimizer was not 
activated at t = 50 hours after the process reached the steady 
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state, there was no re-distribution of the lift gas and the 
process continued to operate in its steady state. 

 
Figure 6(b): Lift gas distribution among wells without 
optimization. 

However, when the optimizer was turned ‘ON’ at t = 50 
hours as in Figure 6(a), due to the new optimal set points of 
the flow controllers generated by the optimizer, the lift gas 
distribution was changed resulting in an increased oil 
production. 

Since re- distribution of the lift gas took place at t = 50 hours 
as a result of optimization, the oil produced from each oil 
well was also re-distributed in accordance to the distribution 
of the lift gas as shown in Figure 7. 

 
Figure 7: Oil produced from each oil well after optimization. 

Production of oil from oil well 1 and oil well 2 increased 
because the lift gas supplied to these wells was increased 
after optimization (see Figure 6(a)). Similarly, the oil flow 
rate from well 5 decreased due to less injection of lift gas 
after optimization (see Figure 7). 

Finally, it can be concluded from the simulation results that 
the outcome of optimization using the built-in solver in 
MATLAB is an increased total oil production. Expressing it 

in percentage, the increased production due to process 
optimization was approximately 4.21%. 

4.3 How often to perform optimization? 

The effect on the total oil production when optimization is 
performed multiple times is an interesting topic to discuss. To 
check this, optimization was performed at t = 50 hours under 
the availability of 40000 Sm3/hr of gas supply (see Figure 8). 
The process with increased oil production due to this first 
place optimization was then allowed to reach the steady state. 
After the total oil production flow rate reached steady state, at 
t = 90 hours, the supply of lift gas was reduced to 36000 
Sm3/hr. Due to the reduction in supply gas, the total oil 
production started to decrease. The process was again 
allowed to reach the steady state at the lower supply of lift 
gas. Then at t = 120 hours, when the total oil production flow 
rate reached steady state, optimization loop was activated for 
the second time. 

Figure 8 shows that when the optimization was activated for 
the second time after the application of input disturbance, it 
had no effect on the total oil production and the total oil 
production rate remained the same. The initial values given to 
the optimizer loop turned ON at t = 120 hours were the 
steady state flow rate values through each gas lift choke 
valves. The optimizer loop after performing calculations 
returned back the same initial values as the optimal values. 

 
Figure 8: Total oil production when optimization was 
performed for the second time after input disturbance. 

This could be due to the effect of the optimizer run for the 
first time at t = 50 hours. The process may have already 
obtained the optimal flow rate set points for all the five flow 
controllers when the optimizer was activated for the first 
time. When input disturbance was given at t = 90 hours, the 
controllers may have decreased the gas flow rates through the 
valves in an optimal way because of the already available 
optimal flow rate set points. So the reduced total production 
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due to reduced gas supply may have already acquired the 
optimal steady state at t = 120 hours. 

4.4 Optimization after the reduction of the supply of lift gas. 

An obvious question that can probably occur is the doubt of 
whether the optimizer loop failed to function properly for a 
reduced supply of lift gas. To justify this question about 
behaviour of the optimizer activated for the second time, an 
interesting point would be to see how the total oil production 
will be affected when the optimizer is activated for the first 
time only after the application of the input disturbance i.e. 
without any previous activation of the optimizer. In this case, 
at t = 60 hours when the process reaches steady state for 
40000 Sm3/hr supply of gas, instead of activating the 
optimizer, the gas supply was reduced to 36000 Sm3/hr. The 
reduced oil production due to reduced supply of gas was 
again allowed to reach the steady state. Then at t = 120 hours, 
the optimizer was activated for the first time. 

As can be seen from Figure 9, when the optimizer was 
activated for the first time after applying the input 
disturbance without any prior optimizations, the total 
production of the oil increased by around 15kg/sec from 
about 321 kg/sec to about 336 kg/sec. This clearly implies 
that the optimizer loops functions properly even for reduced 
supply of gas. 

 
Figure 9: Total oil production when optimization was 
performed for the first time, only after input disturbance was 
applied. 

It can thus be briefly concluded that one single optimization 
is sufficient enough to bring the process to optimal operating 
condition and further optimization is not necessary even for 
changing total gas supply as input disturbances. 

5. OPTIMIZATION USING HILL CLIMBING METHOD 

Hill Climbing is an iterative method of finding the 
maximum/minimum of a function  with the decision 

variable(s)  where only one of the decision variables is 
changed at a time keeping all the others unchanged. Iteration 
is started with the initial values of the decision variables 
provided by the user. The algorithm then tries to find better 
value of  by increasing/decreasing only a single decision 
variable at one time. If the change provides a better solution 
than before, the decision variable is slightly incremented and 
the new solution is calculated. Hill climbing aims to ascend 
to a peak by repeatedly moving to an adjacent state with a 
higher fitness (Juels and Wattenberg, 1994). This step is 
repeated until the increment of the decision variable provides 
no further better solution. The whole process is repeated for 
each remaining decision variable. Finally, the set of decision 
variables  is the optimal set of variables. 

However, one difficulty in using hill climbing method in the 
case of the oil field where the decision variables are the gas 
flow rate through the five gas lift choke valves is that, when 
an increment is made in the gas flow rate of only one of the 
gas lift choke valve, gas flow rate through another (or all of 
the remaining 4 valves) has to be decreased exactly by the 
same amount by which the increment was made to maintain 
the gas flow rate constraint (the supply gas flow rate should 
be equal to the sum of the gas flow rates through the five gas 
lift choke valves). Since at least two decision variables have 
to be manipulated at the same time, this approach can be 
considered to be a modified version of the general hill 
climbing method. Furthermore, the hill climbing method for 
solving the optimization problem has been done to check the 
performance of the optimization problem solved by using 
‘fmincon’ solver of MATLAB optimization toolbox as 
described in Section 4. 

5.1  Strategy for hill climbing method 

The gas lift choke valves are assumed to be never fully closed 
and never fully open. They are assumed to be open from 10% 
to 80%. If the supply gas flow rate is denoted by ‘total flow’ 
then 10% gas lift valve opening of one of the well means that 
amount of gas flowing through that well is 3.5% of ‘total 
flow’ and that for 9.22 kg/sec gas flow rate (total gas flow 
rate at normal condition) through the well, it means that the 
amount of gas flowing through the well is 100% of ‘total 
flow’. 

Initially all the five oil wells have an equal lift gas 
distribution of 20% of ‘total flow’. The strategy is to decrease 
the flow rate in one of the wells (also called here as ‘starting 
well’) from initial equal distribution of 20% of ‘total flow’ to 
3% of ‘total flow’ in smaller steps of 1% of ‘total flow’ at 
each iteration. At the same time the flow rate of another well 
(also called here as ‘helping well’) is increased from 20% of 
‘total flow’ to 37% of ‘total flow’ with the same time step of 
1% of ‘total flow’ at each iteration. 18 iterations are 
performed and the total oil production at each iteration are 
calculated and stored. After this, keeping the same oil well as 
‘starting well’, the remaining three oil wells perform the role 
of the ‘helping well’ turn by turn. A sub-total of 72 iterations 
will be performed and for each iteration, the total oil 
production is calculated and stored. 

Proceedings of the 17th Nordic Process Control Workshop 
Technical University of Denmark, Kgs Lyngby, Denmark 
January 25-27, 2012

54



 
 

     

 

When all the remaining three oil wells have completed 
working as ‘helping well’, the role of the ‘starting well’ is 
undertaken by next oil well. The remaining oil wells will 
again function as ‘helping well’ for this new ‘starting well’. 
The whole process is repeated until each of the five oil wells 
work as ‘starting well’. At the end, a total of 360 iterations 
will be performed. The set of gas flow rates which gives the 
highest oil production among these 360 iterations is 
considered to be the optimal gas flow rates. 

It should be noted that the step change of 1% of ‘total flow’ is 
equivalent to 5% change in the flow rate of lift gas in each 
well. This step of 5% change in the lift gas flow rate in each 
well is assumed to provide observable change in the total oil 
production. Moreover, for each oil well, the iteration swings 
from 3% of total production to 37% of total production, 
which is sufficient enough to provide a set of good local 
optimal set points. 

5.2  Discussion on simulation results 

Hill climbing method was used to solve the non-linear 
objective function with linear equality constraints and 
inequality bounds. It was assumed that the total available lift 
gas was 40,000 Sm3/hr. At first the nominal set-points were 
distributed randomly (non-optimally) among well 1 to well 5 
consuming 15%, 17%,25%,23% and 20% of the total 
available lift gas respectively as listed in Table 1. 

The cascade control structure of Figure (4) was used along 
with the optimizer for optimal control and distribution of lift 
gas and for optimal production of oil. All the assumptions 
and conditions used for optimization using built-in ‘fmincon’ 
solver from MATLAB optimization toolbox have also been 
used for hill climbing method. 

The process was first allowed to reach the steady state with 
the controllers running alone. At t = 60 hours, when the 
process reached the steady state, the optimizer loop was 
activated once to find the optimal set points for the five flow 
controllers. The optimal set points returned by the optimizer 
were used as the new nominal set points and the simulation 
was continued with the controllers alone. The total oil 
produced from the oil field was increased to about 347 kg/sec 
as shown in Figure 10. 

 

 
Figure 10: Total oil production with hill climbing 
optimization turned ‘ON’ at t = 60 hours. 

Without any optimization, the total oil production was 332 
kg/sec as shown in Figure 5(a). So optimization caused an 
increase in the total oil production by about 15 kg/sec. When 
expressed in percentage, the oil production was increased by 
about 4.5%, which is very much similar to what was obtained 
with optimization using solver from MATLAB optimization 
toolbox. 

The optimal flow set points returned by hill climbing 
optimizer are listed in Table 3. 

Table 3: Optimal flow set points calculated by hill 
climbing optimizer. 

Well no. Well
1 

Well 
2 

Well 
3 

Well 
4 

Well 
5 

Unit 

Nominal flow  
set points 

3.32 1.84 1.84 1.84 0.37 
 

 

The initial values given to the optimizer loop was the equal 
gas distribution of 1.8444 kg/sec (with 40000 Sm3/hr of 
supply gas). Since with hill climbing method used for this 
case, only two decision variables gets modified at a time, the 
optimizer returned a set of gas flow rates where only two 
decision variables were altered with the remaining having 
values equal to 1.8444 kg/sec as shown in Table 3. 

The distribution of lift gas among the five gas lift choke 
valves after the application of the new optimal flow set points 
and with the controller still active is shown in Figure 11. 

 
Figure 11: Gas distribution among wells using hill climbing 
optimizer turned ‘ON’ at t = 60 hours. 

The gas flow rate though well 5 which is the least producing 
well (Sharma et. al., 2011) has decreased and that through 
well 1 and well 2 have increased after the hill climbing 
optimizer was turned ‘ON’ at t = 60 hours. Without any 
optimization, there was no re-distribution of the lift gas 
among the wells and the process continued to operate in its 
steady state as shown in Figure 6(b). 

Since re-distribution of the lift gas took place at t = 60 hours 
as a result of optimization, the oil produced from each oil 
well were also re-distributed in accordance to the distribution 
of the lift gas and is shown in Figure 12. 
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Figure 12: Oil produced from each oil well after optimization 
with hill climbing method. 

Production of oil from oil well 1 and oil well 2 increased 
because the lift gas supplied to these wells was increased 
after optimization (see Figure 11). Similarly, the oil flow rate 
from well 5 decreased due to less injection of lift gas after 
optimization (see Figure 12) which is very similar to what 
was obtained using the built-in solver of MATLAB 
optimization toolbox. 

Finally, it can be concluded from the simulation results that 
the outcome of optimization using the hill climbing method is 
an increase in the total oil production. The simulation results 
obtained using the hill climbing method can also be used as 
the verification of the results obtained from built-in 
optimization solver. 

6. COMPARISON OF THE TWO OPTIMIZATON 
METHODS 

Both the methods of optimization were successfully tested 
through simulations and both of them could optimize the 
process resulting in increased oil production. The amount of 
total oil production increased after the optimization was 
almost the same for both the methods. So it is difficult to 
compare these two methods based on how much oil 
production was increased by each optimization method. 

The built-in solver of MATLAB optimization toolbox uses 
the mathematical model of the oil field. Mathematical model 
of a complex process is just an approximation of the real 
process. Models of complex process will always have some 
assumptions and it cannot represent the real process 
completely. Moreover, as time passes and as the process 
becomes older, the dynamics of the process may change over 
time due to several factors. The mathematical model 
developed and tested when the plant was young may not be a 
good representation of the older model. Under this situation, 
optimization methods based on the mathematical model of 
the process might not at all provide optimal results in the real 
oil fields. Thus hill climbing optimization procedure which is 
independent on mathematical modeling of the process is 
advantageous in this regard over the use of MATLAB solver 
for solving an optimization problem which is an important 
strength for real applications. 

‘fmincon’ which is a built-in solver of Optimzation toolbox in 
MATLAB uses active set optimization algorithm utilizing 
sequential quadratic programming (MathWorks Inc, 2011). 
This method uses the information of the gradient of each 
decision variables such that all the decision variables can be 
changed in each iteration. In case of hill climbing method, 
only single variable can be altered at a time (the other 
variable(s) were changed only to meet the constraints). Also, 
the built-in solver uses ‘global solution’ class which has a 
tendency to provide better optimal solution (more towards 
global solution) than the hill climbing method which only 
provides local optimal solution. 

A number of field experiments should be performed if hill 
climbing method is to be applied to real oil field. The normal 
operation of the existing oil field has to be disrupted for 
performing these tests during which time there might be some 
loss of total production of oil. However, this loss of oil 
during the test period (if they are not very long) can be 
compromised with an increase in the total oil production for a 
longer period of time due to optimization. 

To conclude the use of ‘fmincon’ as built-in solver from 
MATLAB optimization toolbox is recommended when 
simulator (mathematical model of the process) is used for 
optimization. But, for real oil fields, hill climbing method 
might be more beneficial and realistic to use. 

7. CONCLUSION 

For optimal distribution of the available lift gas among the 
five oil wells in order to maximize the total oil production, a 
non-linear optimization problem with linear constraints and 
inequality bounds was formulated using the model of the 
process at steady state. The optimization problem was then 
solved using two methods; one was using the MATLAB 
optimization toolbox and another was by using the hill 
climbing method of optimization. Both the optimization 
methods could increase the total oil production by about 
4.2%. One advantage of doing optimization with hill 
climbing method in a real oil field is that it does not require a 
mathematical model of the oil field so it is free of modeling 
errors and assumptions. However, it does require a number of 
experiments to be performed in the real field for which the 
normal operation of the oil field might have to be obstructed. 

Optimization with the ‘fmincon’ solver was performed 
including the global search algorithm, so this method has the 
tendency to provide better optimal solution (more towards 
global solution) than the hill climbing method which only 
provides local optimal solution. It can also be briefly 
concluded that one time optimization is sufficient enough to 
bring the oil field to an optimal state and multiple 
optimization is not necessary to be done when total gas 
supply is varied as input disturbance. 
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Abstract

Model-Based Optimization of Economical

Grade Changes for the Borealis

Borstar RF Polyethylene Plant
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1Dept. of Automatic Control, Lund University, 2Borealis AB, Stenungsund,

3Dept. of Chemical Engineering, Lund University

Economical grade changes are considered for a Borealis Borstar RF polyethylene

plant model. Figure 1 shows a schematic diagram of the plant, which incorpo-

rates two slurry-phase reactors, one gas-phase reactor and a recycle area with

three distillation columns. The model is constructed in the Modelica language

and the JModelica.org platform is used for optimization. The designed cost func-

tion expresses the economical profit during a grade change and is formulated

using on-grade intervals for seven polymer quality variables such as melt index,

density and reactor split factors reflecting polymer bi-modality. Additionally, in-

centives to produce polymer with quality variables on grade target values, not

only inside grade intervals, are added together with a preparatory time inter-

val prior defined transition time. In total, twelve inflows and three purge flows

are used at optimization. Two optimal grade changes show the effect of using a

cost function that regards plant economy. The resulting trajectories can be di-

vided into three phases with distinguishing features, and the synchronization of

inflows and usage of recycle area off-gas flows are important in the optimized

grade changes. Figure 2 shows melt index and density during two optimized

transitions while Figure 3 shows when the polymer is considered on- and off-

grade, the profit and the plant production rate. A full version of the article can

be found in the Ph.D. thesis [1].
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Figure 1 Overview of the plant PE3 at Borealis AB including three Borealis Borstar RF

reactors and a recovery area with three distillation columns.

Proceedings of the 17th Nordic Process Control Workshop 
Technical University of Denmark, Kgs Lyngby, Denmark 
January 25-27, 2012

58



0 10 20 30 40 50 60

1

2

3

4

0 10 20 30 40 50 60

0.999

1

1.001

1.002

D
e
n
si
ty

M
e
lt
in
d
e
x

Time

Figure 2 Upper: Instantaneous and bed average polymer melt index. Lower: Instanta-
neous and bed average polymer density.
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Figure 3 Upper: Functions determining if production is on- or off-grade. Middle: Cu-
mulative profit. Lower: Production rate.
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Abstract 
 
Modelling process plants during normal operation requires a set a basic assumptions to define the desired 

functionalities which lead to fullfillment of the operational goal(-s) for the plant. However during during 

start-up and shut down as well as during batch operation an ensemble of interrelated modes are required to 

cover the whole operational window of a processs plant including intermediary operating modes. 

Development of such an model ensemble for a plant would constitute a systematic way of defining the 

possible plant operating modes and thus provide a platform for also defining a set of candidate control 

structures.  The present contribution focuses on development of a model ensemble for a plant with an 

illustartive example for a bioreactor. 

Starting from a functional model a process plant may be conceptually designed and qualitative operating 

models may be developed to cover the different regions within the plant operating window, including 

transitions between operating regions.  Subsequently qualitative functional models may be developed when 

the means for achieving the desired functionality are sufficiently specified during the design process. 

Quantitative mathematical models of plant physics can be used for detailed design and optimization. 

However the qualitative functional models already provide a systematic framework based on the notion of 

means-end abstraction hierarchies. Thereby functional modeling provides a scientific basis for managing 

complexity. A functional modelling framework has been implemented to facilitate model development and 

application in a computer environment. Defining means-end causal relations makes it possible to perform 

qualitative causal reasoning within a functional modelling framework. Thus such a framework renders it 

possible to develop potentially feasible control structures.  This ability is based on goal reasoning and 

development of goal trees from causal relations. These capabilities of functional models extend the 

application potential of functional modelling significantly beyond that of conventional mathematical 

modeling representing quantitative physical phenomena.  

The example case is a continuously operating bioreactor for manufacturing single cell protein from methane 

where also the bioreactor start-up is illustrated with switching between operating modes and their associated 

control structures as seen in a multiloop control configuration.  
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Abstract: This paper addresses the need of continued education of process industry prac-
titioners such as operators and instrumentation engineers. The process industry regulatory
control tuning situation of today is reviewed. Areas of potential improvement are identified.
A course, aimed at fulfilling these needs is presented. Especially, useful laboratory experiments
are outlined. The suggested course was given within PICLU – a regional collaboration between
academia and process industry in Scandinavia.

1. INTRODUCTION

Automatic control is a subject rich in both mathematics
and practical considerations. To device adequately work-
ing control systems, it is therefore important to have a
broad competence span. Teaching automatic control to
an audience without a strong mathematical background
can be challenging, for students and instructors alike.
Even the more basic theory of the commonly occurring
Proportional Integrating and Derivating (PID) controller
is based on concepts of ordinary differential equations, lin-
earization, Laplace transforms and matrix algebra Åström
and Hägglund (2006).

Likewise, an audience without practical experience gener-
ally has difficulties estimating the skills and effort required
to implement a control system in a non-ideal world Kheir
et al. (1996).

Part of the activity of PICLU, the Process Industrial
Centre at Lund University pic (2010), is to provide technol-
ogy transfer to regional process industry. As part of this
mission, the Department of Automatic Control at Lund
University is giving a series of courses aimed at different
categories of industry professionals. The first course in this
series was held in the spring of 2010 and aimed at practi-
tioners such as instrumentation and process engineers.

The main purpose of this paper 1 is to draw attention
to a situation, where much is to be earned. In addition,
it is the hope of the authors to inspire to take similar
pedagogic initiatives and reach out to audiences, which are
generally forgotten, mainly due to lacking mathematical
background. For this purpose a course format, which was
found to work well for instructors and participants alike,
is presented.

2. AUDIENCE

The audience consisted of industrial professionals, working
in close connection to process industry processes. An illus-
trative way of introducing the background of the audience

1 Parts of this paper have been previously presented at the SEFI
Annual Conference 2011, Lisboa, Portugal.

Scheduling (weeks)

Site-wide optimization (day)

Local optimization (hour)

Supervisory control (minutes)

Regulatory control (seconds)

Control
layer

Fig. 1. Skogestad’s functional model of process industry
facility.

is through the functional model of Skogestad, Skogestad
(2004), shown in Figure 1. In his model, Skogestad de-
composed a generic process industrial plant into a verti-
cal functional hierarchy. Each level is defined through its
complexity and time scale of operation. The mentioned
audience is employed within what Skogestad refers to as
the ’Control layer’, decomposed into ’Supervisory’ and
’Regulatory’ control. Practically this means that they work
in close connection to physical processes, and have exten-
sive hand-on experience.

Parts of the audience have an academic background,
however, not often in control systems. Some have started
their careers as process operators and transcended from
working in the ’Regulatory control’ layer, to a more
conceptually focused position.

Unlike what is commonly found among students in
academia, the audience has a strong practical background
and good practical intuition. They are generally motivated
to learn new concepts, directly applicable in their profes-
sional work. However, they are not used to the format
of university education (lectures, exercises, laboratory ses-
sions) and have a limited theoretical background in control
systems.
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One aim of the course would hence be to exploit the
intuition and motivation of the participants, without being
limited by the format in which control systems are tradi-
tionally taught at an introductory university level. Before
formulating the goals of such a course in greater detail,
motivations for giving it will be presented.

3. THE IMPORTANCE OF CONTINUED
EDUCATION

3.1 The Tuning Situation

PID control Åström and Hägglund (2006) is a technology
well over 50 years old. Still, today, over 95% of all regula-
tory control loops in process industry are PID. Of the PID
loops over 90% are PI. Studies, e.g. Panagopoulos (2000),
have shown that adding derivative action would increase
performance in many cases. However, it has often been
omitted due to difficulties of tuning.

Although more advanced control strategies such as MPC
Garca et al. (1989) are emerging to some extent, the base
level controllers in an MPC solution are still typically
PIDs.

As with any control technology, the PID controller needs
to be tuned to function adequately. Even though most
industrial PIDs are compensating stable, slow, reasonably
damped processes with mainly monotonous step responses
Hägglund (2008), several surveys witness of surprisingly
poor performance. A survey by Ender in 1993 Ender (1993)
on regulatory PIDs concludes that:

• > 30% operate in manual
• > 30% increase short term variability
• ≈ 25% use factory default parameters

A similar survey by Bialkowski in 2002 gave the following
numbers for PID controllers within process industry:

• 50% work well
• 25% ineffective
• 25% dysfunctional

A plausible reason for these figures is the cost of prop-
erly modeling and tuning a PID control loop. Hiring a
consultant for the task is USD 250 − 1000 in work costs
alone, according to a survey by Honeywell Desborough and
Miller (2002). Many companies have this competence in-
house, but the holders of it are generally occupied above
the ’Control layer’ of Figure 1.

Providing operators and instrumentation engineers with
the knowledge needed to conduct model-, rather than
intuition-based tuning could contribute to improve the
situation significantly.

3.2 Reliance, Disuse and Misuse

Handling undesired behavior in process industry control
loops often involves switching the loop to manual mode.
If the control system is critically malfunctioning, this
is well motivated. However, switching to manual mode
when the control is functional or not switching when it
is dysfunctional, should be avoided.

In Dzindolet et al. (2003), the concepts of misuse and
disuse are defined in the context of control reliance.

Disuse is the under-utilization of functional control, while
misuse occurs when the operator overly relies on control.
Psychological experiments in the paper show that disuse
and misuse decreases significantly if the operator is given a
rational explanation to the behavior of the control system.
The main conclusions in the paper is that optimizing
a plant alone, is of limited value, if the operators are
not updated on the underlying principles. The interaction
between automated aid and human operator must be
considered.

3.3 Increased Efficiency through Awareness

Another reason for continued education is to develop the
ability to identify ’low hanging fruit’. Some control systems
can be significantly improved by retuning or introducing
an extension such as derivative action, a feed forward
link or cascade structure. By learning to identify these
situations, an individual can contribute significantly to the
increased efficiency of the control system.

3.4 Personal Motivation

There is an additional motivation for continued education,
which differs slightly from the ones already mentioned.
The individual employee participating in the education,
will generally feel recognized by his/her company. This
fact, in combination with the aspects discussed above,
may contribute to a more positive atmosphere, where own
initiatives for improvements are closer at hand.

4. COURSE LAYOUT

4.1 Goals

A challenge in automatic control eduction is how to include
practical experiments in an otherwise mathematically ori-
ented curriculum Åström and Lundh (1992). The challenge
faced here is the opposite. Practitioners generally have
many hours of on-site experience. Rather than providing
a complete control course, the proposed course aimed at
fulfilling the following goals:

• Give a thorough understanding of the simple control
loop.

• Become familiar with process types common in indus-
try.

• Recap manual tuning of the PID controller and intro-
duce alternatives.

• Go through the anatomy of the PID controller and
handle practical implementation aspects.

• Introduce more advanced control structures such as
cascades and feed forward links.

• Discuss the influence of sensor and actuator place-
ment and characteristics.

Based on these goals, and motivated by experience from
teaching undergraduate control courses, a course outline
was assembled.

4.2 Methodology

The design of the course was influenced by the concepts
of ’Zone of proximal development’ Vygotsky (1978) and
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’deep versus superficial learning’ Marton and Säljö (1976)
by Vygotsky and Säljö, respectively. A brief review of these
pedagogical ideas, and their influence on the course, are
given below. Similar concepts are thoroughly handled in
Biggs and Tang (2007).

Zone of Proximal Development The ability to acquire
new knowledge and skills is strongly coupled to what one
presently knows. Vygotsky studied this basic idea more
closely and introduced the ’zone of proximal development’,
being a set of yet unacquired knowledge or skills, lying
close to what is already familiar to the learner. Based
on Vygotskys studies, it was natural to make laboratory
exercises a central part of the course, since the participants
were themselves practically oriented. Further, effort was
spent to identify topics of significance, which were both
within the zone of proximal development of the audience
and of practical use in their professional lives.

Deep versus Superficial Learning Säljö makes a clear
distinction between deep and superficial learning. Deep
learning is more persistent and more easily extendable.
However, it requires more of the learning process. Ex-
emplifications, learning by solving problems and learning
by teaching each other are known methods to achieve a
depth of learning. Lectures and text books are rich in
information and provide good referencing material, while
they risk to result in more superficial learning. To address
this, the course was given a practical problem focus. In the
interest of time, some material was presented by means of
traditional lectures.

4.3 Structure

In order to relate to the practical background of the
audience, all teaching was strongly coupled to laboratory
exercises. One hour lectures were followed by hands-on
sessions in the lab, where the theoretical results were
applied to a physical plant.

There was also a course book, Hägglund (2008), covering
the material on a conceptual level. The book was not
used extensively during the course itself, but was given to
the participants to keep for future reference. In addition
to taking notes, participants were strongly encouraged to
print plots of experimental result, which was possible to
do in an uncomplicated way due to support in the lab user
interface.

5. THE LABORATORY EQUIPMENT

In this section, the laboratory process is introduced. A
physical overview of the process is followed by a presenta-
tion of its dynamics. Finally, the choice of the particular
process for the course is given.

5.1 Process Overview

The equipment chosen for the course was a cascaded dou-
ble tank. The process was developed at the Department
of Automatic Control, Lund University, and is used regu-
larly in the basic undergraduate, nonlinear, predictive and
process control courses. An earlier version of the process is
described in Åström and Östberg (1986). An operational

u l

y1

y2

Fig. 2. Operational sketch of double tank process.

(a) CAD drawing. (b) Photograph.

Fig. 3. CAD drawing and photograph of laboratory pro-
cess. Region corresponding to operational sketch is
marked by dashed line in photo.

sketch of the process is shown in Figure 2. Figures 3(a) and
3(b) show a CAD drawing and photograph of the physical
process. Note that only the leftmost half, indicated by
dashed lines in the photo, was used.

5.2 Dynamics

Open Loop Dynamics Deriving the nonlinear tank dy-
namics based on Bernoulli (1738) and linearizing them
around a stationary point is part of the introductory
undergraduate control course at Lund University, giving
a good connection between theory and practice. They are
given here for completeness.

dy1

dt
= − a1

A1

√
2gβh1 +

α

A1

θ(u + l)(u + l),

dy2

dt
=

a1

A1

√
2βgh1 −

a2

A2

√
2gβy2, (1)

where u is the input flow and l an input disturbance.
The water level of the upper tank is y1, while y2 is the
level of the lower tank. Ak are the tank cross sections
and ak are the cross sections of the holes connecting the
tanks. The acceleration of gravity is denoted g. αk, βk are
unit conversion constants. Finally, θ is the Heaviside step
function, manifesting that the tanks cannot be emptied by
means of the pumps.

Actuation Linearization Two cheap centrifugal bilge
pumps actuate the input u and ’load disturbance’ l,
respectively. The system input uis pump voltage, while the
input of the model (1) is flow q. The pump dynamics from
u to q are approximately

√·, with stochastic deviations
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caused by mode jumps. For pedagogical reasons it was
decided to hide this nonlinearity by closing a flow PI loop
over each pump and a corresponding upstream Venturi
flow sensor, as shown in Figure 4.

r
PI sen.

y √·

Fig. 4. Flow control loop layout (’sen.’ denotes ’sensor’).

As shown in Figure 5, the nonlinear voltage to flow char-
acteristics were replaced by linear flow reference to flow
ones. The PI loop of Figure 4 was tuned a magnitude faster
than the open loop tank dynamics, hiding its dynamical
behavior.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

r,u [V]

q
[c

m
3
s−

1
]

Fig. 5. Open and closed loop pump characteristics. Flow
q is plotted against pump voltage u (gray) and PI
reference r (black).

5.3 Interface

The process has an on-board micro controller, handling
sensor A/D conversions, actuator D/A conversions, exe-
cution of the pump linearization control loop and serial
port communication with a PC.

Using serial port (or USB to serial) enables the process to
be used with all major operating systems.

The PC side interface can be implemented in various ways.
A Java interface with graphical windows similar to those
in a process industry control room is used in the basic
course and shown in Figure 6. Other courses facilitate
a Matlab/Simulink interface through locally developed
communication blocks. Real time simulation is enabled by
the TrueTime real time kernel Cervin and Årzén (2009).

Fig. 6. Java GUI used in the basic undergraduate control
course.

The main advantage of using a tailored high level interface,
such as the Java one, lies in its flexibility in terms of
graphical user interface (GUI). On the other hand, it is

Fig. 7. Simulink GUI. (The PID parameter window is
opened by double clicking on the PID block.)
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Fig. 8. Comprehensive printout of signals from the latest
experiment.

less transparent and hence structural changes may require
substantial efforts.

While the Simulink model is not as flexible in terms of
GUI, it is straight forward to introduce structural changes.
Also, Matlab scripts can be used to set parameters, run
simulations and plot data. These features are frequently
exploited by students in advanced undergraduate courses
at the department.

For the particular course, the GUI was implemented in
Simulink. An effort was made to abstract away all techni-
cal detail and only present what was necessary to illustrate
a given concept. Each experiment was associated with a
tailored model, which was opened simply by writing the
model name at the Matlab prompt. One of these interfaces
are shown in Figure 7. Experiments could be started or
stopped at any time. By typing a simple command a paper
printout, as the one shown in Figure 8 could be obtained.

5.4 Motivation of Process Choice

The process was chosen due to several facts, in coherence
with guidelines from Bencomo (2004), Feisel and Rose
(2005) and Balchen et al. (1981). Appealing features
include:

• Intuitive, but not trivial, dynamics
• Suitable time scales
• Visual and audible feedback
• Easy to generate load disturbances and measurement

noise
• Relevant in process industry (buffer tank)
• Relatively cheap
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The dynamics enable the demonstration of concepts such
as model based controller tuning, disturbance feed for-
ward, cascaded control and gain scheduling.

In the undergraduate curriculum additional features of the
process are explored in greater detail:

• Nonlinear dynamics
• Asymmetric actuation
• Sampled system (zero order hold AD/DA, anti alias-

ing, etc.)
• Embedded micro controller and real time communi-

cations
• Easily extendable to MIMO (four tanks on physical

process)
• Model uncertainties in terms of structure and param-

eters

These features can be bought to attention also during
a course for industry practitioners. However, they are
not as essential for the practitioner as the topics of the
experiments, presented in the following section.

6. SUGGESTED EXPERIMENTS

Below follows a brief description, together with objective
and learning outcome, of a set of experiments. Each
experiment demonstrates a concept, significant for the
process industry practitioner. Together they form the
laboratory part of the suggested course.

6.1 Intuition Based Tuning

The first laboratory session was devoted to getting familiar
with the process by means of self-designed open loop
experiments. In addition, participants were asked to design
controllers for the levels in the upper and lower tank,
respectively.

The objective was to get the participants familiar with
the equipment and dynamics, rather than producing a well
tuned loop. Before moving on, the participants should have
gained an intuitive understanding that a two-capacitive
process is harder to control than a single capacitance.
They will have experienced the need of systematic tuning
methods, when process dynamics are slow. Those not
having a recent experience with PID tuning would in
addition obtain a conceptual understanding of the PID
parameters and their influence on loop performance.

Experimenting with P, PI and PID controllers, the partic-
ipants would see that pure P control leaves a static error,
and that derivative action can increase performance when
controlling the lower tank level, but not the upper. These
results are all covered in the lectures. Finally, by choos-
ing the amount of low pass filtering on the measurement
signal, the influence of noise on the control signal, when
using derivative action, was studied.

6.2 Model-based Tuning

Generally the participants managed to tune an acceptable
PI loop for the upper tank within minutes. However,
the slow dynamics of the lower tank posed a harder
challenge. The process was harder to control per se, and

the dominating time constant of ≈ 30 s rendered tedious
experiments necessary.

Having learnt the step response method of Ziegler and
Nichols Ziegler and Nichols (1942) and a more recent
alternative Åström and Hägglund (2006), the participants
were encouraged to make step response experiments and
identify first order plus time delay model. These simple
first order model with time constant T , delay L and static
gain K were obtained visually from the input–output data
plots.

The objective of this exercise was to demonstrate the prac-
tical use of simple model-based tuning methods. It also
provided a natural opportunity to emphasize the impor-
tance of tuning with respect to load disturbances, rather
than reference tracking, since most industrial processes
operate with constant reference. Most participant found
that model based tuning provides a good starting point
for further manual tuning, especially if process dynamics
are slow (as in the case of the lower tank).

6.3 Disturbance Feed Forward

Feed forward from a measurable disturbance to control
signal, is a simple technique, which can reduce the influ-
ence of measurable load disturbances significantly. Ideally,
one would use a dynamic link, based on the disturbance
path model. However, in many cases, even a static link can
provide significant performance improvement. In this ex-
periment, the pump generating the signal l in Figure 2 was
used to generate a step input disturbance. The participants
are to choose the feed forward gain F (initially F = 0)
in Figure 9 and investigate its influence when controlling
the level of the upper tank. After having conducted this
experiment, it should lie closer at hand to add feed forward
sensors and compensators, where beneficial.

PPID

F

u y

l

−1

+

Fig. 9. Block diagram of the disturbance feed forward
experiment.

6.4 Cascaded Control

In this experiment, a cascade control solution, consisting
of two PID loops was investigated. The setup is shown in
Figure 10. Rather than controlling the lower tank level,
using only y2, a cascaded solution, using both y1 and y2

was used. The inner loop, closed from y1, had a dominating
time constant considerably faster than that of the outer
loop. By tuning a tight inner loop (using the switch), the
participants were able to treat the inner loops as a static
gain, while later tuning the outer loop.

The primary objective of this exercise was to demonstrate
that more advanced control structures, such as cascades,
can bring performance improvements at a low cost. It also
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+ ++ PID 1 PID 2r
switch

l

−1

−1
y1

y2

P

Fig. 10. Block diagram of the cascaded control experiment.

provides background for a continued discussion on sensor
and actuator placement.

The participants should be able to identify when cascaded
control is useful and be able to tune two cascaded PID
loops, starting with the inner one. By experimenting with
disturbance steps, l, the participants will find that the
cascade suppressed them more efficiently than does a single
loop PID solution, using only y2.

7. OUTCOME

All along the course the instructors had discussions with
the participants about the course material, both from a
content perspective and from a teaching/learning perspec-
tive. This was done in order to assure that the course
contained relevant material for the participants (e.g. not to
hard and not to easy) and to assure that the participants
appreciated the way the course was given (e.g. how much
time to be spent on theory and how much time to be spent
on the laboratory exercises). Relevant and possible adjust-
ments were done during the execution of the course. At the
end of the course, the participants were also asked to fill
out an evaluation form with feedback to the instructors
about the course. Getting feedback from the participants
at the end of the course is important, not for this course
itself, but because this course (as well as other courses)
will be given to industry practitioners again. The four
instructors involved in the course had a meeting shortly
after the end of the course in which they gave their own
reflections on the course and worked through the feedback
from the participants.

7.1 Instructor Evaluation

The four instructors involved were satisfied with the
course. Some reflections from the instructors: ’the ques-
tions asked by the audience were different from the ones we
usually get from engineering students in the way that they
were often more practical oriented and less theoretical’,
and ’The course was designed not to contain too much
material, this left room for reflections – I feel the students
went away with a good understanding of the material’.

7.2 Participant Evaluation

Some reflections from the participants: ’large and complex
area described in an easy and understandable way’, ’ad-
vance quicker in the start of the course and spend more
time on the harder problems at the end’, ’good atmo-
sphere, good practical exercises’, ’suitable level and useful
material’. In the questionnaire the participants should
formulate what they had expected of the course and how
well the course matched their expectations; 94% felt that

the course matched their expectations in a good or very
good way, 6% said ok.

8. CONCLUSIONS

The professional role and background of the audience were
presented in Section 2. Section 3 investigated the needs
of further education of process industry practitioners.
The goals and structure of a course aimed at providing
continued education are given in Section 4. Large parts of
the suggested course are based on laboratory experiments,
reviewed in Sections 5, 6. Experience from the course were
given in Section 7.
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   INDUSTRIAL APPLICATIONS OF PREDICTIVE FUNCTIONAL CONTROL 

                                                  J.Richalet 

 

1) Back to Basic 
Elementary presentation of PFC 
Internal model .Reference trajectory. Feed forward action. Tuning by the desired 
Closed Loop Time Response. Future Manipulated variable projected on a Polynomial 
Basis with no follow-up error on polynomial set points. 
 

2)  Implementation 
The target is to bring PID users a control technique that could be easily implemented 
in a classical industrial PLC and  able to control processes where PId is not efficient: 
taking into account long time delays, constraints on manipulated and process 
variables, feed forward actions, non stationary set points.etc.. 
 

3) Internal model 
The internal model can be a classical discrete difference equation or a convolution 
representation.  
 

4) Procedure 
Training in Technical schools and  Fachhoschule of industrial technical staff.  
 
 

5) Recent industrial applications 
a) Level control in steel continuous casting :control with constraints and feed 

forward. Implementation of a complex algebra (real /imaginary variable) to 
eradicate the harmonic and critical bulging effect. 

b)  Pharmaceutical and chemical industry 
Cascaded control of batch reactor with  non stationary set points, to be followed 
with no lag error  like in a  Mullin crystallization. 
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 Fig 1    Crystallization : Cubic setpoint (red) followed with “no error” 
 

 
 
Fig 2   Error with a +/-0.4°channel from  70° to 20°  
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4° Conclusion  :  
- On line global estimator  of model mismatch and external disturbance 
-  HVAC control of buildings 
- Training of  teachers  in technical schools directly connected to industry 
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The SIMC method for smooth PID controller
tuning

Sigurd Skogestad and Chriss Grimholt

Abstract The SIMC method for PID controller tuning (Skogestad 2003) has al-
ready found widespread industrial usage in Norway. This chapter gives an updated
overview of the method, mainly from a user’s point of view. The basis for the SIMC
method is a first-order plus time delay model, and we present a new effective method
to obtain the model from a simple closed-loop experiment. An important advantage
of the SIMC rule is that there is a single tuning parameter (τc) that gives a good
balance between the PID parameters (Kc,τI ,τD), and which can be adjusted to get
a desired trade-off between performance (“tight” control) and robustness (“smooth”
control). Compared to the original paper of Skogestad (2003), the choice of the
tuning parameter τc is discussed in more detail, and lower and upper limits are
presented for tight and smooth tuning, respectively. Finally, the optimality of the
SIMC PI rules is studied by comparing the performance (IAE) versus robustness
(Ms) trade-off with the Pareto-optimal curve. The difference is small which leads to
the conclusion that the SIMC rules are close to optimal. The only exception is for
pure time delay processes, so we introduce the “improved” SIMC rule to improve
the performance for this case.

Chapter for PID book (planned: Springer, 2011, Editor: R. Vilanova)
This version: September 7, 2011

Sigurd Skogestad
Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU),
Trondheim, e-mail: skoge@ntnu.no

Chriss Grimholt
Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU),
Trondheim

Proceedings of the 17th Nordic Process Control Workshop 
Technical University of Denmark, Kgs Lyngby, Denmark 
January 25-27, 2012

71

skoge@ntnu.no


1 Introduction

Although the proportional-integral-derivative (PID) controller has only three param-
eters, it is not easy, without a systematic procedure, to find good values (settings)
for them. In fact, a visit to a process plant will usually show that a large number
of the PID controllers are poorly tuned. The tuning rules presented in this chapter
have developed mainly as a result of teaching this material, where there are several
objectives:

1. The tuning rules should be well motivated, and preferably model-based and ana-
lytically derived.

2. They should be simple and easy to memorize.
3. They should work well on a wide range of processes.

In this paper the simple two-step SIMC procedure (Skogestad 2003) that satisfies
these objectives is summarized:

Step 1. Obtain a first- or second-order plus delay model.
Step 2. Derive model-based controller settings. PI-settings result if we start from

a first-order model, whereas PID-settings result from a second-order model.

The SIMC method is based on classical ideas presented earlier by Ziegler and
Nichols (1942), the IMC PID-tuning paper by Rivera et al. (1986), and the closely
related direct synthesis tuning rules in the book by Smith and Corripio (1985). The
Ziegler-Nichols settings result in a very good disturbance response for integrating
processes, but are otherwise known to result in rather aggressive settings (Tyreus
and Luyben 1992) (Astrom and Hagglund 1995), and also give poor performance
for processes with a dominant delay. On the other hand, the analytically derived
IMC-settings of Rivera et al. (1986) are known to result in poor disturbance re-
sponse for integrating processes (Chien and Fruehauf 1990), (Horn et al. 1996), but
are robust and generally give very good responses for setpoint changes. The SIMC
tuning rule presented in this chapter works well for both integrating and pure time
delay processes, and for both setpoints and load disturbances.

This chapter provides a summary of the original SIMC method and provides
some new results on obtaining the model from closed-loop data, and on the Pareto-
optimality of the SIMC method. There is some room for improvement for delay-
dominant processes, and at the end of the chapter “improved” SIMC rules are pre-
sented.

Notation. The notation is summarized in Figure 1. Here u is the manipulated
input (controller output), d the disturbance, y the controlled output, and ys the set-
point (reference) for the controlled output. g(s) = ∆y

∆u denotes the process transfer
function and c(s) is the feedback part of the controller. Note that all the variables u,
d and y are deviations from the initial steady state, but the ∆ used to indicate devi-
ation variables is usually omitted. Similarly, the Laplace variable s is often omitted
to simplify notation. The settings given in this chapter are for the series (cascade,
“interacting”) form PID controller:
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Fig. 1 Block diagram of feedback control system.
In this chapter we consider an input (“load”) disturbance (gd = g).

Series PID : c(s) = Kc ·
(

τIs+1
τIs

)
· (τDs+1) =

Kc

τIs

(
τIτDs2 +(τI + τD)s+1

)
(1)

where Kc is the controller gain, τI the integral time, and τD the derivative time. The
reason for using the series form is that the PID rules with derivative action are then
much simpler. The corresponding settings for the ideal (parallel form) PID controller
are easily obtained using (30).

Simulations. The following practical PID controller (series form) is used in the
simulations:

u(s) = Kc

(
τIs+1

τIs

)(
ys(s)−

τDs+1
(τD/N)s+1

y(s)
)

(2)

with N = 10. Note that we in order to avoid “derivative kick” do not differenti-
ate the setpoint in (2). In most cases we use PI-control, i.e. τD = 0, and the above
implementation issues and differences between series and ideal form do not apply.

2 Model approximation (Step 1)

The first step in the SIMC design procedure is to obtain an approximate first- or
second-order time delay model on the form

g1(s) =
k

τ1s+1
e−θs =

k′

s+1/τ1
e−θs (3)
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4 Sigurd Skogestad and Chriss Grimholt

STEP IN INPUT u

RESULTING OUTPUT y

: Delay - Time where output does not change
1: Time constant - Additional time to reach 

63% of final change
k =  y(∞)/ u : Steady-state gain

Δy(∞)

Δu

Fig. 2 Open-loop step response experiment to obtain parameters k,τ1 and θ in first-order model
(3)

g2(s) =
k

(τ1s+1)(τ2s+1)
e−θs (4)

Thus, we need to estimate the following model information

• Plant gain, k
• Dominant lag time constant, τ1
• (Effective) time delay (dead time), θ

• Optional: Second-order lag time constant, τ2 (for dominant second-order
process for which τ2 > θ , approximately)

Such data may be obtained in many ways, three of which are discussed below.

1. From open-loop step response
2. From closed-loop setpoint response with P-controller
3. From detailed model: Approximation of effective delay using the half rule
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2.1 Model from open-loop step response

In practice, the model parameters for a first-order model are commonly obtained
from a step response experiment as shown in Figure 2. From a theoretical point of
view this may not be the most effective method, but it has the advantage of being
very simple to use and interpret.

For plants with a large time constant τ1, one has to wait a long time for the
process to settle. Fortunately, it is generally not necessary to run the experiment for
longer than about 10 times the effective delay (θ ). At this time, one may simply
stop the experiment and either extend the response “by hand” towards settling, or
approximate it as an integrating process (see Figure 3),

ke−θs

τ1s+1
≈ k′e−θs

s
(5)

where

• Slope, k′ def
= k/τ1

is the slope of the integrating response. The reason is that for lag-dominant pro-
cesses, i.e. for τ1 > 8θ approximately, the individual values of the time constant
τ1 and the gain k are not very important for controller design. Rather, their ratio k′

determines the PI-settings, as is clear from the SIMC tuning rules presented below.

Δy

Δt

Fig. 3 Open-loop step response experiment to obtain parameters k′ and θ in integrating model (5).

2.2 Model from closed-loop setpoint response

In some cases, open-loop responses may be difficult to obtain, and using closed-
loop data may be more effective. The most famous closed-loop experiment is the
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Ziegler-Nichols where the system is brought to sustained oscillations by use of a P-
only controller. One disadvantage with the method is that the system is brought to its
instability limit. Another disadvantage is that it does not work for a simple second-
order process. Finally, only two pieces of information are used (the controller gain
Ku and the ultimate period Pu), so the method cannot possibly work on a wide range
of first-order plus delay processes, which we know are described by three parameters
(k,τ1,θ ).

Yuwana and Seborg (1982), and more recently Shamsuzzoha and Skogestad
(2010), proposed a modification to the Ziegler-Nichols closed-loop experiment,
which does not suffer from these three disadvantages. Instead of bringing the sys-
tem to its limit of stability, one uses a P-controller with a gain that is about half this
value, such that the resulting overshoot (D) to a step change in the setpoint is about
30% (that is, D is about 0.3).

We here describe the procedure proposed by Shamsuzzoha and Skogestad (2010)
which seems to use the most easily available parameters from the closed-loop re-
sponse. The system should be at steady-state initially, that is, before the setpoint
change is applied. Then, from the closed-loop setpoint response one obtains the
following parameters (see Figure 4):

Kc0=1.5
Δys=1

Δyu=0.54

Δyp=0.79

tp=4.4

Δy∞

Fig. 4 Extracting information from closed-loop setpoint response with P-only controller.

• Controller gain used in experiment, Kc0
• Setpoint change, ∆ys.
• Time from setpoint change to reach first (maximum) peak, tp.
• Corresponding maximum output change, ∆yp.
• Output change at first undershoot, ∆yu.
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This seems to be the information that is most easy (and robust) to observe di-
rectly, without having to record and analyze all the data before finding the parame-
ters. Also note that one may stop the experiment already at the first undershoot.

The undershoot ∆yu is used to estimate the steady-state output change (at infinite
time)(Shamsuzzoha and Skogestad 2010),

∆y∞ = 0.45(∆yp +∆yu) (6)

Alternatively, if one has time to wait for the experiment to settle, one may record
∆y∞ instead of ∆yu.

From this information one computes the relative overshoot and the absolute value
of the relative steady-state offset, defined by:

• Overshoot, D =
∆yp−∆y∞

∆y∞
.

• Steady-state offset, B =
∣∣∣∆ys−∆y∞

∆y∞

∣∣∣.
Shamsuzzoha and Skogestad (2010) use this information to obtain directly the

PI settings. Alternatively, we may use a two-step procedure, where we first from
Kc0,D,B and tp obtain estimates for the parameters in a first-order plus delay model
(see the Appendix for details). We compute the parameters

A = 1.152D2−1.607D+1

r = 2A/B

and we obtain the following first-order plus delay model parameters from the closed-
loop setpoint response (Figure 4):

k = 1/(Kc0B) (7)

θ = tp · (0.309+0.209e−0.61r) (8)

τ1 = rθ (9)

These values may subsequently be used with any tuning method, for example, the
SIMC PI rules. The closed-loop method may also be used for an unstable process,
provided it can be approximated reasonably well by a stable first-order process. The
extension to unstable processes is the reason for taking the absolute value when
obtaining the steady-state offset B.

Example E2(Skogestad 2003). For the process

g0(s) =
(−0.3s+1)(0.08s+1)

(2s+1)(1s+1)(0.4s+1)(0.2s+1)(0.05s+1)3

the closed-loop setpoint response with P-only controller with gain Kc0 = 1.5 is
shown in Figure 4. The following data is obtained from the closed-loop response
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Kc0 = 1.5,∆ys = 1,∆yp = 0.79, tp = 4.4,∆yu = 0.54

and we compute

∆y∞ = 0.5985,D = 0.32,B = 0.67,A = 0.6038,r = 1.80

which using (7) - (9) gives the following first-order with delay model approximation,

k = 0.994,θ = 1.67,τ1 = 3.00 (10)

This gives a good approximation of the open-loop step response, as can seen by
comparing the curves for g0 and gcl in Figure 5. The approximation is certainly not
the best possible, but it should be noted that the objective is to use the model for
tuning, and the resulting difference in the tuning, and thus closed-loop response,
may be smaller than it appears by comparing the open-loop responses.

���������	
�����������
��������������������������������������������
����������������������
Fig. 5 Open-loop response to step change in input u for process E2, g0(s) =

(−0.3s+1)(0.08s+1)
(2s+1)(1s+1)(0.4s+1)(0.2s+1)(0.05s+1)3 (solid line), and comparison with various approximations.

2.3 Approximation of detailed model using half rule

Assume that we have a given detailed transfer function model in the form
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g0(s) =
∏ j(−T inv

j0 s+1)

∏i(τi0s+1)
e−θ0s (11)

where all the given parameters are positive and the time constants are ordered ac-
cording to their magnitudes. To approximate this with a first or second-order time
delay model, (3) or (4), Skogestad (2003) recommends that the “effective delay” θ

is taken as the “true” delay θ0, plus the inverse response (negative numerator) time
constant(s) T inv, plus half of the largest neglected time constant (half rule), plus all
smaller time constant τi0. The “other half” of the largest neglected time constant is
added to get at larger time constant τ1 (or τ2 for a second-order model).

Half rule: The largest neglected (denominator) time constant (lag) is dis-
tributed evenly to the effective delay (θ ) and the smallest retained time con-
stant (τ1 or τ2).

In summary, for a model in the form (11), to obtain a first-order model (3) we
use

τ1 = τ10 +
τ20

2
; θ = θ0 +

τ20

2
+∑

i≥3
τi0 +∑

j
T inv

j0 +
h
2

(12)

and, to obtain a second-order model (4), we use

τ1 = τ10; τ2 = τ20 +
τ30

2
; θ = θ0 +

τ30

2
+∑

i≥4
τi0 +∑

j
T inv

j0 +
h
2

(13)

where h is the sampling period (for cases with digital implementation).

Example E1. Using the half rule, the process

g0(s) =
1

(s+1)(0.2s+1)

is approximated as a first-order time delay process, g(s) = ke−θs+1/(τ1s+1), with
k = 1,θ = 0.2/2 = 0.1 and τ1 = 1+0.2/2 = 1.1.

Example E2 (continued). Using the half rule, the process

g0(s) =
(−0.3s+1)(0.08s+1)

(2s+1)(1s+1)(0.4s+1)(0.2s+1)(0.05s+1)3

is approximated as a first-order time delay process (3) with

τ1 = 2+1/2 = 2.5

θ = 1/2+0.4+0.2+3 ·0.05+0.3−0.08 = 1.47

or a second-order time delay process (4) with
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τ1 = 2

τ2 = 1+0.4/2 = 1.2

θ = 0.4/2+0.2+3 ·0.05+0.3−0.08 = 0.77

The small positive numerator time constant T0 = 0.08 was subtracted from the ef-
fective time delay according to rule T3 (see below). Both approximations, and in
particular the second-order model, are very good as can be seen by from the open-
loop step responses in Figure 5. Note that with the SIMC tuning rules, a first-order
model yields a PI-controller, whereas a second-order model yields a PID controller.

Comment: In this case, we have τ2 > θ(1.2 > 0.77) for the second-order model,
and the use of PID control is expected to yield a significant performance improve-
ment compared to PI control (see below for details). However, adding derivative
action has disadvantages, such as increased input usage and increased noise sensi-
tivity.

2.4 Approximation of positive numerator time constants

A process model can also contain positive numerator time constants T0 as the fol-
lowing process:

g(s) = g0(s)
T0s+1
τ0s+1

(14)

Skogestad (2003) propose to cancel out the numerator time constant T0 against a
“neighboring” lag time constant τ0 by the following rules: 1

T0s+1
τ0s+1

≈



T0/τ0 for T0 ≥ τ0 ≥ τc (Rule T1)
T0/τc for T0 ≥ τc ≥ τ0 (Rule T1a)
1 for τc ≥ T0 ≥ τ0 (Rule T1b)
T0/τ0 for τ0 ≥ T0 ≥ 5τc (Rule T2)

(τ̃0/τ0)
(τ̃0−T0)s+1 for τ̃0

def
= min(τ0,5τc)≥ T0 (Rule T3)

(15)

Here τc is the desired closed-loop time constant, which appears as the tuning
parameter in the SIMC PID rules. Because the tuning parameter is normally chosen
after obtaining the effective time delay (the recommended value for “tight control” is
τc = θ ), one may not know this value before the model is approximated. Therefore,
one may initially have to guess the value τc and iterate.

We normally select τ0 as the closest larger denominator time constant (τ0 > T0)
and use Rules T2 or T3. Note that an integrating process corresponds to a process
with an infinitely large time constant, τ0 = ∞. For example, for an integrating-pole-

1 The rules are slightly generalized compared to Skogestad (2003) by replacing θ (effective time
delay in final model) by τc (desired closed-loop time constant). This makes the rules applicable
also to cases where τc is selected to be different from θ .
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zero (IPZ) process on the form k′ e
−θs

s
T s+1
τ2s+1 , we get T s+1

s ≈ T (Rule T2 with τ0 =∞>

T ). However, if T is smaller than τ2 then we may use the approximation T s+1
τ2s+1 ≈ T

τ2
(Rule T2 with τ2 > T > 5θ ). Rule T3 would apply if T was even smaller.

However, if there exists no larger τ0, or if there is smaller denominator time
constant “close to” T0, then we select τ0 as the closest smaller denominator time
constant (τ0 < T0) and use rules T1, T1a or T1b. To define “close to” more precisely,
let τ0a (large) and τ0b (small) denote the two neighboring denominator constants to
T0. Then, we select τ0 = τ0b (small) if T0/τ0b < τ0a/T0 and T0/τ0b < 1.6 (both
conditions must be satisfied).

Derivations of the above rules and additional examples are given in (Skogestad
2003).

3 SIMC PI and PID tuning rules (step 2)

In step 2, we use the model parameters (k,θ ,τ1,τ2) to tune the PID controller. We
here derive the SIMC rules and apply them to some typical processes.

3.1 Derivation of SIMC rules

The SIMC rules may be derived using the method of direct synthesis for setpoints
(Smith and Corripio 1985), or equivalently the Internal Model Control approach for
setpoints (Rivera et al. 1986). For the system in Figure 1, the closed-loop setpoint
response is

y
ys

=
g(s)c(s)

g(s)c(s)+1
(16)

where we have assumed that the measurement of the output y is perfect. The idea
of direct synthesis is to specify the desired closed-loop response and solve for the
corresponding controller. From (16) we get

c(s) =
1

g(s)
1

1
(y/ys)desired

−1
(17)

We here consider the second-order time delay model g(s) in (4), and specify that
we, following the delay, desire a “smooth” first-order response with time constant
τc (

y
ys

)
desired

=
1

τcs+1
e−θs (18)

The delay θ is kept in the “desired” response because it is unavoidable. Substituting
(18) and (4) into (17) gives a “Smith Predictor” controller (Smith 1957):
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c(s) =
(τ1s+1)(τ2s+1)

k
1

(τcs+1− e−θs)
(19)

τc is the desired closed-loop time constant, and is the sole tuning parameter for the
controller. To derive PID settings, we introduce in (19) a first-order Taylor series
approximation of the delay, e−θs ≈ 1−θs. This gives

c(s) =
(τ1s+1)(τ2s+1)

k
1

(τc +θ)s
(20)

which is a series form PID-controller (1) with (Smith and Corripio 1985) (Rivera et
al. 1986)

Kc =
1
k

τ1

τc +θ
=

1
k′

1
τc +θ

; τI = τ1; τD = τ2 (21)

These settings are derived by considering the setpoint response. However, it is
well known that for lag dominant processes with τ1� θ (e.g. integrating processes),
the choice τI = τ1 results in a long settling time for input (“load”) disturbances
(Chien and Fruehauf 1990). To improve the load disturbance response, one may
reduce the integral time, but not by too much, because otherwise we get slow os-
cillations and robustness problems. Skogestad (2003) suggests that a good trade-off
between disturbance response and robustness is obtained by selecting the integral
time such that we just avoid the slow oscillations, which with the controller gain
given in (21) corresponds to

τI = 4(τc +θ) (22)

3.2 Summary of SIMC rules (original)

For a first-order model

g1(s) =
k

(τ1s+1)
e−θs (23)

the SIMC method results in a PI controller with settings

Kc =
1
k

τ1

τc +θ
=

1
k′

1
τc +θ

(24)

τI = min{τ1,4(τc +θ)} (25)

The desired first-order closed-loop time constant τc is the only tuning parameter.
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For a second-order model

g2(s) =
k

(τ1s+1)(τ2s+1)
e−θs (26)

the SIMC method results in a PID controller with settings (cascade form)

Kc =
1
k

τ1

τc +θ
=

1
k′

1
τc +θ

(27)

τI = min{τ1,4(τc +θ)} (28)

τD = τ2 (29)

Again, the desired first-order closed-loop time constant τc is the only tuning pa-
rameter. These PID settings are for the cascade (series) form in (1). The correspond-
ing settings for the ideal (parallel form) PID controller are easily obtained using
(30).

PID-control (with derivative action) is primarily recommended for processes
with dominant second order-dynamics, defined as having τ2 > θ , approximately.
We note that the derivative time is then selected so as to cancel the second-largest
process time constant.

In Table 1 we summarize the resulting tunings for a few special cases, including
the pure time delay process, integrating process, and double integrating process. The
double integrating process corresponds to a second-order process with τ2 = ∞ and
direct application of the rules actually yield a PD controller, so in Table 1 integral
action has been added to eliminate the offset for input disturbances.

The choice of the tuning parameter τc is discussed in more detail below. If the
objective is to have “tight control” (good output performance) subject to having
good robustness, then the recommendation is to choose τc equal to the effective
time delay, τc = θ . The same recommendation for τc applies to both PI- and PID-
control, but the actual values will differ, because the effective delay θ in a first-order
model (PI control) will be larger than that in a second-order model (PID control) of
a given process.

Example E2 (further continued). We want to derive PI- and PID-settings for the
process

g0(s) =
(−0.3s+1)(0.08s+1)

(2s+1)(1s+1)(0.4s+1)(0.2s+1)(0.05s+1)3

using the SIMC tuning rules with the “default” recommendation τc = θ . From the
closed-loop setpoint response, we obtained in a previous example a first-order model
with parameters k = 0.994,θ = 1.67,τ1 = 3.00 (10). The resulting SIMC PI-settings
with τc = θ = 1.67 are

Kc = 0.904,τI = 3
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Process g(s) Kc τI τ
(5)
D

First-order, eq.(3) k e−θs

(τ1s+1)
1
k

τ1
τc+θ

min{τ1,4(τc +θ)} -

Second-order, eq.(4) k e−θs

(τ1s+1)(τ2s+1)
1
k

τ1
τc+θ

min{τ1,4(τc +θ)} τ2

Pure time delay(1) ke−θs 0 0 (∗) -
Integrating(2) k′ e

−θs

s
1
k′ · 1

(τc+θ) 4(τc +θ) -

Integrating with lag k′ e−θs

s(τ2s+1)
1
k′ · 1

(τc+θ) 4(τc +θ) τ2

Double integrating(3) k′′ e
−θs

s2
1
k′′ · 1

4(τc+θ)2 4(τc +θ) 4(τc +θ)

IPZ process(4) k′ e
−θs

s
T s+1
τ2s+1

1
k′T ·

τ2
τc+θ

min{τ2,4(τc +θ)} -

Table 1 SIMC PID-settings (27)-(29) for some special cases of (4) (with τc as a tuning parameter).

(1) The pure time delay process is a special case of a first-order process with τ1 = 0.
(2) The integrating process is a special case of a first-order process with τ1→ ∞.
(3) For the double integrating process, integral action has been added according to eq.(22).
(4) For the integrating-pole-zero (IPZ) process we assume T > τ2. Then (T s+1)/s≈ T (rule T2)
and the PI-settings follow.
(5) The derivative time is for the cascade form PID controller in eq.(1).
(*) Pure integral controller c(s) = KI

s with KI =
Kc
τI

= 1
k(τc+θ) .

From the full-order model g0(s) and the half rule, we obtained in a previous
example a first-order model with parameters k = 1,θ = 1.47,τ1 = 2.5. The resulting
SIMC PI-settings with τc = θ = 1.47 are

Kc = 0.850,τI = 2.5

From the full-order model g0(s) and the half rule, we obtained a second-order model
with parameters k = 1,θ = 0.77,τ1 = 2,τ2 = 1.2. The resulting SIMC PID-settings
with τc = θ = 0.77 are

Cascade PID : Kc = 1.299,τI = 2,τD = 1.2

The corresponding settings with the more common ideal (parallel form) PID con-
troller are obtained by computing f = 1+ τD/τI = 1.60 and we have

Ideal PID : K′c = Kc f = 1.69,τ ′I = τI f = 3.2,τ ′D = τD/ f = 0.75 (30)

The closed-loop responses for the three controllers to a setpoint change at t = 0 and
an input (load) disturbance at t = 10 is shown in Figure 6. The responses for the two
PI controllers are very similar, as expected. The PID controller shows better output
performance (upper plot), especially for the disturbance, but it may not be sufficient
to outweigh the increased input usage (lower plot) and increased sensitivity to noise
(not shown in plot).
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The SIMC method for smooth PID controller tuning 15������
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Fig. 6 Closed-loop responses for process E2 using SIMC PI- and PID-tunings with τc = θ .
Setpoint change at t = 0 and input (load) disturbance at t = 10. For the PID controller, D-action is
only on the feedback signal, i.e., not on the setpoint ys.

4 Choice of tuning parameter τc

The value of the desired closed-loop time constant τc can be chosen freely, but from
(27) we must have −θ < τc < ∞ to get a positive and nonzero controller gain. The
optimal value of τc is determined by a trade-off between:

1. Output performance (tight control): Fast speed of response and good distur-
bance rejection (favored by a small value of τc). This “tightness” can be quanti-
fied by the magnitude of the setpoint error, |y(t)−ys(t)|, which should be as small
as possible. Here, one may consider different “norms” of the error, for example,
the maximum deviation (∞-norm), the integrated square deviation (2-norm) and
the integrated absolute error (IAE) (1-norm),

IAE =
∫

∞

0
|y(t)− ys(t)|dt

2. Robustness (smooth control): Good robustness, small input changes and small
noise sensitivity (favored by a large value of τc). The “smoothness” is here quan-
tified by the peak value Ms ≥ 1 of the frequency-dependent sensitivity function,
S = 1/(1+ gc). In terms of robustness, 1/Ms is the closest distance of the loop
transfer function gc to the critical (−1)-point in the Nyquist diagram, so Ms
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should be as small as possible. Notice that Ms < 1.7 guarantees gain margin
(GM)> 2.43 and phase margin (PM)> 34.2o (Rivera et al. 1986).

In general, we have a multiobjective optimization problem, so there is no value of τc
which is “optimal”. We will consider in more detail the two limiting cases of “tight”
and “smooth” control, and also consider in some detail the required input usage.

4.1 Tight control

With tight control, the primary objective is to keep the output close to its setpoint,
but there should be some minimum requirement in terms of robustness and smooth-
ness. A good trade-off is obtained by choosing τc equal to the time delay:

Tuning parameter τc. SIMC-recommendation for “tight control”, or more
precisely “tighest possible subject to maintaining smooth control”:

τc = θ (31)

The choice τc = θ gives a reasonably fast response with moderate input usage
and a good robustness with Ms about 1.6 to 1.7. More specifically, the robustness
margins with the SIMC PID-settings in (27)-(29) and τc = θ , when applied to first-
or second-order time delay processes, are always between the values given by the
two columns in Table 2. The values in the left column in Table 2 apply to a case with
a relatively small lag time constant (so τI = τ1), and the somewhat less robust values
in the right column apply to an integrating process (so τI = 4(τc + θ) = 8θ ). For
the integrating process, we reduce the integral time relative to the original value of
τI = τ1 to get better output performance for load disturbances, and not surprisingly
we have to “pay” for this in terms of less robustness.

Process g(s) k
τ1s+1 e−θs k′

s e−θs

Controller gain, Kc (τc = θ ) 0.5
k

τ1
θ

0.5
k′

1
θ

Integral time, τI τ1 8θ

Gain margin (GM) 3.14 2.96
Phase margin (PM) 61.4o 46.9o

Allowed time delay error, ∆θ/θ 2.14 1.59
Sensitivity peak, Ms 1.59 1.70
Complementary sensitivity peak, Mt 1.00 1.30
Phase crossover frequency, ω180 ·θ 1.57 1.49
Gain crossover frequency, ωc ·θ 0.50 0.51

Table 2 “Tight” settings: Robustness margins for first-order and integrating time delay process for
SIMC-rules (24)-(25) with τc = θ . The same margins apply to a second-order process (4) if we
choose τD = τ2 in (29).
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To be more specific, for processes with a relatively small time constant where
we use τI = τ1 (left column), the system always has a gain margin GM=3.14 and
phase margin PM=61.4o, which is much better than the typical minimum require-
ments GM> 1.7 and PM> 30o (Seborg et al. 1989). The sensitivity and comple-
mentary sensitivity peaks are Ms = 1.59 and Mt = 1.00 (here small values are de-
sired with a typical upper bound of 2). The maximum allowed time delay error is
∆θ/θ = PM [rad]/(wc ·θ), which in this case gives ∆θ/θ = 2.14 (i.e., the system
goes unstable if the time delay is increased from θ to (1+2.14)θ = 3.14θ ).

For an integrating processes (right column) and τI = 8θ , the suggested “tight”
settings give GM=2.96, PM=46.9o, Ms = 1.70 and Mt = 1.30, and the maximum
allowed time delay error is ∆θ = 1.59θ .
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Fig. 7 Responses using SIMC settings for the five time delay processes (τc = θ ).
Unit setpoint change at t = 0; Unit load disturbance at t = 20.
Simulations are without derivative action on the setpoint.
Parameter values: θ = 1,k = 1,k′ = 1,k′′ = 1.

The simulated time responses to setpoint changes and disturbances with SIMC-
settings are shown for five cases in Figure 7 (Skogestad 2003). Even though these
are for the “tight” settings (τc = θ ), the responses are all smooth. This means that
it is certainly possible to get even tighter responses by choosing a smaller value,
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for example τc = 0.5θ , but for most process control applications this is not recom-
mended because of less robustness, larger input usage and more sensitivity to noise.
It may seem from Figure 7 that the SIMC PID-controller does not work well for the
double integrating process (curve 4), but this is a difficult process to control and the
response to a unit input disturbance will be large for any robust controller.

4.2 Smooth control

Even though the recommended “tight” settings (τc = θ ) gives responses that are rea-
sonably smooth, they may still be unnecessary aggressive compared to the required
performance objectives, especially if the effective delay θ is small. For example, for
the limiting case with θ = 0 (no delay), we get with τc = θ an infinite controller
gain, which is clearly not realistic. Thus, in practice one often uses a ”smoother”
tuning, that is, τc > θ .

However, τc should not be too large, because otherwise the output y will go out
of bound when there are disturbances d. The question is: How slow (smooth) can
we tune the controller and still get acceptable control? This issue is addressed in
the paper by Skogestad (2006) on ”tuning for smooth PID control with acceptable
disturbance rejection”, where the following lower bound on the controller gain is
derived (for both PI- and PID-control).

Controller gain. SIMC-recommendation for “smooth control”, or more pre-
cisely “smoothest possible subject to acceptable disturbance rejection”:

|Kc|> |Kc,min|=
|∆u0|
|∆ymax|

(32)

where
∆ymax = maximum allowed deviation in the output y
∆u0 = required input change to reject the disturbance(s) d.

Substituting Kc,min into (24) or (27) one can obtain the corresponding value
τc,max, and we end up with a region of recommended values for the tuning parameter
τc:

τc,min (“tight”)< τc < τc,max (“smooth”) (33)

where
τc,min = θ , τc,max =

1
Kc,min

· τ1

k
−θ (34)

The final choice of τc is an engineering decision. A small value for τc (“tight con-
trol” of y) is typically desired for control of active constraints, because tight control
reduces the required backoff (safety margin to the constraint). On the other hand,
tight control will require larger input changes which may disturb the rest of the pro-
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cess. For example, for liquid level there is usually no reason to control the level
tightly, so a large value of τc (“smooth control”) is desired.

Details on the derivation of (32) and τc,max are given in (Skogestad 2006), but let
us here give a simplified version. Consider disturbance rejection and assume we use
a P-only controller with gain Kc. The input change (in deviation from the nominal
value) is then ∆u =−Kc∆y or

|∆u|= |Kc| · |∆y|

Assume that the required input change to reject a disturbance is ∆u0. For example,
if we have a disturbance ∆dI at the input, then ∆u0 =−∆dI . The smallest controller
gain that can generate the required input change ∆u0 is obtained when we have the
largest output change (|∆y|= |∆ymax|), and we get

|∆u0|= |Kc,min| · |∆ymax|

and (32) follows.

4.3 Input usage

The magnitude of the dynamic input change can be an important issue when tuning
the controller, that is, when selecting the value for τc. The transfer function from the
disturbance d to the input u is given by (see Figure 1):

u(s) =− gdc
1+gc

d(s)

With integral action in the controller (e.g., PI or PID control), the steady-state input
change to a step disturbance d is independent of the controller and is given by u(t =
∞) = − kd

k d where kd is the steady-state disturbance gain and k is the steady-state
process gain. We assume that we can reject the expected disturbances at steady-state,
that is, we assume |u(t = ∞)|= | kd

k d| ≤ |umax| where |umax| and |d| is the magnitude
of the disturbance change, is the maximum allowed input change, because otherwise
the process is not “controllable” (with any controller). However, the dynamic input
change u(t) will depend on the controller tuning, and we will consider the initial
change (at t = 0+) just after a step disturbance d.

We consider two important disturbances, namely an input “load” disturbance du
(corresponding to gd = g), and an output disturbance dy (corresponding to gd = 1).
Note that an output disturbance has an immediate effect on the output y. A physical
example is a process where we add another stream (output disturbance) just before
the measurement y. Mathematically, an output disturbance is equivalent to a setpoint
change (with ys =−dy)

For an input (“load”) disturbances du, input usage is not an important issue
for SIMC-tuning, even dynamically. This is because the SIMC controller gives a
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closed-loop transfer function y
ys

= gc
1+gc with little or no overshoot, see (16) and

(18), and since u
du

=− gc
1+gc , we get for du a corresponding input response with little

overshoot. This is illustrated by the input changes for a load disturbance (t = 20) in
Figure 7.

On the other hand, for an output disturbances dy (gd = 1), or equivalently for a
setpoint change ys = −dy, input usage may be an important issue for tuning. The
steady-state input change to a step setpoint change ys is u(t = ∞) = 1

k ys. However,
with PI-control the input will initially jump to the value u(t = 0+) = Kcys, as illus-
trated for the setpoint change in Figure 7 (e.g., see the first-order process, case 5).
This initial change is larger than the steady-state change if Kck > 1, which is usually
the case, except for delay-dominant processes. If we assume that the allowed input
change is umax, then to avoid input saturation we must select τc such that (SIMC PI
control):

|u(t = 0+)|= |Kcys|= |
τ1

τc +θ

1
k

ys| ≤ |umax| (35)

Note that u and ys are deviation variables. Consider, for example, a first-order pro-
cess with τ1 = 8 and θ = 1. With the choice τc = θ , the initial input change is
τ1/(τc + θ) = 4 times the steady-state input change ys/k. If such a large dynamic
input change is not feasible then one would need to use “smoother” control with a
larger value for τc in order to satisfy (35).2

With PID control, the derivative action will cause even larger input changes for
output disturbances and this may be one reason for reducing or even avoiding deriva-
tive action. It is also the reason why we to avoid “derivative kick”, recommend that
the setpoint is not differentiated, see (2).

5 Optimality of SIMC PI rules

How good are the SIMC PI rules, that is, how much room is there for improve-
ments? To study this, we compare the SIMC PI performance, with τc as a parame-
ter, to the “Pareto-optimal” PI-controller. Pareto-optimality applies to multiobjective
problems, and means that no further improvement can be made in objective 1 (out-
put performance in our case) without sacrificing objective 2 (robustness and input
usage in our case).

We choose to quantify robustness and input usage in terms of the sensitivity peak
Ms. We also considered other “robustness” measures, for example, the relative delay
margin as suggested by Foley et al. (2005), but we choose to use Ms. One reason is
that we found that the Ms-value correlates well with the input usage as given by its
total variation (TV), which agrees with the findings of Foley et al. (2005). Such a

2 It may seem from (35) that “slow” processes, which have a large time constant τ1, will always
require “slow” control (large τc) in order to avoid excessive input changes. However, this is usually
not the case because such processes often have a corresponding large gain k, such that the value
k′ = k/τ1 may be sufficiently large to satisfy (35) even with τc = θ .
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correlation is reasonable since a large Ms-value corresponds to an oscillatory system
with large input variations.

We choose to quantify performance in terms of the integrated absolute error in
response to a setpoint change (IAEys) and to an input “load” disturbance (IAEd).
The setpoint performance is often referred to as the “servo” behavior and the dis-
turbance (in this case the input “load” disturbance) performance is often referred to
as “regulator” behavior. It may be argued that a two-degree of freedom controller
(“feedforward action”) may be used to improve the response for setpoints, but note
that a setpoint change is equivalent to an output disturbance (with gd = 1 in Fig-
ure 1) which can only be counteracted by feedback. Thus, both setpoint changes
(output disturbances) and input disturbances should be included when evaluating
performance, and to get a good balance between the two, we weigh them about
equally by defining the following performance cost

J(c) = 0.5

[
IAEys(c)

IAEo
ys

+
IAEd(c)

IAEo
d

]
(36)

where the reference values, IAEo
ys and IAEo

d , are for IAE-optimal PI-controllers
(with Ms = 1.59) for a setpoint change and input disturbance, respectively. We could
have used the truly optimal IAE-value as the reference when computing J (without
the restriction Ms = 1.59), but this would not have changed the results much be-
cause the IAE-value is anyway quite close to its minimum at Ms = 1.59. Table 3
gives the tunings and reference values obtained using IAE-optimal PI-controllers
(with Ms = 1.59) for four different processes, and Table 4 gives the tunings, costs J
and Ms-values for the SIMC PI-controller (with τc = θ ). Importantly, the weighted
cost J is independent of the process gain k and the disturbance magnitude, and also
of the unit used for time. Note that two different optimal PI-controllers are used to
obtain the two reference values, whereas a single controller c is used to find IAEys(c)
and IAEd(c) when evaluating the weighted IAE-cost J(c).

Setpoint Input disturbance Optimal combined (minimize J)
Process Kc τI IAEo

ys Kc τI IAEo
d Kc τI IAEys IAEd J Ms

e−s 0.20 0.32 1.607 0.20 0.32 1.607 0.20 0.32 1.607 1.607 1 1.59
e−s

s+1 0.54 1.10 2.083 0.50 1.0 2.036 0.54 1.10 2.083 2.041 1.00 1.59
e−s

8s+1 4.0 8 2.169 3.34 3.7 1.135 3.46 4.0 3.111 1.158 1.23 1.59
e−s

s 0.50 ∞ 2.169 0.40 5.8 15.09 0.41 6.3 4.314 15.4 1.51 1.59
IAEys is for a unit setpoint change. IAEd is for a unit input disturbance.

Table 3 Optimal PI-controllers (Ms = 1.59) and corresponding IAE-values for four processes.

Figure 8 shows the trade-off between performance (J) and robustness (Ms) for
the SIMC PI-controller (blue solid curve) and the Pareto-optimal controller (dashed
black curve) for four different processes: pure time delay (τ1/θ = 0), small time
constant (τ1/θ = 1), intermediate time constant (τ1/θ = 8), and integrating process
(τ1/θ = ∞). The curve for the SIMC controller was generated by varying the tuning
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SIMC PI (τc = θ ) Improved SIMC PI (τc = θ )
Process Kc τI IAEys IAEd J Ms Kc τI IAEys IAEd J Ms

e−s 0 0 (∗) 2.17 2.17 1.35 1.59 0.17 0.33 1.95 1.95 1.21 1.45
e−s

s+1 0.5 1 2.17 2.04 1.15 1.59 0.67 1.33 1.99 1.99 1.09 1.69
e−s

8s+1 4 8 2.17 2.00 1.38 1.59 4.17 8 2.14 1.92 1.34 1.62
e−s

s 0.5 8 3.92 16 1.43 1.70 0.5 8 3.92 16 1.43 1.70
(∗) Pure integral controller with KI = Kc/τI = 0.5.

Table 4 SIMC PI-controllers (τc = θ ) and corresponding J- and Ms-values for four processes.
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Fig. 8 Check of optimality of SIMC PI tuning rules for four processes.

parameter τc from a large to a small value. The controllers corresponding to the
choices τc = 1.5θ (smoother), τc = θ (recommended) and τc = 0.5θ (aggressive)
are shown by circles. The Pareto-optimal curve was generated by finding for each
value of Ms, the optimal PI-controller c, with the smallest IAE-value J(c). Except
for the pure time delay process, the differences between the J-values for SIMC (blue
solid curve) and optimal (dashed black curve) are small (within 10%), which shows
that the SIMC PI-rules are close to optimal.

Note that we have a real trade-off between performance (J) and robustness (Ms)
only when there is a negative slope between these variables (in the left region in the
figures in Figure 8). We never want to be in the region with a zero or positive slope
(to the right in the figures), because here we can improve both performance (J) and
robustness (Ms) at the same time with another choice for the tuning parameter (using
a larger value for τc). Another important observation from Figure 8 is then that the
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SIMC-recommendation τc = θ for “tight” control (as given by middle of the three
circles) in all cases is located in the desired trade-off region with a negative slope,
well before we reach the minimum. Also, the recommended choice give a fairly
constant Ms-value in the region 1.59 to 1.7. From this we conclude that, except for
the time delay process, there is little room to improve on the SIMC PI rules, at least
when performance and robustness are as defined above (J and Ms).

The IAE-cost J in (36) is based on equal weighting of servo (output disturbance)
and regulator (input disturbance) performance. The existence of a trade-off between
servo and regulator performance, can be quantified by considering how much larger
the (Pareto) optimal cost Jopt (dashed black line) is than 1 at the reference robust-
ness, Ms = 1.59, see also Table 3. For a pure time delay-process, we have that
Jopt = 1 for Ms = 1.59 and there is no trade-off. The reason is that the setpoint
and output disturbance responses are the same. On the other hand, for the other
extreme of an integrating process, we have a clear trade off since the optimal PI-
controller has Jopt = 1.51 (the SIMC PI-controller with Ms = 1.59 is close to this
with J about 1.6). The existence of the servo/regulator trade-off for an integrating
process, implies that one for a given robustness (Ms-value) can find PI-settings with
significantly better regulator (load disturbance) performance or better servo (set-
point) performance, but not both at the same time. To be able to shift the trade-off,
one may introduce an extra parameter in the PID rules (Alcantara et al. 2010), in
addition to τc. For the SIMC method, this extra servo/regulator trade-off parameter
could be c in the following expression for the integral time,

τI = min(τ1,c(τc +θ)) (37)

where c = 4 gives the original SIMC-rule. A larger value if c improves the setpoint
performance, and a smaller value, e.g. c = 2, improves the input disturbance perfor-
mance (Haugen 2010). However, introducing an extra parameter adds complexity
and the potential benefit does not seem sufficiently large. Nevertheless, one may
consider choosing another (lower) fixed value for c. There are two reasons why we
recommend keeping the SIMC-value of c = 4. First, it is close to the Pareto-optimal
PI controller (as seen from Figure 8), so we cannot get a significant improvement
with our performance objective J. Second, with a smaller value for c, say c = 2.5,
the recommended choice τc = θ becomes less robust (with a higher Ms), so one
would need to recommend a different value for τc for an integrating process, say
τc = 1.5θ , which would add complexity. In summary, we find that the value c = 4
in the original SIMC rule provides a well-balanced servo/regulator trade-off.

6 Improved SIMC tuning rules

For a pure time delay process, we see from Figure 8 that the IAE-value (J) for the
SIMC controller is about 40% higher than the minimum with the same robustness
(Ms). This is further illustrated by the closed-loop simulations in Figure 9 where we
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see that the SIMC PI-controller (denoted SIMC-original in the figure) gives a nice
and smooth response. However, the response is somewhat sluggish initially, because
it is actually a pure I-controller (with Kc = 0,τI = 0 and KI = Kc/τI = 0.5). On the
other hand, the IAE-optimal PI-controller (with minimum J for Ms = 1.59) has Kc
about 0.2 and τI about 0.32 (and KI = 0.62). In fact, the optimal PI-controller for a
pure time delay process (dashed black line in Figure 8), has an almost fixed integral
time of approximately θ/3 for all values of Ms between 1.4 and 1.7.

Based on this fact, we propose a simple change to the SIMC-rules, namely to
replace τ1 by τ1 + θ/3 in the rules (PI control), which markedly improved the re-
sponses for a pure time delay process. It is important that the change is simple
because “simplicity” was one of the main objectives when originally deriving the
SIMC rules.

A similar change, but with θ/2 rather than θ/3, was originally proposed by
Rivera et al. (1986) for their “improved PI” tuning rule, and the effectiveness of this
modification is also clear from the paper of Foley et al. (2005). However, as seen in
Figure 9, the response with this IMC PI controller also settles rather slowly towards
the setpoint, indicating that the integral time θ/2 is too large. The proposed value
θ/3 gives a faster settling and is also closer to the original SIMC-rule (which is
zero for a time delay process). The conclusion is that we recommend to replace τ1
by τ1 +θ/3 in the SIMC rules to get the improved SIMC rules:

Improved SIMC PI-rule for first-order with delay process.

Kc =
1
k

τ1 +
θ

3
τc +θ

(38)

τI = min{τ1 +
θ

3
,4(τc +θ)} (39)

The improvement of this rule for a pure time delay processes is clear from the
red curves in Figures 9 and 8 (upper left); for small Ms-values the improved SIMC-
controller is almost identical to the Pareto-optimal, which confirms that τI = θ/3
is close to optimal for a pure time delay process. For the process with a small time
constant (τ1 = θ ), the improved SIMC rule (red curve in upper right plot in Figure 8)
is slightly better than the “original” SIMC rule (blue curve) for higher Ms-values
(where we get better performance) but slightly worse for lower Ms-values. For the
two processes with a large time constant (τ1 = 8θ and τ1 =∞) there are, as expected,
almost no difference between the original and improved SIMC rules.
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Fig. 9 Closed-loop setpoint responses for pure time delay process (θ = 1,k = 1,τ1 = 0) with PI-
control. All three controllers have the same robustness (Ms = 1.59).
For a pure time delay process, the setpoint and disturbance responses are identical, and the input
and output are identical.
IMC PI: Kc = 0.29 and τI = 0.5 (KI = Kc/τI = 0.58).
SIMC PI original (τc = θ ): Kc = 0 and τI = 0 (KI = 0.5).
SIMC PI improved (τc = 0.61θ ): Kc = 0.207 and τI = 0.333 (KI = 0.62).

7 Discussion

7.1 Measurement noise

Measurement noise has not been considered in this chapter, but it is an important
consideration in many cases, especially if the proportional gain Kc is large, or, for
cases with derivative action, if the derivative gain KcτD is large. However, since the
magnitude of the measurement noise varies a lot in applications, it is difficult to give
general rules about when measurement noise may be a problem. In general, robust
designs (with small Ms) are insensitive to measurement noise. Therefore, the SIMC
rules with the recommended choice τc = θ , are less sensitive to measurement noise
than most other published settings method, including the Ziegler-Nichols-settings. If
actual implementation shows that the sensitivity to measurement noise is too large,
then the following modifications may be attempted:

1. Filter the measurement signal, for example, by sending it through a first-order
filter 1/(τF s+ 1); see also (2). With the proposed SIMC-settings one can typi-
cally increase the filter time constant τF up to almost 0.5θ , without a large affect
on performance and robustness.
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2. If derivative action is used, one may try to remove it, and obtain a first-order
model before deriving the SIMC PI-settings.

3. If derivative action has been removed and filtering the measurement signal is not
sufficient, then the controller needs to be detuned by selecting a larger value for
τc.

7.2 Retuning for integrating processes

Integrating processes,

g(s) = k′
e−θs

s
are common in industry, but control performance is often poor because of incorrect
controller settings. When encountering oscillations, the intuition of the operators is
to reduce the controller gain. If the oscillations are relatively slow, then this is the
exactly opposite of what one should do for an integrating process. The product of
the controller gain Kc and the integral time τI must be larger than 4/k′ to avoid slow
oscillations (Skogestad 2003). One solution is to simply use proportional control
(with τI = ∞), but this is often not desirable. Here we show how to easily retune the
controller to just avoid the oscillations without actually having to derive a model.
This approach has been applied with success to industrial examples.

Consider a PI controller with (initial) settings Kc0 and τI0 which results in “slow”
oscillations with period P0 (larger than 3 ·τI0, approximately). Then we likely have a
close-to integrating process for which the product of the controller gain and integral
time (Kc0τI0) is too low. To avoid oscillations with the new settings Kc and τI we
must require (Skogestad 2003):

KcτI

Kc0τI0
≥ 1

π2 ·
(

P0

τi0

)2

(40)

Here 1/π2 ≈ 0.10, so we have the rule:

• To avoid “slow” oscillations the product of the controller gain and integral time
should be increased by a factor f ≈ 0.1(P0/τI0)

2.

7.3 Controllability

The effective delay θ is easily obtained using the proposed half rule. Since the
effective delay is the main limiting factor in terms of control performance, its value
gives invaluable insight about the inherent controllability of the process.

From the settings in (27)-(29), a PI-controller results from a first-order model,
and a PID-controller from a second-order model. With the effective delay computed
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using the half rule in (12)-(13), it then follows that PI-control performance is limited
by (half of) the magnitude of the second-largest time constant τ2, whereas PID-
control performance is limited by (half of) the magnitude of the third-largest time
constant, τ3.

8 Conclusions and Future Perspectives

This chapter has summarized the SIMC two-step procedure for deriving PID settings
for typical process control applications.

Step 1. The real process is approximated by a first-order with delay model (for
PI control) or a second-order model (for PID control). To obtain the model, the
simplest approach is probably to use an open-loop step experiment (Figure 3),
but if this is difficult for some reasons, then one may alternatively use a closed-
loop setpoint response with P-controller (Figure 4). If the starting point is a
detailed model, then the half rule may be used to obtain the effective delay θ ,
see (12)-(13).

Step 2. For a first-order model (with parameters k,τ1 and θ ) the following
SIMC PI-settings are suggested (original SIMC rule):

Kc =
1
k

τ1

τc +θ
; τI = min{τ1,4(τc +θ)}

where the closed-loop response time τc is the tuning parameter. For a dom-
inant second-order process (for which τ2 > θ , approximately), one needs to
add derivative action with

Series− form PID : τD = τ2

To improve the performance for delay-dominant processes, one may replace τ1
by τ1 +

θ

3 and use the “improved” SIMC PI-rules in (38)-(39). A more careful anal-
ysis needs to be done to check if a similar improvement can be used with a PID
controller.

Note that although the same formulas are used to obtain Kc and τI for both PI- and
PID-control, the actual values will differ since the effective delay θ is smaller for
a second-order model. The tuning parameter τc should be chosen to get the desired
trade-off between fast response (small IAE) on the one side, and smooth input usage
and robustness (small Ms) on the other side. The recommended choice τc = θ gives
robust (Ms about 1.6 to 1.7) and somewhat conservative settings when compared
with most other tuning rules, and if it is desirable to get faster control one may
consider reducing τc to about θ/2 (see Figure 8). More commonly, one may want
to have “smoother” control with τc > θ and a smaller controller gain Kc. However,
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the controller gain must be larger than the value given in (32) to achieve a minimum
level of disturbance rejection.

Comparing the performance of the SIMC-rules with the optimal for a given ro-
bustness (Ms value) shows that the SIMC-rules are close to the Pareto-optimal set-
tings (Figure 8). This means that the room for improving the SIMC PI-rules is lim-
ited, at least for the first-order plus delay processes considered in this chapter, and
with a good trade-off between rejecting input and output (setpoint) disturbances.

However, it should be noticed that the SIMC rules apply to processes that can
be reasonably well approximated by first or second order plus delay models. This
applies to most process control applications, including some unstable plants, but
it obviously does not apply in general, for example, for some of the unstable or
oscillating processes found in mechanical systems. For such processes, it would be
interesting to study the validity and extension of the SIMC rules or similar analytic
model-based PID tuning rules. It is also interesting to establish for which processes
the PID controller is a suitable controller and for which processes it is not.
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Appendix

Estimation of parameters τ1 and θ from closed-loop step response.
Shamsuzzoha and Skogestad (2010) discuss at the end of their paper a two-step

closed-loop procedure, where the first step is to use closed-loop data and some ex-
pressions to obtain the parameters k, τ1 and θ . We use this approach but have mod-
ified the expressions. Our expressson for k in (7) is given by their equation (35) by
noting that B = |(1− b)/b| where b = ∆y∞/∆ys. However, our expressions for θ

and τ1 in (8)-(9) differ somewhat from their equations (36) and (37). The reason
is that their equations (36) and (37) are not consistent in terms of the time delay
estimate, because the expression for τ1 in (36) is based on θ = 0.43tp, whereas (37)
uses θ = 0.305tp. To correct for this, we first note from (19) in their paper (noting
that τ1 = τI for the delay-dominant case), that τ1 and θ are related by

τ1 = rθ

where r = 2A/B, which is our expression in (9). Here, Shamsuzzoha and Skogestad
(2010) recommend to use θ = 0.44tp for τ1 < 8θ and θ = 0.305tp for τ1 > 8θ .
However, to get better accuracy and a smooth transition, we fitted simulation data
for θ/tp as a function of τ1/θ for a wide range of processes with an overshoot of
0.3, and obtained the correlation (Grimholt 2010)

θ = tp · (0.309+0.209e−0.61(τ1/θ))

as given in (8). Note here that (0.309+0.209e−0.61(τ1/θ)) is 0.518 for r = τ1/θ = 0,
and 0.309 for r = ∞.
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Abstract: PID controllers are indisputably the most common controller type encountered in industrial
process control. Despite their tremendous usage in single-variable process control applications, they have
more than that. Multiple PID controllers can be connected to work as a multivariable controller or, as it is
shown  in  this  paper,  they  can  be  totally  re-organised  to  work  together  for  establishing  a  controller
structure that mimics the model predictive controller. Having the characteristics of the MPC, the
proposed structure does not require a solver for optimization problems but only a bunch of PID
controllers that exist in any automation platform.

Keywords: PID control, model predictive, iterative, process.

1. INTRODUCTION

For years, distributed control systems or programmable logic
controllers have contained a functionality of a PID controller
as  a  work  horse  for  process  control.  The  tremendous
distribution  the  PID  controllers  have  made  them  an  ad  hoc
basic level solution for industrial control applications
(Åström, 1995). And when proven useful, an optimization
control layer of model predictive controllers may have been
laid upon the basic layer of the PID controllers.

The model predictive controllers such as Model Predictive
Heuristic Control (Richalet et. al, 1978), Dynamic Matrix
Control (Cutler & Ramaker, 1980), Generalized Predictive
Control (Clarke et. al, 1987) and Non-linear Model Predictive
Control (Bequette, 2007) can be categorized as members of a
Model Predictive Control (MPC).  The MPC controllers with
different variants are nowadays diverse but, at the same time,
well-accepted in industrial applications.

The MPC controllers require special attention on their design
and tuning. There have been studies on different tuning
strategies for MPC controllers (e.g Rani & Unbehauen,
2007). Yet, their design and implementation still takes a lot
of effort with respect to time and money. Therefore, they are
not put into practise in industrial applications unless there is
evidence on their contribution and benefits with pay offs.

This paper proposes a novel control design for creating a
multivariable wannabe-MPC controller based on usage of
conventional PI controllers alone. Instead of applying
optimization solvers and numerous tuning parameters, a
structure consisting of Multiple Iterative PI controllers
(MIPI) is introduced. The proposed rather simple MIPI
controller can be applied for controlling large, even complex
processes without requiring extensive computational capacity
for solving optimization problems. An application solution
might be found e.g in steam network optimization for co-
generation power plants where MPC-based control strategy

has been traditionally used for optimizing steam balance and
delivery with respect to changing loads due to power
generating steam turbines and steam consuming processes
such as paper or pulp mill, or district heating process (Airikka
& Mäkilä, 2009).

2. MULTIPLE PI CONTROLLERS

The idea of the Multiple Iterative PI Controller (MIPI) is to
organise several PI controllers for one control loop having a
manipulated variable (MV) and a control variable (CV) as
given in figure 1 (Friman, 2008).

Following the idea of a general model predictive controller,
there is a target CV trajectory for the MIPI controller and its
predicted CV trajectory following the target the best it can.
However, instead of applying any optimization solver on a
pre-defined cost function with prediction and control
horizons, there are simply a bunch of PI controllers working
on the optimization.

Figure 1. Multiple PI controllers: general principle of
organizing several PI controllers for one control loop.
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The predicted CV trajectory is controlled towards the target
CV trajectory with multiple PI controllers working on an
iterative manner. There are selected time instants (which can
be e.g consequtive time instants) with their predicted CV
trajectory values. Each selected CV trajectory instant is
assigned with a PI controller. The PI controller receives the
target and the predicted trajectory values at the pre-selected
time instant and these values serve as inputs for calculating
the  control  error.  As  an  output,  the  PI  controller  returns  the
needed MV value.

The calculation of each PI controller is repeated until a pre-
defined stopping criterion has been reached. The criterion for
ending iterations can be e.g an absolute value of the control
error or a number of iterations. The authors suggest
combining both above mentioned criteria in order to limit the
computation time used for each controller.

Having iterations, the MV trajectory is available. But as with
a  MPC,  only  the  first  MV  trajectory  value  representing  the
current controller output is put into action and the rest are
simply ignored. Then, at the next control cycle, the sampe
described procedure is to be repeated again.

As described, the MV trajectory with its values at given time
instants (figure 1) are evaluated using the MIPI controller
structure. When using a MPC, those values would be
available only through optimization. Hence, the optimization
problem has been converted here to a control task for
multiple PI controllers being iterated.

The calculation procedure of the MIPI controller for unit
control loop with one MV and CV is given in figure 2.

Figure 2. Calculation procedure of Multiple Iterative PI
controller (MIPI) in terms of consequtive function blocks.

3. PRACTICALITIES

There are several practical issues to be considered when
designing a MIPI controller and implementing it. These
practicalities are treated in this chapter.

3.1 Extention to multivariable control

The proposed structure and procedure of the MIPI controller
(fig. 1-2) applies to a single variable control loop having one
MV and one CV only. The corresponding control loop layout
is illustrated in figure 3. The layout contains only one MIPI
controller, which, however, includes several iteratives PI
controllers as decribed in the previous chapter.

Figure 3. Single-Input-Single-Output control loop (1 MV + 1
CV) with MIPI controller.

However, the MIPI controller is naturally expandable to
multivariable control with unlimited dimensions in MV and
CV. The control loop layout for a multivariable (2 x 2) design
is  shown  in  figure  4  where  there  are  two  MIPI  controllers,
one for each MV and CV pair. The illustrated multivariable
structure can be expanded to cover all the dimensions
necessary for a succesful multivariable MPC-like control

Figure 4. Multivariable  (2  MV  x  2  CV)  control  loop  with
MIPI controllers.

3.2 Non-measured disturbances and model mismatches

A control loop typically has disturbances that are to be
attenuated in order to keep the CV at its reference value.
These disturbances lay the foundation for the existence of the
feedback control loop. The disturbances can be measured,
unmeasuremable, modelled or unmodelled.

Ideally, in case of having no disturbances and perfert
modeling, the resulted control performance is also ideally
perfect. However, facing uncertainties such as unmodelled
disturbances and model mismatch these need to be
considered in the design phase of any controller.
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It is proposed by the authors to introduce a target trajectory
that would be generated from the reference trajectory and the
current control error at a time. The reference trajectory is the
ultimate target but instead of taking that to the MIPI
controller, its filtered correspondent target trajectory would
be  given  as  a  setpoint  for  the  MIPI  controller.  Figure  5
illustrates the principle.

Figure 5. Generation of target trajectory which given as a
setpoint to the MIPI controller instead of the ultimate
reference trajectory.

3.3 Coupling different instants of MV and CV

As shown in figure 1, each iterative PI controller is connected
between selected instants of MV and CV trajectory. The
selected time instants should be selected in such a manner
that a change in the MV value of the chosen time instant will
have an impact on the coupled CV value (figure 2). Basically,
this  leads  to  a  requirement  of  coupling  MV and CV so  that
there is a time window of the process dead time in-between,
at  the minimum.

Figure 6. Iterative PI controller connection in MIPI
controller structure.

Consequently, coupling requires determination of process
dead times between different MVs and CVs. Typically, this is
not  an  issue  as  there  should  be  a  process  model  with  dead
times available anyhow for predicting CV trajectory based on
the MVs and the modelled disturbances. However, if for any
reason, the dead times are missing, they should be estimated
using delay-estimation techniques.

3.4 Input constraints

A wanna-be MPC must be able to treat with input constraints
as any MPC would do. Therefore, handling of input
constraints could be considered using the principle illustrated
in  figure  7.  Each  iterative  PI  controller  is  given  the  input
constraints for limiting its own contribution for the CV
trajectory. When violating the constraint, the iterative PI

controller output is shared with the neighbour (previous or
next) iterative PI controller by adding the overflowing part of
the output to the output of another controller.

Figure 7. Handling input contraints by setting constraints to
iterative PI controllers and sharing overflows with previous
iterative PI controllers.

In addition to the constraints of input (MV) amplitudes,
constraints for input rate changes can be treated as well. This
is achieved by setting rate limiters for each iterative PI
controller output.

3.5 Output constraints

Similarly to the requirement of being capable of handling
input constraints, the output constraints must be considered
as  well.  The  way  they  are  included  in  the  MIPI  controller
design is rather simple (figure 8). Assuming that the MV
trajectory constraints are given in terms minimum and
maximum limits ymin and ymax, they can be considered in each
iterative PI controller separately. If the CV trajectory at any
time instant remains within the limits, the particular iterative
PI  controller  is  given a  control  error  of  zero.  Otherwise,  the
control error between the target and the predicted CV
trajectory is taken to the iterative PI controller as such.

Figure 8. Handling input contraints by setting constraints to
iterative PI controllers and sharing overflows with previous
iterative PI controllers.
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4. DESIGN OF MIPI CONTROLLER

The  MIPI  controller  requires  a  process  model  as  any  other
model predictive controller would do. The model can be of
multivariable type, linear or non-linear, transfer-function or
state-space spaced. The process model is inevitably needed
for predicting the CV trajectories but also for coupling the
time instants of CV and MV trajectories.

4.1 Design parameters and constraints

Design of the MIPI controller includes selection of control
horizon (number of control samples) and sampling time as
tuning parameters. For these, it is recommended to follow the
same  guidelines  as  in  the  desing  of  MPC  controllers.  For
iterative calculations, the maximum number of iterations and
a stopping criterion are to be set. These are, however, internal
parameters which can be fixed regardless of the solution.
Input and output constraints are, in turn,  to be considered in
each project separately to follow the given control
performance specifications.

4.2 Iterative PI controller tuning

In addition, the iterative PI controllers need their tuning
parameters (proportional gain, integral time) at the minimum.
It is suggested that all the iterative PI controllers for one and
the same CV are given the same tuning parameters.
Preferrably, they could be tuned using an autotuning
procedure. It is also noticeable that the iterative PI controllers
can be employed without any dead time compensation
elements as they controlling CV and MV trajectory instants
which have their interrelated dead time considered by the
coupling strategy.

4.3 Filter design for target trajectory

Propably the most crucial design entity is filter design for
generating the CV target trajectory from the reference
trajectory. Introducing slow filtering or ramped outputs of the
reference trajectory, the MIPI controller performance can be
affected to a great extent. This paper does not give any
guidelines for practical choices but only adresses the
underlying importance of the filter design.

4.4 No weighting matrices

Differentiating from the MPC controllers, no weighting
matrices with control error and control action penalties are
needed. Lack of the numerous tuning parameters drastically
reduces  the  tuning  effort.  Yet,  some  of  the  tuning  work  is
simply converted to filter design for the CV target
trajectories.

4.5 Stability criterion

Stability criteria for the proposed MIPI control has not been
established yet and, therefore, meanwhile, it remains an open
issue to be investigated in further work.

5. SIMULATION EXAMPLE

The  proposed  MIPI  control  method  is  tested  using  a
multivariable transfer function model of the  distillation
process separating methanol and water as given in (Wood &
Berry, 1973):
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where distillate composition y1 (%) and bottom composition
y2  (%) are CVs being controlled by MVs reflux flow u1
(lb/min) and steam flow u2 (lb/min). The feed flow rate d acts
as an unmeasured disturbance.

Figure 9 illustrates the CVs and MVs when the process (1) is
being controlled by the MIPI controller as described in this
paper and the process is assumed to be perfectly modelled.
The  upper  figure  shows  both  CVs  with  respect  to  time
whereas the lower figure plots both MVs, accordingly.

MIPI controller has a sampling time h =  1  min  and  a
prediction horizon of 10 minutes. The number of iterative PI
controllers used for one CV/MV pair is 10 and the number of
iterations in computations is 11. The iterative PI controllers
have parameters kp = 0.0134, ti = 0.1 for CV1/MV1 and kp = -
0.0077, ti = 0.1 for CV2/MV2. The time constants for
filtering the reference trajectory are set to 40 mins
(CV1/MV1) and 60 mins (CV2/MV2).

The simulation has included four upsets. First, at time t = 20,
a known disturbance d has entered the system. Second, at
time t = 120, the same disturbance d has entered but now
being unmeasured. Third, setpoint changes on both CVs have
made at t = 220 and, finally, at t = 320, the setpoint changes
have taken place unexpectedly.

Figure 9. Simulated CV and MV responses of the distillation
process (Wood & Berry, 1973) controlled by the MIPI
controller. The process model is ideal with no model
mismatch.

Proceedings of the 17th Nordic Process Control Workshop 
Technical University of Denmark, Kgs Lyngby, Denmark 
January 25-27, 2012

103



Figure 10 shows the same CV and MV responses of the MIPI
controlled distillation process with the same process upsets
but this time with model mismatch. The modelling
uncertanties are simulated by using time constants half of the
given model (1) and static gains and dead times 1.5 larger
than in the given model (1).

Figure 10. Simulated CV and MV responses of the
distillation process (Wood & Berry, 1973) controlled by the
MIPI controller. The process model is not perferct having
mismatches in terms of dynamics and static gains.

6. CONLUSION

A novel method for a multivariable wannabe-MPC controller
was presented in this paper. The proposed method relies on
conventional PI controllers which are linked to each other for
working iteratively to find the optimal MV trajectory for the
given CV target trajectory. The proposed method does not
require any optimization algorithm or solver, neither tuning
matrices with weighted penalties on control error and control
output.

Especially, finding an optimal solution for a non-linear
control problem can be far from trivial. In the proposed MIPI
control, there is not such an issue. Instead, the optimization
task is converted to multiple tasks for the iterative PI
controllers to remove the error between the target and
predicted CV trajectory.

The proposed MIPI control is especially applicable to large,
complex systems where the computational burden increases
exponentially with increasing dimensions of MVs and CVs.
The  proposed  MIPI  control  is  also  capable  of  dealing  with
input and output constraints.

The soft spot of the MIPI control might be in its stability and
robustness which have not been studied with sufficient
accuracy at the time of writing this paper. Thefefore, there
remains future work for establishing stability criteria and
robustness conditions with respect to modelling uncertainties,
different model types and process disturbances.
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Abstract: 
 
Controlled variables selection based on economic objectives using self optimizing 
concepts are developed (Skogestad, 2000). In this paper, we extend the ideas of self 
optimizing control to find optimal controlled variables in the regulatory layer. Regulatory 
layer is often designed to facilitate stable operation, to regulate and to keep the operation 
in the linear operating range. We can quantify these objectives with the use of state drift 
criterion from the nominal operating point.  Self optimizing control (Skogestad, 2000} is 
to arrive at optimal controlled variables based on economics in the secondary layer, 
where as the focus here is to identify the controlled variables in the regulatory layer based 
on state drift in the presence of disturbances. Using partial control analysis (Shinnar, 
2000) and MIQP methods (Yelchuru et al., 2010), we propose quantitative methods to 
find optimal controlled variables in the partially controlled system. 
 
Regulatory layer selection with nu steady state degrees of freedom using partial control 

analysis will require us to solve, 
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  , partially controlled systems with their 

optimal controlled variables to find the optimal regulatory layer with 1, 2, … loops 
closed. Even though the number of partial controlled systems increases with nu, the 
problem is tractable as the regulatory layer selection is an offline method. These methods 
can be used to obtain minimum regulatory layer with an acceptable state drift in the 
presence of disturbances. The developed framework is evaluated on a distillation column 
case study with 41 stages. 
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Extended Abstract 

Identifying a reliable and accurate process model from the data is a key step in designing and implementation 
of Fault Detection and Diagnosis (FDD) systems. Improved model accuracy allows the decrease in detection 
thresholds while the false alarms probability is kept constant. This allows the FDD method to detect faults 
quickly and it enables recognition of small magnitude faults. Furthermore, the most FDD methods are based on 
linear models and are, therefore, unsuitable for highly nonlinear processes. Simultaneously, the non-linear 
methods suffer from the overfitting effect which degrades the accuracy of the models. In addition, the 
parameters of the non-linear models often do not have any physical interpretation (black box models).  To 
conclude, there is a need to develop non-linear fault detection and diagnosis methods providing maximum 
accuracy and transparency of the process models, which are involved to the method implementation.  

The proposed method identifies a number of static nonlinear parity equations from the process data and then 
utilizes the residuals of these equations for fault detection and diagnosis tasks. The changes in the residuals are 
detected using the cumulative sum (CUSUM) method. Diagnosis is performed utilizing the structured residuals 
approach. To this end, an incidence matrix describing the faults vs. the residuals is developed.  The method 
incorporates some common properties of the systems in order to avoid overfitting and to achieve good 
accuracy of the model. In contrast to other fault diagnosis methods, the proposed approach requires only the 
process knowledge which is typically available.  

The applicability of the method to complex flow networks controlled by valves is tested using the drying 
section of the industrial board machine. The drying section is used to evaporate water from the board by 
heating. Since only insignificant amount of moisture is removed after the drying section the drying is typically 
controlled to achieve the specified moisture of the final product. In the multi-cylinder drying, which is the most 
common drying method, the process contains a number of consequent steam drying cylinders combined into 
several drying groups. In fact, a complex steam-water network with a number of recirculation streams is 
needed to support the desired conditions in the cylinders and to provide the acceptable energy efficiency of 
the drying process.  

The FDD in the drying section must be aimed at the most frequent faults and problems which can cause the 
most valuable losses of productivity and deviations in quality of the final product. The key problems to focus on 
are  the  leakages  and  blockages  of  valves  and  pipes  in  the  steam-water  network  of  the  drying  section.  Small  
magnitude faults may cause energy losses but a large fault could even cause inability of the control system to 
maintain the required quality and may cause a plant shutdown.  

A number of nonlinear parity equations based on mass balances have been identified for the steam-water 
network of the drying section. The successful validation of the developed equations has proven the ability of 
the method to deal with fault detection and diagnosis of the non-liner processes.   

Keywords: Fault detection and diagnosis, non-linear model identification, structured residuals, industrial application, paper 
making 
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Abstract: In the present paper we provide a robust approach for fault tolerant control (FTC)
schemes using the methodology detailed in Seron et al. [2008], Olaru et al. [2010]. We guarantee
the detection and isolation of a fault through a set-separation condition (FDI mechanism) and
use this condition further in the reconfiguration control (RC) mechanism in order to stabilize
the closed-loop system and respect performance criteria.

Keywords: Fault tolerant control; MPC; Invariant sets.

1. INTRODUCTION

Nowadays the use of redundant sensors in applications is
becoming increasingly more common. In modern control
applications there are strict requirements on the stability
and performance criteria. There are safety-critical systems
in which this behavior is not merely inconvenient but can
become catastrophic (well known examples of malfunction-
ing in aircraft incidents are discussed in Maciejowski and
Jones [2003]). As a consequence, a great deal of effort has
been put into developing closed-loop systems which can
tolerate faults, while maintaining desirable performance
and stability properties [Zhang and Jiang, 2008]. Any
fault tolerant control (FTC) scheme relies on two basic
mechanisms: the fault detection and isolation (FDI) block
and the control reconfiguration (RC) block. The solutions
employed usually implement active FTC schemes which
react to a detected fault and reconfigure the control ac-
tions so that stability and performance can be satisfied.
Arguably, the most important aspect of a FTC scheme
is the interaction between the FDI and RC mechanisms.
In this sense, it is desirable to adapt the control to the
requirements of the FDI mechanism.
Usually [Zhang and Jiang, 2008], the detection and recon-
figuration parts of a fault tolerant control (FTC) scheme
are treated separately thus neglecting reciprocal influences
and substandard behavior (e.g. missed faults). The pro-
posed scheme, based on set theoretic methods, integrates
all the FTC components, and analyzes their interactions,
to create an overall system with guaranteed fault tolerance
properties. We enhance upon previous versions of this
scheme (see Seron et al. [2008], Olaru et al. [2010]) by
explicitly constraining the relevant signals into feasible
domains which permit an exact FDI mechanism. Firstly,
we consider that the feedback gain is fix and that the
state reference is a free parameter. In these conditions we
describe the constraints upon the state reference which
permit exact fault detection and use this information in
the construction of a reference governor. Secondly, we
consider the converse case, where the state reference is

fix and the feedback gain is variable. We obtain similarly,
a set of constraints bounding the tracking error and use
them into a receding horizon optimization procedure in
order to deliver a feedback action guaranteeing exact fault
detection. In both cases we consider and discuss several
selection policies and make use of set theoretic elements
to minimize the numerical difficulties (in particular set
invariance and the “tube-MPC” construction of Mayne
et al. [2005]).
The rest of the paper is organized as follows. In Section 2
the multisensor scheme used in the paper is described
and some set theoretic issues are presented. The FDI
mechanism is briefly described in Section 3 and the various
aspects of the RC mechanism are presented in Section 4.
Finally, some conclusions are drawn in Section 5.

Notation

Let x[c1,c2] =
[
x(k + c1)T . . . x(k + c2)T

]T with c1, c2 ∈
N+ denote a column vector of elements whose index
increases monotonically and where k ∈ N+ denotes the
current instant of time. Whenever c1 = c2 = c the
shorthand notation x[c] may be employed. Notation x+

(x−) denotes the successor (predecessor) element to the
current value of x (i.e., x[1] and x[−1]).
The Minkowski sum of two sets, A and B is denoted as
A⊕B = {x : x = a+ b, a ∈ A, b ∈ B}.

2. PRELIMINARIES

2.1 Plant description

As a benchmark for the FTC scheme we use a multisensor
scheme (depicted in Figure 1) composed from the following
components: plant, sensor/estimator and control mecha-
nism.
The plant P has a linear discrete-time state space model:

x+ = Ax+Bu+ Ew (1)
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Fig. 1. Multisensor fault tolerant control scheme

where x ∈ Rn is the system state, u ∈ Rm is the input,
and w ∈ W ⊂ Rr is the bounded process disturbance (by
the bounded polyhedral set W ).
The control problem is to design a closed-loop control
scheme such that the state of the plant (1) tracks a
reference signal xref which obeys the nominal dynamics

x+
ref = Axref +Buref (2)

where uref is a known (stabilizing in case that A is not
stable) signal.
The plant tracking error is given by the difference between
the state (1) and its respective reference signal (2):

z+ = x+ − x+
ref = Az +B (u− uref )︸ ︷︷ ︸

v

+Ew. (3)

The state of the plant (1) is assumed to not be directly
accessible. As such, a bank of sensors Si with i ∈ I ,
{1 . . . N}, measuring linear combinations of the system
state, Cix ∈ Rpi , are considered. The associated output
signals yi are affected by bounded measurement noises
ηi ∈ Ni ⊂ Rpi , with Ni bounded polyhedral sets:

yi = Cix+ ηi. (4)

Assumption 1. The pairs (A,Ci) associated to the ith

sensing channels are observable. �

To each sensor output yi we associate a state estimator Ei
(see Figure 1). The corresponding state estimation x̂i will
be constructed to provide an adequate dynamic behavior:

x̂+
i = Ax̂i +Bu+ Li (yi − Cix̂i) . (5)

The gains Li are chosen such that matrices ALi = A−LiCi
are strictly stable (always possible by Assumption 1).
By virtue of (1) and (5), the estimation error

x̃i , x− x̂i (6)
associated to the ith sensor satisfies the relation:

x̃+
i = x+ − x̂+

i = ALi x̃i + Ew − Liηi. (7)

For further use we define the estimation tracking error as
ẑi , x̂i − xref . (8)

The control mechanism (indicated as SW in Figure 1) can
be any control law

u = uref + v∗ (9)
stabilizing the system. We will detail the control strategies
in Section 4.

2.2 Set theoretic issues

In the rest of the paper we will apply a fault tolerant
control (FTC) scheme in order to detect and isolate faults
and subsequently, design a reconfiguration mechanism for
the control action. In both operations we will make use of
set theoretic elements, in the sense that we will translate
the various events of interest (i.e., fault detection, sensor
recovery, control design) into set operations (e.g., the
fault detection will be equated with a set membership
testing). This kind of approach was used before in the
literature, see for example [Planchon and Lunze, 2008,
Reppa and Tzes, 2008], but usually the sets defining the
signals of interest are computed iteratively. In here we use
a technique presented in Seron et al. [2008] and further
developed in Olaru et al. [2010]. Instead of reactualizing
the sets at each iteration we compute invariant sets for the
signals of interest (defined in Definition 1). This minimizes
the computations (during runtime only set membership
tests will be executed) and permits the analysis of global
stability.
We consider the following definitions in set invariance
analysis (see for example Blanchini [1999]).
Definition 1. Consider the dynamics x+ = Ax + δ with
δ ∈ ∆ ⊂ Rn. The set Φ ∈ Rn is a robust positively invariant
(RPI) set for the given dynamics if Ax+δ ∈ Φ for all x ∈ Φ
and for all δ ∈ ∆, or, equivalently, if AΦ⊕∆ ⊆ Φ. �

Definition 2. The minimal robust positively invariant
(mRPI) set for a given dynamic is the RPI set that is
contained in every RPI set for the same dynamic system.�
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The latter notion is useful because often we prefer sets as
“tight” as possible (in order to have a better chance at
fulfilling separation conditions for example). In general, it
is not possible to compute an exact representation of the
mRPI set, except under restrictive assumptions such as
when matrix A is nilpotent [Mayne and Schroeder, 1997].
One then needs to resort to approximations, and different
algorithms for the construction of RPI approximations
can be found in the literature, see for example Raković
et al. [2005] and Olaru et al. [2008]. However, those
approaches, based on set iterations, focus on the quality
of the approximation disregarding its complexity. On the
other hand, ultimate bounds sets [Kofman et al., 2007]
offer an alternative for the construction of RPI sets of
low complexity at the price of increased conservativeness.
Finally, it remains a personal choice to strike a balance
between computation time and accuracy of approximation
and chose a particular set construction technique.

3. FAULT DETECTION AND ISOLATION

The faults considered here are abrupt and total 1 sensor
output outages. The failure is then represented by the fol-
lowing switch in the structure of the observation equation:

yi = Cix+ ηi

FAULT−−−−−−−−−⇀
↽−−−−−−−−−
RECOV ERY

yi = 0x+ ηi. (10)

The noise affecting the observation channel during the
fault, ηFi ∈ NF

i ⊂ Rpi , with NF
i a bounded polyhedral

set, may be different from the one during the healthy
functioning, ηi.
A signal called residual [Blanke et al., 2006], sensitive to
fault occurrences and with a manageable dependence on
the disturbances, will be defined for the detection of faults.
We consider here a simple parity equation as our residual:

ri = yi − Cixref . (11)

Using the sensors’ output as defined in (4) and in (10),
respectively, it is possible to revisit (11) and obtain the
“healthy” and “faulty” residuals:

rHi = Ciz + ηi, r
F
i = −Cixref + ηFi . (12)

Considering the bounds upon the noises ηi, ηFi we have the
following set condition which permits to guarantee fault
detection and isolation:

({Ciz} ⊕Ni)︸ ︷︷ ︸
RH
i

(z)

∩
(
{−Cixref} ⊕NF

i

)︸ ︷︷ ︸
RF
i

(xref )

= ∅. (13)

We can partition the sensor indices into:
• IH , all the sensors acknowledged healthy (i.e. with
healthy functioning (4) and estimation error (7) inside
its invariant set S̃i:
IH =

{
i ∈ I−H : ri ∈ RHi (z)

}
∪{

i ∈ I−F : x̃i ∈ S̃i, ri ∈ RHi (z)
}

where I−H , I−F indicate the sets of healthy, respec-
tively, faulty, sensors at the previous time instant.

1 More complex scenarios can be considered (partial outage, smooth
degradation) but they do not add significantly to the problem, only
increase its complexity.

• IF , all the sensors acknowledged faulty (i.e. with
faulty functioning (10)):

IF =
{
i ∈ I : ri /∈ RHi (z)

}
.

IH IF

IR

ri /∈ RHi (z)

r i
/∈ R
H
i
(z)r i

∈ R
H
i
(z)

x̃
i ∈
S̃
i

Fig. 2. Depiction of sets IH , IR and IF with their transi-
tions and corresponding set membership testings.

Assuming that (13) is validated we conclude that the sets
IH , IR and IF are disjoint and thus, permit an exact
fault detection and isolation. More precisely, the detection
and isolation of a fault is equivalent with transitions
IH → IF and IR → IF whereas the eventual switch
to healthy functioning from a previous faulty mode is
described by transition IF → IR. Note that the set IR
acts as a “quarantine” set: the fact that a sensor recovered
its healthy functioning is not sufficient, there are signals
whose transient behavior is not acceptable. To this end, we
consider a sensor ready to participate again in the design of
the feedback when its estimation error has suitable values
(x̃i ∈ S̃i) and describe this event by transition IR → IH .
Remark 2. Note that condition ri ∈ RHi depends on how
the tracking error z is bounded and that condition x̃i ∈ S̃i
is not verifiable in its actual form since the signal x̃i is
not directly measurable. We direct the interested reader to
Olaru et al. [2009], Stoican et al. [2010a] for a geometrical
analysis providing necessary and sufficient conditions for
the aforementioned inclusion and to Stoican et al. [2010b]
for a timer/convergence time analysis. �

For exemplification we depict in Figure 2 the partition sub-
sets together with their transitions and the corresponding
set membership testings.

4. RECONFIGURATION OF THE CONTROL
ACTION

The control action actuating the plant can be decomposed
into the feedforward part (the reference control action
uref ) and the feedback counterpart (the control action v
which uses the information provided by the sensors).
In order to make the scheme fault tolerant we need to
take into account the results given by the FDI mechanism.
Firstly, we will limit the sensors pooling for the design of
the feedback action to only the healthy ones (the sensors
with indices in IH). Secondly, we design the control actions
such that we increase the range of values for which the set
separation (13) is guaranteed.
Taking into account these requirements and the sensor par-
titioning under healthy/faulty functioning we are capable
to provide several feasible control strategies. We consider
in this paper two main directions:
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• the input reference is provided by a reference governor
which keeps the state reference close to an ideal
reference and inside a given feasible region;
• The feedback control action can be either fix or the
result of a sliding horizon optimization problem.

4.1 Fixed gain feedback

We start with the design of a fix gain feedback. We choose
here to select at each instant of time one of the estimation
tracking errors (8) from the set of available sensors (with
indices in IH) and to consider a stabilizing gain matrix
K for the feedback action v = −Kẑi, i ∈ IH such that a
given cost function will be minimized:

l = arg min
i∈IH

J (ẑi) . (14)

where l ∈ IH is the selected index.
Then, using (6), (9) can be reformulated as

u = uref +K (z − x̃l) . (15)
Substituting (15) in (3), leads to

z+ = (A+BK)z + Ew −BKx̃l. (16)
Remark 3. Equally well, we could have been used a more
traditional sensor fusion technique (e.g., by taking as the
control feedback action as a convex sum of the available
estimation tracking error). However, this leads to compli-
cated representations and the gain in the cost function
minimization is reduced: it was shown in Seron et al.
[2009] that the switching between available sensors leads
to a “leveling” effect which mimics traditional fusion
strategies. �

The main question which we may pose in this context is
the choice of the cost function. A classical choice is to
consider the current estimation errors and select the index
of the one minimizing the cost function:

v∗ = −Kẑl
l = arg min

i∈IH
{||ẑi||Q + ||v||R} , (17)

where Q and R are suitable chosen weight matrices.
Here, however, we propose to use a receding horizon
technique, where the current selection in (14) takes into
account future possible switches in order to minimize a
cost function over a finite horizon.
We enumerate several approaches which, with increasing
degree of flexibility, take explicitly in consideration the way
the switch operates. To this end, we recall the dynamic
equation describing each state estimation error (5) and
substract the state reference (2) in order to obtain the
dynamic equation for the plant estimated tracking error 2

(8) by each sensor-estimation pair:
ẑ+
i = Aẑi +Bv + LiCix̃i + Liηi. (18)

With this notation we point to three receding horizon
implementations with different flavors according to the
choice of the objective function or the constraints to be
fulfilled by the group of sensors.
“Individual merit” selection. Here the sensors are com-
pared 3 with respect to their individual cost-to-go for

2 Assuming of course healthy functioning for sensor output yi which
is granted as long as i ∈ IH .
3 Note that we discarded the noises from relation (18) to simplify
the formulation of the problem.

the given initial conditions and the index with the best
“individual merit” is selected for the feedback control
action. This can be seen as an “elitist” type of multi-
agent formulation.

v = −Kẑi∗

i∗ = arg min
i∈IH


τ−1∑
j=0

(
||ẑi[j]||Q + ||v[j]||R

)
+ ||ẑi[τ ]||P


s.t.:
ẑ+
i[j] = Aẑi[j] +Bv[j].

(19)

“Relay race”. Here switchings are allowed along the pre-
diction horizon between the estimators which build the
control action. The predictions are still performed in
parallel, but the global cost can benefit from the changes
of index along the prediction horizon. This can be seen
as a multi-agent system in which the leader can change
at each stage of the prediction horizon.

v = −Kẑi∗0{
i∗0, . . . , i

∗
τ−1
}

= arg min
ij∈IH


τ−1∑
j=0

(
||ẑij [j]||Q + ||v[j]||R

)
+

||ẑiτ [τ ]||P
}

s.t.:
ẑ+
i[j] = Aẑi[j] +Bv[j], j = 0 . . . τ − 1.

(20)

“Collaborative” scenario. Here the cost index allows
switching during the prediction horizon and the terminal
penalty is considered with respect to a combination
of predicted estimation errors. This approach can be
seen as a collaborative multi-agent decision: along the
prediction horizon, all the agents apply the same control
policy. The performance of the group in the given
horizon is given by the summation of the performance
of the best individual at each stage.

v = −Kẑi∗0{
i∗0, . . . , i

∗
τ−1
}

= arg min
ij∈IH


τ−1∑
j=0

(
||ẑij [j]||Q + ||v[j]||R

)
+

||ẑ∗[τ ]||P
}

s.t.:
ẑ+
i[j] = Aẑi[j] +Bv[j], j ∈ {0 . . . τ − 1}
ẑ∗[τ ] ∈ conv

{
ẑi[τ ]

}
i∈IH

.

(21)
Notice that the decision based on individual cost evalu-
ation does not exploit the degrees of freedom offered by
the prediction window. It can be reduced in fact to the
comparison of cost indices for different estimations. The
advantage of such a scheme lies in the simplicity of its
implementation. On the other hand, the second and third
schemes propose optimization problems which belong to
the class of mixed integer programming problems and the
combinatorial complexity of their discrete decisions grows
with the prediction horizon.
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Fig. 3. Depiction of “individual merit”, “relay race” and “collaborative” selection strategies.

The tuning rules are not mature and they have been sel-
dom been tested. With the development of the cooperative
MPC techniques, such approaches can present a certain
interest as a future research direction in the FTC-MPC.
A “proof of concept” depiction of the strategies described
above is shown in Figure 3. The color-coded line segments
describe the selection made at each instance by a specific
selection strategy from the set of available sensors.

4.2 Reference governor

Assuming a fixed gain as described in the previous section
it is now possible to construct a robust positively invariant
(RPI) set Sz associated to dynamics (16) and to use it in
(13) in order to obtain a feasible domain for xref :

Dxref = {xref : RFi (xref )⊕RHi (Sz) = ∅, i ∈ I}. (22)
Note that any value xref ∈ Dxref will respect by its very
definition the set separation (13) which guarantees exact
fault detection and isolation.
We can now use this constraint in a reference governor
setting. Supposing an ideal reference r we are able to
provide through a reference governor respecting constraint
(22) a feasible pair of state/input reference (uref , xref ):

u∗ref [0,τ−1] = arg min
uref[0,τ−1]

τ−1∑
i=0

(
||r[i] − xref [i]||Qr + ||uref [i]||Rr

)
subject to

x+
ref [i] = Axref [i] +Buref [i]

x+
ref [i] ∈ Dxref

(23)
where τ is the prediction horizon and cost matrices Qr,
Rr are appropriately chosen. A “proof of concept” depic-
tion of this mechanism is shown in Figure 4 where an
ideal reference passes through an interdicted region and
consequently, the reference governor provides a feasible
reference which respects the boundaries of Dxref .
Remark 4. One can observe that the set (22) is the com-
plement of the union of N convex regions (i.e., RFi (xref )⊕
RHi (Sz) = ∅ is equivalent with −Cixref /∈ RHi (Sz) ⊕
(−NF

i )). As a consequence, the optimization problem has
to be solved over a nonconvex set which imposes the use
of mixed-integer techniques – Osiadacz [1990]. To alleviate
the computational burden specific to these techniques one
can reduce the number of auxiliary variables as in Stoican
et al. [2011]. �
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Fig. 4. Depiction of admissible region Dref characterizing
xref .

4.3 MPC techniques

Up to this point we assumed that the feedback control is
given through a fixed gain matrix. This has the advantage
of giving an easy to compute invariant set for the plant
tracking error but is, on the other hand, limited in its
reach by the fix structure. The use of MPC techniques for
computing the feedback (and ultimately, the feedforward)
control action(s) relaxes these constraints by providing a
time-varying feedback control structure [Bitmead et al.,
1990, Maciejowski, 2002].
Similarly with the construction (22) we assume now the
converse: the reference state is bounded (xref ∈ Xref

with Xref ⊂ Rn) and the tracking error z has to reside
into a feasible (from the point of view of condition (13))
domain 4 :

Dz = {z : RFi (Xref ) ∩RHi (z) = ∅, i ∈ I}. (24)

This permits to write the following optimization problem
for the feedback:

v∗[0,τ−1] = arg min
v[0,τ−1]

{
τ−1∑
i=0

(
||z[i]||Q + ||v[i]||R

)
+ ||z[τ ]||P

}
(25)

subject to:
4 A similar argument to the one in Remark 4 can be drawn for this
set: the result will be nonconvex and consequently, mixed integer
techniques will have to be used in any optimization problem involving
it.
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z+
[i] = Az[i] +Bv[i] + Ew[i]

z+
[i] ∈ Dz

, i = 0 . . . τ − 1 (26)

where τ is the prediction horizon, and Q ∈ Rn×n, P ∈
Rn×n and R ∈ Rm×m are weighting matrices.
Although easy to write in a compact finite-time optimiza-
tion formulation, the above relations suffer from a list of
difficult to handle particularities. The foremost is that the
plant tracking error z is not directly measurable and as
such, its estimations must be used (based for example on
the currently healthy sensors). Even so, the future values
of z are set-valued by the presence of the plant noise w,
leading practically to a robust MPC formulation. As a
consequence, the optimization problem becomes difficult
to solve in real-time (see Kerrigan and Maciejowski [2004]).
A tube predictive control philosophy [Mayne et al., 2006]
can in this case be considered as an alternative. This
approach presumes the construction of a “nominal” plant
tracking error dynamics:

z+
nom = Aznom +Bvnom (27)

where, due the absence of noise, the “nominal plant
tracking error” is directly predictable. If additionally, we
consider the nominal feedback control vnom and take it as

vnom , v +K (ẑ∗ − znom) (28)
where z̄ , z − znom and ẑ∗ denotes an estimation of
true, unmeasurable, value. We are now able to describe
the dynamic relation characterizing z̄:
z̄+ = A (z − znom)−BK (ẑl − znom) + vnom − vnom + Ew

= Az̄ −BK (z − x̃∗ − znom) + Ew

= (A−BK) z̄ +BKx̃∗ + Ew
(29)

where x̃∗ , z− ẑ∗. If an addition we provide a set S̄z such
that z̄ ∈ S̄z at any instant of time we have that

z ∈ {znom} ⊕ S̄z. (30)

Remark 5. Note that, as was the case in Section 4.1,
we have several possibilities of selection for the nominal
dynamic znom. The choice will be influenced by the sought
after degree of flexibility of the scheme together with the
acceptable complexity for the representation of set S̄z (e.g.,
in the case where we consider an arbitrary switch, we can
safely construct S̄z as an invariant set whch is numerically
identical with Sz). �

With these elements it is straightforward to rewrite (25)–
(26) into:

v∗nom[0,τ−1] = arg min
vnom[0,τ−1]

{
τ−1∑
i=0

(
||znom[i]||Q + ||vnom[i]||R

)
+

||znom[τ ]||P
}

(31)
subject to:

z+
nom[i] = Aznom[i] +Bvnom[i]

z+
nom[i] ∈ Dz 	 S̄z

, i = 0 . . . τ − 1 (32)

with the same notations as before and making use of the
fact that relation znom ∈ Dz 	 S̄z implies z ∈ Dz.
For illustration purposes a qualitative depiction of the
“tube” behavior is given in Figure 5, it can be seen that
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Fig. 5. Depiction of “individual merit”, “relay race” and
“collaborative” selection strategies.

the tracking error remains at all times around the nominal
trajectory.
Remark 6. If the set Dz is too tight then it may become
impossible to respect condition (13). Then we may apply
the same technique as in Section 4.2 where the state
reference is considered to be also a decision variable and
we can formulate an extended MPC optimization problem
which provides both reference input uref and nominal
feedback control vnom such that condition (13) is verified.
We will not repeat the optimization problems discussed
anteriorly but note that the feasible set is now defined as
Dref = {(xref , z) : RFi (xref )⊕RHi (z) = ∅, i ∈ I} (33)

and as long as there are no additional constraints on the
tracking error and the state reference, we have recursive
stability and thus we guarantee that all times the opti-
mization problem is feasible. �

5. CONCLUSIONS

In this paper we revisited a FTC scheme realized in a set
theoretic framework. We used FDI-derived conditions to
describe feasible regions for state reference/tracking error.
We further used these constraints to design optimal feed-
forward (as the result of a reference governor) and feedback
actions (using either fix gain or a MPC methodology).
Lastly, we discussed different selection strategies from the
available sensors.
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Abstract: This paper introduces a simple self-calibrating liquid flow rate control system. A
level glass containing discrete optical level sensors is connected on the flow line upstream of the
pump. The optical sensors in the level glass provide event information and define volumes that
can be used to calibrate and control the pump. The system is continuous and is observed by a
quantiser, making it overall a discrete-event dynamic system to be controlled by a corresponding
controller.
The set-up was installed as a reflux system on a set of distillation columns where the distillate
is condensed below the top of the column, providing a industrial-like physical arrangement of
the different components. The control system is low-cost and therefore provides a reasonable
alternative for flow control and flow measurement.

1. INTRODUCTION

Flow control is a common process operation. It normally
involves a flow measurement which is used to control a
pump of one or the other kind. The alternative is a feeding
pump, which is an accurate volume transport device. A
feeding pump requires a construction that makes the flow
rate nearly independent of the pressure conditions on
either side of the pump, which then makes it possible to
calibrate the pump, thereby relating the control input to
the pumping rate.

In this project we were seeking a cheap and simple alterna-
tive for both components. The flow measurement should
not only be simple but also robust and the pump should
have the basic properties of a feeding pump. The result
was a self-calibrating liquid flow control system that uses
a level glass for observing the condition of having the
outflow of the pump match the supply of the fluid on the
inflow. The level glass also serves the purpose of a volume
standard being used for the on-line auto-calibration of the
pump. The arrangement is used as a reflux pump and flow
measurement system on a distillation column.

Fig. 1. Schematic of event-driven flow control

Fig. 2. Pipe with discrete optical liquid level sensors, used
for flow control

2. PHYSICAL ARRANGEMENT

The physical arrangement consists of two main compo-
nents: a level glass and a pump. The level glass is connected
to the flow line before the pump via a generously wide
connection so as to not delay the level change in the level
glass. The pump then is put into the flow line for moving
the fluid. The level glass is equipped with six discrete level
detectors, which provide an event-signal whenever the level
passes an optical sensor. Knowing the dimension of the
level glass and the location of the sensors provides a set
of known volumes, which can be used for the calibration
and control of the pump. The dimension of the level glass is
chosen to be in a reasonable relation to the expected range
of flow rates in the line and, as a second consideration, the
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size must be such that the detectors can be placed along
the length reasonably easily. In addition, a solenoid tab is
put into the line before the level class connection so as to
interrupt the supply flow, enabling the on-line calibration
of the pump.

The peristaltic pump provides the volume transport over
a reasonable range of inflow/outflow pressure of the pump
and generates a head that is suitable for our application,
namely pumping the distillate that we condense on the
side of the column, back to the top, thus providing the
necessary reflux. Volume transporters are usually moving
small constant volumes generated in the pump by toothed
wheels or other mechanisms. This makes the flow pulsat-
ing, which has a negative effect on the accuracy of the flow
rate estimates.

3. DISCRETE-EVENT DYNAMIC CONTROLLER

The overall system is a hybrid of a continuous system and
a discrete-event observed system. With the measurement
being event-based, the controller is event-based. The task
is to design a discrete-event dynamic controller, a DED
controller. For the design of the DED controller, we
use the techniques discussed in Preisig [1996], Philips
[2001], Philips et al. [2003]. The one-dimensional state
space, being the level in the level glass, is quantised. The
number and location of the discrete sensors determine the
discretisation of the state space, dividing it into seven
discrete states. Five of those states corresponds to the
volume space between two sensors. In addition there are
the two additional volume spaces, one above the top sensor
and one below the bottom sensor. The sensors report via
a process interface (digital input) an event of passing a
sensor to the computing device and thus to the control
algorithm.

3.1 Time event

The DED controller is designed to keep the level within
the middle domain. If the supply flow increases, the level
will increase and eventually when the level reaches the
upper boarder of the middle domain a state event will be
reported. At this point the pump rate will be increased.
The aim is to bring the process back to the intermediate
domain. If the increase of the pump rate was too small and
it happens that the level settles somewhere in the current
upper domain, no event will occur.

To get insight into the problem consider the difference
between sampled systems and event-driven systems. In the
sampled system, the signal value is read every sampling
time instance. So, sampling is driven by a clock. In the
case of an event-driven system, the ’reading’ is done in
the opposite direction, namely the value (state-boundary)
is given and if the process passes it an event signal is
dispatched. This makes the process being the ’clock’. If
one does not have a event detector, one may generate a
virtual event by using a kind of prediction in which one
replaces the process with a stop watch that is set to a time
that corresponds to the expectation that an unobservable
event would occur. Thus one can view this mechanism
as substituting an unobservable event with a stop-watch
event, de facto a time event.

The unobservable event that takes place when the level
does not change over a specified time, is replaced by a time
event. For certain levels, here the events g, h, i and j in
Figure 3, a time event is triggered if a level change event
does not occurred within 50 seconds, with the action of
altering the pump flow rate. Also a new timer is started
and if the time event still does not trigger a level change
event after the additional 50 seconds and the time event
happens again, the pump flow rate is further changed in
the same direction (increased if above and decreased if
below the current limit). The time it takes for the time
event to trigger depends on the ratio between level volume
and flow rate. For a big level glass with large level volumes
and with a low flow rate, the time event should not be
triggered until a sufficient time has passed, as a level
change event gives flow rate information and is therefore
more valuable.

In our case we implement this behaviour for the main
reason that we do not want to change the speed of the
pump abruptly but smoothly. The speed of rotation of the
pump is thus changed slowly. As an example, when the
liquid level changes from ”Level 3” to ”Level 4”, the level
change event c causes the pump speed to be set to equal
its current speed plus the estimated liquid flow in the level
glass. If the estimate is accurate, the action will only stop
the rising of liquid in the glass, and not lower it. The time
event h will then increase the pump speed by 2.5% so that
it reaches ”Level 3” again.

3.2 Control automaton

Figure 3 shows the state diagram of the resulting flow
control system. Events that are highlighted in red illustrate
when pump flow rate adjustment actions are being taken.
These highlighted events occur after a change in liquid
level, or when a time-event occurs. The ideal state for the
controller is the state labelled ”Level 3”, which is in the
middle of the domains bounded by the six sensors.

Fig. 3. State diagram

Figure 5 shows the events that are triggered by a change in
level and also the events triggered when there is no change
in level for a given time, which is relative to the normal
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process dynamics rather substantial. The four sensors in
the middle acts as soft constraints and the top and bottom
sensors acts as hard constraints. On hard constraints the
controller ”panics” and shifts to maximum action, which
is full speed on the top and zero on the bottom.

Fig. 4. Symbol definition for Figure 5.

Fig. 5. Time and level change events

The level change events b, c, d and e trigger an action
that sets V̇p (pump flow rate) equal or close to V̇in (flow

rate coming in). In order for this to happen, V̇in must be
determinable. If the level rises from ”Level 3” to ”Level 4”,
it must before that have risen from ”Level 2” to ”Level
3” in order for V̇in to be known. As an example of the
opposite, if the level were to oscillate between ”Level 3”
and ”Level 4”, the level change event c will not be triggered
at the change from ”Level 3” to ”Level 4”.

4. PUMP CALIBRATION

The solenoid valve introduced into the line enables the
isolation of the level glass and the pump from the supply.
Since the volumes in the level glass are known, one can use
the fluid in the level glass for the calibration of the pump.
The procedure is controlled by an calibration automaton.
It implements a sequence of operations:

a: open valve g: compute flow rates
b: close valve h: change pump speed parameter
c: start pump i: increase counter by 1
d: stop pump j: start time
e: start control mode k: note time
f: start x seconds countdown

Table 1. Calibration actions

Calibration procedures (i), (ii) and (iii) are done in suc-
cession, one time after assembly of the system is finished:

(i) Find correlation between one pump input and
flow rate. This is done by specifying a (preferably low)
input signal to the pump and collecting the output flow
into a container with known volume. The flow rate, V̇ , for
the given input, u, is found by measuring the time, ∆t

required to fill the volume-calibrated container to volume
V :

V̇ (u) =
V

∆t(u)
(1)

Fig. 6. (ii): Automaton state-flow diagram for level volume
identification

(ii) Find volume between sensors using flow rate from
the previous volume calibration (i). As one flow rate is
known, this is used to calculate the relevant volumes.
Figure 6 shows the state-flow diagram for the calibration
automaton: The level glass is filled to and beyond the top
sensor by opening the valve and stopping the pump. When
the liquid level is sufficiently above the top sensor (which is
determined by a timer of a few seconds), the valve closes
and the pump is started at a given rpm corresponding
to input used in (i), thus starting the emptying of the
level glass. When the liquid level passes through the top
sensor, i.e. enters ”Level 5”, a timer starts. For each new
level entered, the time is noted. When the liquid level
reaches ”Level 0”, the pump is stopped and the valve
opens, allowing the liquid to fill the level glass again. This
experiment is repeated a given number of times in order to
also get statistical information. Once the last experiment
is completed, the automaton algorithm switches back to
control mode.

The volume of ”Level n” is calculated as:

V (n) = V̇ (u) ∗ (tn(u)− tn−1(u)) (2)

The results are used by the control algorithm. The last
calibration procedure uses the volume from top sensor to
bottom sensor,

∑
v(i).

(iii) Find correlation between pump inputs and
flow rates for entire input span, using the equation:

V̇ (u) =
V

t5(u)− t0(u)
(3)

t5(u) − t0(u) is the time it takes to the level to drop
from ”Level 5” to ”Level 0”, corresponding to the volume
between the top and bottom level sensor. This is the same
equation as the first calibration procedure, but since the
volume of the level glass is now known, is can be used
as fixed volume container. The procedure is shown in
Figure 7. The level glass is filled and emptied, similar to
the procedure explained in (ii), but the algorithm cycles
through an array of specified pump speeds instead of
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using the same speed for all the calibration cycles. It
also does not note the time when the liquid level enters
the intermediate levels, but the time is taken only when
entering ”Level 5” and ”Level 0”.

Fig. 7. (iii): Automaton state-flow diagram for flow cali-
bration

5. PRACTICALITIES

5.1 Static volume

Operating at steady flow, the controller keeps the liquid
within ”Level 3”, between the two middle sensors. This
effectively traps the liquid in the level glass for an ex-
tended periods of time. If the properties of the fluid in
the line change with time, then the liquid in the glass
will be different. As the flow decreases in the line, fluid
from the level glass will come back into the line thus
changing temporarily the properties of the pumped fluid.
In case of our distillation column, can potentially affect the
composition in the column. Whilst the volume in the level
glass is small this behaviour should be kept in mind and if
it is potentially disturbing the operation of the plant the
control automaton is to be modified so as to exchange the
fluid in the level glass periodically by taking the necessary
control actions. In our current application, the level glass
holds ≈50 ml maximum, which under normal operation
will not cause any problems.

5.2 Handling overflow

The level glass my overflow under certain operating con-
ditions, for example if the line flow exceeds the maximal
pump ration. But may also be caused by sensor or pump
malfunction, or air bubbles. The likelihood of overflow can
be reduced by having a large volume reservoir above the
top sensor and having a time event for ”Level 6” that
stops or reduces the flow into the level glass. This has
the potential downside of larger static volume, which was
discussed in the previous subsection. There are multiple
ways of handling overflow situations. There is no single
optimal solution, and one should choose the one most
fitting to the specific application. The following are some
suggestions:

• Overflow can be directed by a hose into the waste
reservoir. This has the added benefit of preventing
overpressure.

• Overflow can be redirected into another stream.
• A one-way output valve could be used for letting
air pass freely through without letting liquid pass
through the top. The pipe will in this case lose
the ability to overflow, creating the possibility of a
pressure build-up.

5.3 Maintenance

All parts of the flow control set-up robust and have
relatively high standing times, and are easily replaceable
if so needed. The liquid level sensors are low price and
are simply screwed into the side of the level glass. The
level glass is made from one solid piece of see-through
plastic material, and is cheap to both in material and
manufacturing.

5.4 Regular calibration

Peristaltic pumps have a tendency to deform the hose over
time, thereby altering the input/flowrate correlation. It
is recommended to regularly check the hose for damage
and wear. Since the calibration procedure is completely
automated, it can be scheduled to regularly be repeated.
Deviations may be taken as a sign for the ageing of the hose
triggering a replacement. This also provides the control
algorithm regularly with updated flow rate values. The
calibration can be run manually or automatically, without
stopping the overall process, given that the system allows
for some accumulation of mass upstream to the valve. For
a distillation set-up, accumulation is allowed in the tubing
following the condenser or even in the condenser itself.
Accumulation depends on how slowly the level glass is
emptied, i.e. the minimum pump input that is being tested.

6. EXPERIMENTAL RESULTS

A distillation column is fitted with the discussed flow
control scheme, as shown in Figure 8.

Fig. 8. Distillation column with event-driven flow control
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The condensate accumulating at the low end of the con-
denser is entering the line to the pump in front of which
the level glass with optical liquid level sensors is connected.
The pump pushes the condensate back to the top of the
column providing the required reflux. The control algo-
rithm keeps track of the volumetric flow rate using the
calibration relation. The peristaltic pump head is driven
by a stepper motor that is equipped with a complete
process interface that connects directly to the RS 485
instrumentation bus. The level glass is approx 15 cm high
and holds ≈ 50 ml between the top and bottom sensor.

A calibration program is realised as a separate program
making it possible to run the calibration independent of
te control program. The program is also used to determine
volumes between the sensors in the level glass.

6.1 Calibration results

Figure 9 shows the correlation between pump rpm, being
the input to the pump, and the volumetric flow rate. The
graph is linear up to ≈ 90 rpm at which point a ”hump”
appears. We found that the ”hump” is reproducible. The
detailed cause is not known, but can likely be attributed to
some interaction between deformation of the hose and the
workings of the peristaltic pump. The pump rarely exceeds
90 rpm when in normal operation, but the maximum speed
setting that starts when the liquid enters ”Level 6”, is 150
rpm.

Fig. 9. line: Results from calibration procedure 3. Red line:
linear regression.

The use of a linear correlation is easy and convenient, but
can be inaccurate when getting into the non-linear region.
If so necessary one may consider fitting a higher-order
polynomial that is capable of capturing the ”hump” fea-
ture reasonably accurate. Alternatively one may consider
fitting piecewise either with linear or non-linear functions.
Figure 10 shows a piecewise linear implementation of flow
rate estimation from the distillation column set-up.

CONCLUSION

The event-based, discretized-state flow control system
consists of a volume transporter, a cylindrical vertical
glass with six discrete liquid level sensors, and a computer
interface. The difference between inflow and outflow is
estimated from the time taken for a change to occur in

Fig. 10. Piecewise linear regression. x-axis:rpm, y-
axis:ratio between flow rate and rpm.

the liquid height in the level glass detected by the discrete
level sensors. The control algorithm adjusts the pump
speed and thus the pumping ratio accordingly. The fully
automated calibration procedure does minimally interfere
with the operation of the assembly and can thus be
periodically repeated thereby maintaining a high accuracy
of the estimated flow rate through regular re-calibration.

The self-calibrating flow rate control structure is low-
cost, robust and easily implemented and maintained. The
realisation of the automaton algorithm is extremely simple
and consists of a recursive two-table look-up procedure.
The first table provides the next state given the current
state and current event whilst the second gives the set of
actions given the current state and the current event. It
thus requires only memory for the automata tables and the
few lines of code. The assembly can be used to manually
or automatically calibrate both on and off-line. Its use
has been demonstrated on a set of lab-scale distillation
columns, where it acts as reflux measurement and pump
system.
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Abstract: The purpose of this study is to develop the monitoring system for the level and temperature of 
a mixing tank system in closed loop. Principal component analysis (PCA) has been used to process 
monitoring where idea is to convert on-line data collected from the process into a few meaningful 
measures, and thereby assist the operators in determining the status of the operations. Once the PCA 
model of a data set has been obtained, confidence limits can be established by plotting the time series of 

the Q  and 2T statistics. The confidence limits were implemented in the DeltaV automation system by 

applying basic calculation blocks. Several process experiments were conducted in the pilot-scale when 
the performance of step responses and bypass output flow was compared. The results give the operator as 
a tool for process condition monitoring. 

Keywords: Monitoring, principal component analysis, statistical analysis, automation system. 

 

1. INTRODUCTION 

This paper is a study of process monitoring system for the 
level and temperature of three tank system. A three tank 
system is popular experimental systems in control 
laboratories and we have used this system initially for the 
laboratory exercise, which is called “The measurement and 
control of conductivity”. Salt is dissolved in small tank from 
which the solution is pumped to the three tank system. The 
conductivity of water is measured in the second tank, and the 
conductivity is controlled by changing the amount of the 
solution.  

The aim of the research is to monitoring the level and 
temperature of a mixing tank system, which are controlled in 
the first tank at the same time. The original process data is 
projected onto smaller number of principal component (or 
latent variables), thus reducing the dimension of the 
variables. Once the PCA model of a data set has been 
obtained, confidence limits can be established by plotting the 

time series of the Q  and 2T statistics (Chiang et al., 2001). 

The confidence limits are implemented in the DeltaV 
automation system. 

Structure of the paper is as follows. Automation system is 
presented in the section 2. The process and PCA method are 
presented in the sections 3 and 4. Experiments and discussion 
is shown in the section 5. Conclusions is presented in the 
section 6. 

2. AUTOMATION SYSTEM 

The DeltaV automation system is developed by Emerson 
Process Management. Different processes can be planned and 
managed by using the system which is based on PC 

technique. The system uses several standard techniques such 
as Ethernet network connection, digital communication bus 
such as Foundation fieldbus, and data integration options 
such as OPC and XML. (Emerson Process Management, 
2009); (DeltaV Books Online, 2010) 

The DeltaV automation system contains software and 
hardware for process control. The system consists of a work 
station, a control unit, I/O units, a power supply and different 
system busses. A safety instrumented system is also possible 
to link to the automation system. A small DeltaV system can 
contain one ProfessionalPLUS workstation and one 
controller. An Ethernet switch is used to connect a single 
ProfessionalPLUS and controller. The control unit manages 
communication between I/O units. Analog I/O units, digital 
I/O units and the Fieldbus Foundation fieldbus enable 
effective data transfer. Furthermore, data can be collected 
from historian database by using MS Excel program. 
(Emerson Process Management, 2009); (DeltaV Books 
Online, 2010) 

The system contains many software tools for the design and 
maintenance of the automations system. DeltaV software 
enables to design graphical user interfaces, to construct 
control modules, and to configure them, and to collect data. 
The most important design tools are DeltaV Explorer, 
Control Studio, and DeltaV Operate Configure. The control 
program can be made by applying the DeltaV Explorer and 
Control Studio programs. By using DeltaV Explorer, the 
structure of the system can be investigated. The components 
of system can define (areas, modules, equipment and alarms) 
by using the DeltaV Explorer. Control modules are designed 
and modified by using the Control Studio. The modules are 
graphically composed by using ready-made components, 
which are available in the programming libraries. Graphical 
user interfaces are designed by using the DeltaV Operate 
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Configure program which is used also during operation. The 
state of process can be observed by using the Process History 
View program. (Emerson Process Management, 2009); 
(DeltaV Books Online, 2010) 

DeltaV InSight is a suite of tools that support a systematic 
approach to improving control by monitoring control 
performance, identifying and diagnosing problem loops, 
recommending tuning and maintenance improvements, and 
continuously adapting to changing conditions to optimize 
plant performance. The InSight applications enable you to 
examine abnormal operating conditions that have been 
detected by I/O and Control blocks and access the 
recommended tuning and associated process models that are 
developed on demand or automatically during normal plant 
operation. The time-critical process identification and 
adjustment of tuning functions are performed through the use 
of block modifiers that execute with the PID function block 
and operate independently of the InSight application. InSight 
tuning allows you to quickly tune a loop with minimal input. 
You can tune with InSight if you have Tuning and Control 
keys assigned to your user account. If this is your first time 
tuning with InSight, you might want to use simulator 
modules for PID and FLC blocks before tuning a live 
process. The principle of tuning is based on the relay 
feedback. The program sends pulses, which produce 
oscillation with constant amplitude and frequency in the 
process and the parameters of the process can be defined. 
(DeltaV Books Online, 2009) 

 

3. PROCESS DESCRIPTION 

The three tank system for control studies was built to allow 
student and researchers to test control strategies on a system 
that is as close as possible to an actual industrial plant. The 
pilot plant is operated with the DeltaV automation system. 
The field devices are connected mainly through Foundation 
Fieldbus (FF). In addition to the Operate view, Process 
History view is used to follow the dynamic behaviour of the 
process. The pilot plant used in the lab work consists of three 
tanks in series, a NaCl-solution tank, a membrane pump that 
pumps salt water into water tank 2, a conductivity sensor in 
the tank 2 that measures also temperature, flow 
measurements and several control valves that control the tank 
levels and water temperature. The temperature is measured in 
the first tank with Rosemount Transmitter Model 3244MV 
(FF) in measuring range of 0-100 °C, and the level with 
Rosemount Transmitter Model 3051 (FF) in measuring range 
0-950 mmH2O. The plant has five control loops: one warm 
water control loop, one cold water control loop, two level 
control loops and one conductivity control loop. The 
laboratory system is shown in Fig. 1. 

 

 

 

Fig. 1. The three tank system. 

4. PCA method 

The basic idea of principal component analysis (PCA) is to 
reduce the dimensionality of a set considering a large number 
of interrelated variables, while retaining as much as possible 
of a variation present in the data set. This is achieved by 
transforming the measured data to a new set of variables, the 
principal components, which are uncorrelated. These 
principal components are ordered so that the first few retain 
most of the variation present in all of the original variables. 
PCA relies on an eigenvector decomposition of the 
covariance or correlation matrix of the process variables. 
(Wise and Callagher, 1996); (Chiang et al., 2001) 

In this work I have collect data matrix X  with two input and 
two output variables. For a given data matrix X  with m  
rows and n  columns the covariance matrix of X  is defined 
as 

 ( )1/)cov( T −= mXXX  (1) 

The columns of X  are autoscaled, i.e. adjusted to zero mean 
and unit variance by dividing each columns by its standard 
deviation (Wise and Callagher, 1996). Principal component 
analysis is a method of expressing a matrix X  of input 
variables as outer products of two vectors, a score matrix T  
and a loading matrix P  plus a residual matrix E . 

 ETPX +=  (2) 
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In PCA the eigenvalues iλ  associated with the eigenvectors 

ip  as (Wise and Callagher, 1996): 

 iii pp λ=)cov(X  (3) 

where ip  vectors are eigenvectors of the covariance matrix. 

In PCA method the first eigenvector or principal component 
aligns with the greatest variation in the data, and the second 
principal component aligns with the greatest amount of 
variation that is orthogonal to the first principal component 
(Wise and Callagher, 1996). 

Usually less than the entire principal components are used. It 
can calculate by cumulative sum of variances and select the 
principal component as over 72 percent of the total variance 
(Chiang et al., 2001). 

The PCA model can be used in monitoring by plotting of Q  

and Hotelling’s 2T  statistics. 

The Q  statistic indicates how well each sample conforms to 

the PCA model. Q  statistic is a sum of squares of each row 

(sample) of E  (Wise and Callagher, 1996): 

 ( ) T
i

T
kki

T
ii xxeeQ PPI −==  (4) 

where ie  is the ith row of E , kP  is the matrix of the first k  

loadings vectors retained in the PCA model and I  is the 
identify matrix. 

Hotelling’s 2T  statistic measures the variation in each 

sample within the PCA model. 2T  is the sum of normalized 
squared scores as (Wise and Callagher, 1996): 

 T
i

T
i

T
ii xxttT PλPλ

112 −− ==  (5) 

where it  is ith row of kT , the matrix of k  scores vectors 

from the PCA model and 1−
λ  is the diagonal matrix 

containing inversed eigenvalues with the k  eigenvectors 
retained in the model. 

Once a PCA model of a data set has been obtained, 
confidence limits can be established for the overall residual 

Q  and 2T  index. Given the eigenvalues iλ  of the covariance 

matrix of X  confidence limits can be calculated for the Q  as 

(Chiang et al., 2001): 

 ( ) ( )( )[ ] 0
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2
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where ∑=
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n

kj

i
ji

1
λθ , and ( ) 2

2310 3/21 θθθ−=h , and αc  is 

the standard normal deviate corresponding to the ( )α−1  
percentile. Given the level of significance, α , the threshold 
for the Q  statistic can be computed using (6) and be used to 

detect faults.  

Statistical confidence limits for 2T  can be calculated by 
means of the F -distribution as follows (Wise and Gallagher, 
1996): 

 
( )

),1,(
12 αα −

−
−= mkF
km

mk
T  (7) 

where ),1,( α−mkF  is the upper 100α % critical point of 

the F -distribution with k  and 1−m  degrees of freedom. 

4. EXPERIMENTS AND DISCUSSION 

Monitoring system for the level and temperature of a mixing 
tank system were investigated, which are controlled in the 
first tank by separately PI controllers. Step response and 
disturbance with output flow of the first tank are conducted to 
define the behaviour of the process in the entire area of 
operation. 

The process experiment, when level was changed, is 
presented in Fig. 2. The steady state level temperature was 22 
degree °C, and the level was 270 mmH2O. The set point of 
the level controller was changed from 270 to 280 mmH2O, 
and then to 250 mmH2O. Controllers gain and integration 
time were 4.60 and 1.25, and 50 and 150 seconds for the level 
and temperature loops. 
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Fig. 2. Level and temperature control in the first tank using PI 
controllers. 

PCA model was done using normal operation data, and it is 
selected a set of 300 data sample rows measured a 1 second 
sampling time in Fig. 2. Cumulative sum of the variances by 
each principal component is illustrated in Table 1. It shows 
that 90% of the total variance is captured by two principal 
components. Thus the four variables can be replaced with 
two new variables, which are linear combinations of the 
original variables, with little loss of information. 
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Table 1. Variance captured by PCA model. 

Principal component 
number 

Variance Total variance 
captured  

1 0.5684 0.5684 
2 0.3338 0.9023 
3 0.3429 0.9880 
4 0.0481 1 

 
Figure 3 plots the test data for the level step responses and 
bypass flow at the first tank; Fig. 4 shows the same for the 

process monitoring with Q  and 2T  index. Confidence limit 

is 95% for the Q  and 2T  indexes. The new steady state 

temperature was 22.1 degree °C, and the level was 270 
mmH2O for the DeltaV automation system. 
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Fig. 3. Test data for the process monitoring in the first tank. 
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Fig. 4. Graphical illustration for fault detection using the Q  

and 2T  statistics. 

The results shows peak upward (see Fig. 4 at 1320, 1740, 
3000 and 3740 seconds) when the bypass flow was opened 
five, one, five and two seconds. Peak is also upward (see Fig. 
4 at 1990 to 2110 seconds) when the set point of the level 
controller was changed from 270 to 300 mmH2O, and then to 

270 mmH2O. Q  and 2T  indexes were over 50 and over 20 

times the 95 % limit when the step point of level controller 
was changed. There are no peak upward (see Fig. 4 at 3950 to 
4050) when the set point of level was changed 940 to 930 
mmH2O, and then to 940 mmH2O in the second tank. The 
diagnosis system is implemented in the DeltaV automation 
system. 

5. CONCLUSIONS 

In this study, it was used the three tank system that was built 
to allow students and researchers to study control strategies. 
Process monitoring system for the level and temperature of a 
mixing tank system were investigated, which are controlled 
in the first tank at the same time. Principal component 
analysis (PCA) has been used to process monitoring where 
idea is to convert on-line data collected from the process into 
a few meaningful measures, and thereby assist the operators 
in determining the status of the operations. Once the PCA 
model of a data set has been obtained, confidence limits can 
be established by plotting the time series of the Q  and 

2T statistics. The diagnosis system is implemented in the 
DeltaV automation system. 
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Abstract: Design and assessment of control in wastewater systems has to be tackled at all levels, 

including supervisory and regulatory level. We present here an integrated approach to assessment of 

control in sewer systems based on modelling and the use of process control tools to assess the 

controllability of the process. A case study of a subcatchment area in Copenhagen (Denmark) is used to 

illustrate the combined approach in modelling of the system and control assessment. 

Keywords: Sewer system, control, plantwide control, system understanding, modelling 



1. INTRODUCTION 

Since the EU Water Framework directive came into force in 

2000, wastewater systems (sewer system and wastewater 

treatment plants) in Europe have been put under pressure to 

reduce the number of combined sewer overflows1 (CSOs) 

from the system to protect the aquatic environment. And as 

the future climate changes are predicted to induce an increase 

in precipitation in the northern part of Europe (Watson et al., 

1997), the strain on the performance of the wastewater 

systems will only become larger in the future.  

To cope with the increasing pressure the wastewater system 

can be expanded by building larger pipes and new storage 

tanks. But expanding the wastewater system requires a 

significant capital investment and intensive civil building 

works and therefore the need for this should be limited as 

much as possible. Instead of expanding the system, research 

has shown that the implementation of Real Time Control 

(RTC) in the sewer system can increase the utilization of the 

existing storage volume and thereby reduce the need to build 

new storage capacity (Marinaki, Papageorgiou 1997). The 

use of RTC allows for the control of pumping stations and 

diversion or retention gates according to online 

measurements at critical points, thereby making it possible 

for the system operation to respond to rain events.  

To further increase the utilization of the system, research is 

now primarily focused on how to do a system wide 

optimization. In particular, research on how to use real time 

                                                 
1 Combined Sewer Overflow: The discharge from a combined sewer system 

that handles both wastewater and stormwater. During rain the system can 

discharge from overflow structures into a recipient such as a stream, river, 

lake or sea, if the capacity of the system is exceeded.  

optimisation (RTO) and model predictive control (MPC) in 

the control structure.  

The problem of finding the optimum control structure that 

best serves both the sewer system and wastewater treatment 

plant(s) is a challenging and formidable problem. The main 

objective of the control system is to minimize the risk of 

flooding and the volume of overflow and bypass from the 

system.  

 

Fig. 1: The system decomposition with respect to time scale 

(based on Seborg et al. (2011)). 

One way to address the control problem is to decomposition 

it according to the time scales of the actions. From this it 

becomes possible to identify a number of layers, linked by 
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master-slave relations. For the sewer system the 

decomposition can look as depicted in figure 1. 

Based on decomposition one can look at the different levels 

of control separately, starting from the lowest level and 

moving upward. 

Using the system decomposition it becomes obvious that the 

research today on control of the wastewater system is focused 

on higher layers in the system decomposition. However these 

methods are supervisory layer controllers that require a 

control structure as given. Therefore it becomes imperative 

that the regulatory level control functions optimally.   

However, in practice the design and implementation of RTCs 

in wastewater systems have been done incrementally as the 

utility management companies have identified the potentials. 

Over time as more and more controls have been implemented 

in the wastewater system and the number of controlled 

actuators in the system has increased, important interactions 

among the different control loops may have appeared, that 

was not accounted for in the design of the individual controls. 

Depending on the interactions among the control loops this 

may appear impairing on the performance of the control 

system. Therefore attention should be paid to aspects related 

to the regulatory level such as the analysis of controllability 

properties of the system according to the design of control 

loops, pairing of variables, among others. This analysis of 

control problem and designing of control structure needs to 

be performed in a formal and structured way as required by 

process control engineering good practice (e.g. see 

(Skogestad 2002). 

The aim of this work is therefore to formulate the problem of 

design and analysis of the regulatory level from a process 

control perspective and to develop a methodological 

approach to find the optimal solution. 

2. METHODOLOGY 

The methodology is developed assuming a hierarchical 

vertical problem decomposition based on time scale as it has 

been done with similar methodologies aimed at chemical 

processes. Other approaches in control design for whole 

plants are i) horizontal decomposition based on process units, 

ii) vertical decomposition based on process structure; and iii) 

vertical decomposition based on control objectives (Larsson, 

Skogestad 2000). These approaches are considered unsuitable 

for the following reasons. The horizontal decomposition 

approaches are unable to tackle material recycle (e.g. 

pumping water back to a previous tank) and assumes large 

buffer tanks between units (Douglas 1988). The process 

structure decomposition consists on splitting the process at 

different levels of representation (e.g. batch vs continuous, 

input-output) but it has been formulated for chemical plants 

and it is difficult to adapt to other processes. Finally, the 

control objective approach establishes different tasks for 

control (inventory, product specification, equipment 

constraints, economic performance) but fails to consider the 

cases where such tasks can lead to contradictory objectives  

(Price, Lyman & Georgakis 1994). 

2.1 Generic approach to the control assessment problem 

A suitable solution to the problem of control assessment 

should not only point out the deficiencies in the system but 

also address potential solutions to solve them. However, as 

stated previously, the approach cannot be that of pure design 

given that the capital cost of modifications in the control 

system of sewer system is very high and involves works in 

the public domain. The assessment should lead to incremental 

modifications that, albeit suboptimal, are feasible. 

We propose here to carry out a decomposition of the system 

with respect to time in different layers linked by master-slave 

relations (Fig. 1). Such decomposition has been applied in 

chemical processes as a way to manage the complexity of 

control design. The methodology consists on the review of 

each of the control layers, their assessment and proposal of 

solutions and an eventual evaluation step.  

To this respect, the classic indexes will be tested (relative 

gain array, closed-loop disturbance gain) as indicators of 

process controllability and ability to reject disturbances. The 

adaptation of controllability indexes to describe sewer 

systems will be investigated and new indexes will be 

proposed if appropriate. 

 

3. CASE STUDY 

The approach proposed for the control system assessment is 

illustrated here through an actual case study described below. 

The analysis was done considering three scenarios, namely:   

1.Dry weather 

2.Low intensity rain 

3.Moderate intensity rain 

Since the primary objective of the control system is to 

minimise the overflows to the environment, the scenario 3 

(moderate intensity rain) is arguably the most relevant. No 

overflow is expected during dry weather or low intensity rain. 

Nevertheless, the energy consumption of the pumps is mainly 

related to the operation during scenarios 1 and 2 since they 

represent the normal operation. Therefore, they should also 

be investigated in order to achieve an energy efficient 

operation as well. 

The evaluation of the system is performed with simulation of 

a long time period (in this work 30 years), using as an input 

historical rainfall data. The key performance indicators (KPI) 

are the number of CSO, the volume of the overflows, their 

frequency and the flooding episodes (overflows from virtual 

tanks).    

3.1 Description of case study area. 

The subcatchment area analysed in this work is a part of 

Copenhagen (Denmark) sewer system (Fig. 2), owned and 

maintained by Copenhagen Energy. It has a size of Y hectare, 

X km pipes and is additionally composed of 3 pumping 

stations, 2 storage tanks and 1 pipe basin. The inflows to the 

system are the wastewater dry weather flow and rainfall and 

the outflows are five flows to the environment (caused by 
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overflow) and a pipe that directs the flow downstream for 

treatment.   

 

 

Fig. 2. Map of case study area. 

 

Fig. 3. Modelling the case study using virtual tank approach 

 

The implemented control system of the area is composed of 

three decentralized loops as follows: 

-Loop 1.Controls the level in the tank (T1) manipulating the 

outflow from the tank (T2), with a larger storage capacity. 

-Loop 2. Selective control which manipulates the outflow 

from tank (T1) to the variable which is further from the 

setpoint among i) the flow measured downstream the 

pumping station, ii) the flow in the pipeline after the virtual 

tank (VT 3) and iii) the level of tank (T3) 

-Loop 3. Manipulates the outflow of tank (T3) according to 

the flow downstream the pumping station.  

 

3.2 Sewer system modelling 

The catchment area and sewer system were modelled through 

the virtual tank approach (Ocampo-Martinez 2010). Virtual 

tanks are regions of the subcatchment area where the 

precipitation and flow are considered to be homogeneous. 

The global mass balance for a virtual tank is expressed as: 

 

   

  
                  (1) 

where qin is the inflow coming from other tanks, virtual tanks 

and the dry weather flow (household wastewater), Ieff is the 

effective precipitation and qout is the outflow from the virtual 

tank, empirically modelled as: 

                   (2) 

The parameter i (in s-1) is a  the volume/flow conversion 

coefficient (Ocampo-Martinez 2010). It can be determined 

from regression of historical data of flow and level. If the 

regression was not satisfactory for all the ranges of 

level/flow, i can be determined piecewise for two or more 

ranges at the expense of introducing a nonlinearity in (2). 

Indicators of wastewater composition have also been 

included and are modelled considered the virtual tanks as 

completely mixed: 

     
 

  
      

         
     (3) 

 

where the index i represents the virtual tank and j the 

compound considered. The compounds considered are the 

chemical oxygen demand (COD), total nitrogen compounds 

(TN), total phosphorous compounds (TP), and total 

suspended solids (TSS). It is assumed that precipitation has 

negligible concentration of these compounds and, 

consequently, does not appear in (3). 

The tanks in the system have been modelled as completely 

mixed compartments and their outflow is assumed to be 

perfectly controlled by the corresponding control loops (level 

versus pumps). 

Weirs are elements that are used to moderate the flow 

downstream (e.g. before a pipe node) and to prevent the 

backwater effects. Since weirs do not have storage capacity, 

they are modelled as:   

      {
                      
                       

    (4) 

 

Finally, pumps are modelled as perfect actuators, 

immediately setting the flow to the desired value. 

3.2.1 Overflow modelling 

The modelling of overflow is a key step, given that the 

objective of sewers system control is precisely to minimise 

the overflow to the environment (river, lakes, sea…). 

However, it should be noted that not all the overflows 

streams are spilled onto the environment; a number of them 
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are directed to other tanks or virtual tanks according to the 

links in Fig. 3.  Overflow has been modelled as follows: 

-From virtual tanks and tanks. The subcatchment areas are 

divided into smaller zones for which a maximum level (and 

therefore a maximum volume) is assumed before flooding. 

For tanks, a maximum storage capacity is known. Overflow 

is formally calculated the same way for the two structures as: 

           {
                                
                           

   (5) 

 

-From weirs. 

           {
                                   
                            

   (6 

 

3.2.2 Dry weather flow modelling 

Dry weather flow is the flow in the sewers system not 

influenced by a rain event. For an urban sewer system, it 

corresponds to the wastewater produced by households in the 

area covered by a virtual tank. Its contribution to the total 

flow during any rain event is in general negligible. However, 

it is important to take it into account since it is the source of 

polluting agents that can be spilled in case of overflow.  

Dry weather flow has been modelled through as a four term 

harmonic function of periods 24h/12h (Breinholt et al. In 

Press) or by regression to a 3rd degree polynomial, repeated 

as an input with period 24h (Sin et al. 2008). In this work, the 

dry weather flow was simulated by a 24 piecewise function 

(each piece consisting of a straight line interpolating a 1h 

period) built from actual operation data (Fig. 4)  

The COD, TN, TP and TS concentration of the dry weather 

flow was determined taking into account the amount of 

equivalent-persons per area covered by each virtual tank 

(Tchobanoglous, Burton 1991).  

 

Fig. 4. Dry weather flow hourly variation 

 

3.2.3 Precipitation modelling 

To carry out the three-scenario analysis, box rain was used in 

order to reach a suitable steady state. As for the evaluation of 

the control base case and proposed improvements, historical 

rain data were used corresponding to the last 30 years in the 

subcatchment area. Other approaches in evaluation reported 

in literature are based on the use of designed rain events with 

a certain return period, in particular the so-called Chicago 

designed storm (Huff, Vogel & Changnon Jr 1981). 

However, it has been reported that, since designed rain events 

can overestimate or underestimate the actual rainfall of 

different region, sewer systems evaluations should be done 

with historical data or with rain events designed in purpose 

for a region (Raso, Malgrat & Castillo 1995). 

4. CONCLUSIONS 

An assessment of sewer system control was carried out by a 

model-based approach. It was illustrated with a case-study 

corresponding to a subcatchment area in Copenhagen 

(Denmark). Future work on this project will consist on the 

evaluation of the control system with historical precipitation 

data. 
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Abstract: In the present work, the results of the oxy combustion circulating fluidized bed (CFB) test 

week of VTT Jyväskylä were analyzed. During the test week, dynamic combustion measurements with a 

50-100 kW anthracite/petcoke-fired CFB pilot unit were carried out, including step tests in both air and 

oxy mode, oxy combustion load ramps with different strategies, as well as switches between air and oxy 

combustion. The principal aim of the testing was to study the air- and oxy-firing combustion process 

dynamics and to define the main differences between these combustion modes. These findings can later 

be used to develop and validate combustion controls for the Foster Wheeler Flexi-Burn
TM

 CFB 

technology. From the experimental tests, the furnace temperatures, heat transfer probe measurements, 

flue gas and oxidant oxygen contents, as well as flue gas CO2 and H2O percentages were examined and 

the phenomena behind the responses were discussed. 

The outcomes of the pilot CFB test week were also modelled with a dynamic 1-D CFB hotloop model, 

which contains the furnace, the gas-solid separator (cyclone) and the solids return system. An oxidant gas 

mixing block for mixing pure O2, recirculated flue gas (RFG) and air during oxy combustion and air-oxy-

air switches is also included. The transient simulation model can be used for both dynamic and steady-

state simulations with one or multiple fuel flows. The model is based on ideally mixed 1-D elements, for 

which mass and energy balance equations are solved against time. A combined energy equation for the 

gas and solid phases is used to solve the element temperatures. Hydrodynamics, combustion 

characteristics and heat transfer inside the modules are calculated using semi-empirical correlations. The 

goals of the simulation testing were to validate the model for oxy combustion and to compare air and oxy 

combustion. The simulations were conducted with the measured pure O2, RFG and air flows as direct 

model inputs. A single fuel flow was used to represent the experimental anthracite and petcoke mass 

flows, which were calculated from the respective silo weights with least squares fits. 24-hour anthracite 

and petcoke ratio averages were used for the input fuel flow property calculations. Slight modifications to 

the fuel mass flow were also made to better match the flue gas O2 of the experimental results. The 

differences in the simulated and measured flue gas O2 were possibly caused by inaccuracies in the 

experimental fuel mass flows or by air leakage. With the fuel corrections, the simulation model showed 

satisfactory results for the dynamic tests and the model was thus successfully validated for oxy 

combustion. The simulation model is an important tool for designing and assessing control solutions for 

the oxy-CFB hotloop. Process simulation is also important for oxy-firing, because the separate control of 

the pure O2 and RFG flows increases the number of possible control solutions in the solid fuel boiler. 

This work is a part of the Foster Wheeler circulating fluidized bed and oxy combustion research. This 

investigation was co-financed under the EEPR09-CCS-COMPOSTILLA Project (European Union’s 

“European Energy Programme for Recovery” programme). Oxy combustion is a natural continuation to 

the solid fuel combustion development to meet the challenges of climate change. Therefore, oxy-firing 

related control issues have to be investigated before the application of this emerging technology to power 

plants. The measurement experiments that are processed and simulated in this work are described by 

Mikkonen et al. in the study “Experimental Testing of Oxy Combustion in a pilot scale CFB boiler”, 

which has been submitted to the 17
th

 Nordic Process Control Workshop. 

 

Keywords: oxy combustion, CFB, dynamic models, dynamic behaviour, furnace simulation. 
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Abstract: In the present work, measurement experience and results of oxy combustion in a pilot scale 

(20-100 kW) coal-fired circulating fluidized bed (CFB) are summarized. The pilot system at VTT 

Jyväskylä enables operation in both air and oxy combustion modes. The aim of the one-week test runs 

was to study combustion dynamics under both conditions with the aim of developing and validating 

combustion controls for Foster Wheeler’s FlexiBurn
TM

 CFB combustion technology. The technology is 

currently being applied in a 30 MW
th

 test unit close to Compostilla power plant in Spain, where also a 

300 MW
e
 complete CCS (carbon capture and storage) demonstration plant is planned to be built in 2013-

2015. Dynamic combustion tests in this study included various load step and ramp change tests in both 

air and oxy modes, operation strategy tests in oxy mode and tests for mode switching methods (from air 

to oxy and vice versa). The measurement results were analyzed, dynamic behavior in air and oxy mode 

were compared, and the observed and expected phenomena were discussed. The measurement period was 

then followed by dynamic simulations to evaluate how the results agreed with modeling work and 

expectations. 

The pilot-scale CFB system operates with fuel power of 50-100 kW in oxy mode and 20-50 kW in air 

mode. The solids separation and recycling system includes a cyclone and loop seal. For operating in oxy 

combustion mode, a flue gas recirculation system and mixing with O2 are installed. A coal mix of 

anthracite and petcoke was used as fuel. Additives (bed sand, limestone for emission control) can be fed 

into the furnace together with fuel or into the circulating material. The oxidant gas consists of air, bottled 

O2, recirculated flue gas (RFG), or other bottled gases such as CO2, or it can be a mixture of these. All 

input fuel, air, oxygen and RFG flows can be measured and controlled, with the exception of secondary 

RFG flow which is determined by the difference between total and primary RFG flows. The air 

distribution system is used to control total gas flow and feeding at primary and secondary levels. The 

furnace is also equipped with heating (electrical) and cooling (air and water) systems. The furnace 

consists of several separately controlled zones, which allows flexible control of process and combustion 

conditions (e.g. O2 level, temperature). Pressure and temperature measurements are well located all along 

the furnace height, and there are several gas and solid material sampling ports. Flue gas composition is 

monitored with traditional online gas analyzers and an FTIR spectrometer. The pilot system is controlled 

by a PCS7 automation system, which also collects all measurement data. The pilot system can be 

operated in both air and oxy firing modes, and different mode switching methods can be used. 

During the test week, combustion dynamics were studied under both air and oxy firing conditions. The 

aim was to develop and validate combustion controls for oxy CFB combustion technology. Dynamic 

combustion tests included a reference load step series for air combustion, load step series for oxy 

combustion, load ramp series for oxy combustion and switching strategies between air and oxy modes. 

Step tests were performed between 70-100% load. All input flows (fuel, oxidant gas) were changed 

stepwise. Settling time of one hour was allowed between two consecutive steps. In ramp tests, different 

ramp speeds and ranges were compared. Finally, measurement results from the experimental tests were 

analyzed. For example furnace temperatures, heat transfer probe measurements, flue gas composition, 

and O2 content in both flue gas and oxidant were examined.  

The assessment of measurement results versus dynamic CFB model simulations performed within this 

test study is presented in the paper “Dynamic Simulation of Oxy Combustion in a pilot scale CFB boiler” 

by Matias Hultgren et al. submitted to the 17
th

 Nordic Process Control Workshop.  

This investigation was co-financed under the EEPR09-CCS-COMPOSTILLA Project (European Union's 

European Energy Programme for Recovery programme). 
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Abstract: Industrial scale greenhouses have, during the last decade, reached a high level of
automation. However, lighting control is in general still controlled manually because of the type
of lamps (High Pressure Sodium) that are used. With High Brightness LEDs about to reach the
market today sufficiently high power for greenhouse grown crops can be achieved, and this opens
up for advanced lighting control. Optimized control will, however, be a difficult task because the
needs of the plants differ between individual plants, crops, time of the day, time of the growth
cycle, temperature, and of course the natural ambient light. In this approach to this problem we
distinguish four different control loops: growth control, ambient light compensation, light stress
detection and recovery, and spectrum optimization, where the focus of this work is on the latter
two. In particular it is shown here that light induced photoinhibition, decreasing photosynthetic
yield and potentially damaging the plants, can be remotely detected in a light environment.

1. INTRODUCTION

Contrary to most people’s belief, green house lighting is a
major energy consumer in Europe. The current electricity
consumption is estimated to be around 150 TWh per year,
which is about the same as the total electricity consump-
tion in Sweden. Modern Dutch green houses are built in
two storeys, 10ha in size, and with an electricity con-
sumption of 10 MW powered by gas turbines. A lowered
electricity consumption would clearly have a significant
environmental impact and also allow for crops grown closer
to the consumer.

Today, almost all full scale green houses use High Pressure
Sodium (HPS) lamps for their lighting. These lamps are
more or less of the same type as those used for highways.
They are highly efficient in the sense that they give a lot
of light for a given power. However, what has not been
commonly known is that the spectra they produce do not
fit well to the absorption spectrum of the photosynthesis.
In fact, the mismatch, with a lot of power in the far red,
implies that approximately one third of the emitted light
energy can never be used by the plants, and often the
wasted light is even higher (see Figure 1). Another problem
with the HPS lamps is that they are not adjustable
and slow to start, and therefore they are in general
not controlled even though most other processes in a
commercial green house are.

Today there are high power LEDs available on the market
and a company, Heliospectra AB in Göteborg, is devel-
oping LED-based lamps for green houses. These lamps
contain several different groups of LEDs having different
colors to better fit the absorption spectrum of the pho-
tosynthesis (Figure 1). In Figure 2 the first commercial
installation for one of Santa Marias (Swedeponics) green
house for basil is shown.

Since LEDs are easily adjustable in power this opens up
for feed forward as well as feedback control. This control
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Fig. 1. The action spectrum of the photosynthesis, HPS
lamps and the prototype LED-lamp.

Fig. 2. The first commercial installation of the Heliospectra
lamp in a basil house at Swedeponic, P̊aarp, Sweden.
(Photo: T. Pocock for Heliospectra).

possibility may cause potentially large energy savings
through at least the following mechanisms:

• Growth control. Today the growers have poor possi-
bilities to adjust the plant growth, which have the
effect that a significant part of the harvest has to
be thrown away because the demand does not match
the produce. For this reason Swedeponic, for example,
throw away 15% of their basil produced. Using vari-
able light intensities we can control the growth rate
within certain limits, hence minimizing this waste.
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system being developed.
Fig. 4. First order transfer functions with direct term fit• Photoinhibition. Excess light causes plant stress and closely to the up-steps with clear parameter changes

the induction of photo protective mechanisms that caused by the photo inhibition.
lower the yield. The plants may even become dam-
aged with a permanent decreased photosynthetic
yield. (Note that the human eye cannot see when

−1Amplitude of reflectance signal divided by amplitude of diagnostic signal (sinusoidal 60 Hz)
4

the light stress begins but only when the plants are Photoinhibiting excess light Recovery

actually being damaged!) 3.9

• Light spectrum. The intensities of the different LED- 42
0

 / 
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3.8
groups (colors) should be adjusted to the needs of the 42

0
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plant. 3.7

3.6
2. METHOD AND PRELIMINARY RESULTS 0 50 100 150 200

−1Amplitude of fluorescence signal divided by amplitude of diagnostic signal (sinusoidal 60 Hz)

In this project we are aiming at a control system for a Photoinhibiting excess light RecoveryRecovery
LED-lamp adjusting the LED intensities to the needs of 0.04

the plants and the grower, based on sensors installed in the 0.035

42
0

lamp. The system is characterized according to the above  / 
I

0.03

68
5

energy saving mechanisms (see Figure 3).  F∆ 0.025

To determine the needs of the plant is a difficult task, but 0.02

their status affects the light emitted (fluorescence) and 0.015
0 50 100 150 200

the light reflected from the plants. A key research task is time (min)

therefore how to use the measured emitted and reflected
light to diagnose the plants. Fig. 5. The ratio between the amplitude of the variation

at 60-1 Hz in the reflected light at 420 nm and the
2.1 Stress diagnosis amplitude of the variation in the emitted light at

420 nm (top). The corresponding ratio between the
Analysis of fluorescence, using fluorescence indices such variations in fluorescence at 685 nm and of the applied
as Fv/Fm, from plants is a well established method for light at 420 nm (bottom).
detecting plant stress. However, such standard methods

relatively close fit of the responses to first order transferrequire on leaf measures and a completely controlled
functions on the formenvironment. To be used in practice for automatic control,

θthe stress has to be sensed remotely. Takayama et al. [2011] (
2

G s) = θ1

have remotely detected plant stress (draught) in tomato
−

1 + sθ3

plants in a greenhouse using fluorescence. However, their to the measured responses could be achieved (Figure 4),
method requires dark adaption (complete darkness for at with clear changes in model parameters (Figure 6), im-
least 20 minutes), and can thus only be used at night plying that photo inhibition can in fact be remotely de-
and not in daylight, which is the normal situation for our tected in a light environment. In the next step, recursive
application. identification of models having direction dependent dy-

namics (Rosenqvist [2004]) using a superimposed suitable
In a series of experiments we have focused on diagnosing

binary excitation signal at 420 nm, for example, will be
the signaling response to different light excitations with

investigated as an approach to have a continuous online
the purpose of finding when the plants become stressed by

diagnosis.
excess light. We have then found that the fluorescent light
at 685 nm responded well to an excitation signal at 420 nm.
As a first step we have investigated the responses to steps
(Figure 4) and to slowly varying sinusoids (Figure 5). From
the step responses it can be concluded that the plants
exhibit different dynamics for increases in light intensity
than for decreases. In particular it was found that the dy-
namics of the up-steps were significantly changed by excess
light already at moderate (reversible) photoinhibition. A
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Abstract:
Since continuous glucose monitoring (CGM) technology and insulin pumps have improved recent
years, a strong interest in a closed-loop artificial pancreas for people with type 1 diabetes has
arisen. Presently, a fully automated controller of blood glucose must face many challenges, such
as daily variations of patient’s physiology and lack of accuracy of glucose sensors. In this paper
we design and discuss an algorithm for overnight closed-loop control of blood glucose in people
with type 1 diabetes. The algorithm is based on Model Predictive Control (MPC). We use an
offset-free autoregressive model with exogenous input and moving average (ARMAX) to model
the patient. Observer design and a time-varying glucose reference signal improve robustness of
the algorithm. We test the algorithm in two clinical studies conducted at Hvidovre Hospital.
The first study took place overnight, and the second one took place during daytime. These trials
demonstrate the importance of observer design in ARMAX models and show the possibility of
stabilizing blood glucose during the night.

1. INTRODUCTION

Type 1 diabetes is a disease caused by destruction of the
insulin producing beta-cells in the pancreas. Therefore,
patients with type 1 diabetes must rely on exogenous in-
sulin administration in order to tightly regulate their blood
glucose. Blood glucose should preferably be kept in the
range 4.0-8.0 mmol/l. Long periods of high blood glucose
(hyperglycemia) can lead to long-term complications like
nerve diseases, kidney diseases, or blindness. However, the
dosing of insulin must be done carefully, because a too
high dosage of insulin may lead to a too low blood glucose
(hypoglycemia). Low blood glucose has immediate effects,
such as coma or even death.

The conventional insulin therapy for people with type 1
diabetes consists of the injection of slow acting insulin
once a day and rapid acting insulin several times per
day. The slow acting insulin is used to counteract the
continuous glucose production from the liver. The fast
acting insulin compensates the intake of carbohydrates
(CHO) during the meals. The decision on the dosage of
short and fast acting insulin is based on several blood
glucose measurements per day.

However, an increasing number of patients with type
1 diabetes use an intensive insulin therapy based on
continuous glucose monitors (CGMs) and insulin pumps

? Funding for this research as part of the DIACON project from
the Danish Council for Strategic Research (NABIIT project 2106-
07-0034) is gratefully acknowledged.

instead of the conventional therapy described above. This
regime can reduce the risk of complications. CGMs can
provide more frequent blood glucose measurements. In
addition, insulin pumps can adjust to daily variations in
insulin needs.

Nevertheless, the patients still need to be constantly in-
volved in their decisions on the insulin treatment based on
their CGMs and/or fingersticks measurements. A system
consisting of a CGM, an insulin pump and a control
algorithm that computes the insulin dose based on glucose
measurements is called an artificial pancreas. The artificial
pancreas provides closed-loop control of the blood glucose
by manipulation of the insulin injection. The artificial
pancreas has the potential to ease the life and reduce
complications for people with type 1 diabetes. Its principle
is illustrated in Fig. 1. Several review papers about closed-
loop control of blood glucose for people with type 1 dia-
betes have been published (Hovorka et al. (2006), Cobelli
et al. (2011), Bequette (2011)).

Previous publications have proven that model predictive
control (MPC) has great potential for design of an artificial
pancreas. Magni et al. (2009) established that MPC could
reduce oscillatory behaviors compared to proportional
integral derivative (PID) controllers. Boiroux et al. (2010)
applied open-loop constrained nonlinear optimal control.
Hovorka et al. (2010) tested an MPC-based controller on
children and adolescents with type 1 diabetes.

In this paper we focus on overnight blood glucose control
for people with type 1 diabetes using a CGM, an insulin
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Fig. 1. Closed-loop glucose control. Glucose is measured
subcutaneously using a continuous glucose monitor
(CGM). Insulin is dosed by an insulin pump.

Fig. 2. Picture of the pilot trial.

pump, and a controller based on MPC. Many factors, such
as meal intake, physical exercise, stress, illness, alcohol
consumption etc. affect insulin needs. Also, hormone re-
lease during the night may cause elevated blood glucose in
the early morning. This particular phenomenon is called
the dawn phenomenon. The main goal of a closed-loop
controller is to compensate these effects by adjusting the
amount of injected insulin based on frequent glucose mea-
surements coming from a CGM.

The paper is structured as following. Section 2 describes
the material and methods used for the studies. We dis-
cuss the design of the controller in Section 3. Section 4
shows the results for the two clinical studies conducted at
Hvidovre Hospital. Conclusions are provided in Section 5.

2. METHODS AND MATERIAL

This section describes the clinical protocol and the inter-
nally developed graphical user interface for the clinical
studies.

2.1 Clinical protocol

The clinical trial consists of a randomized cross-over study
including 12 patients with type 1 diabetes. The goal is
to compare overnight glucose control during open-loop
and closed-loop insulin administration. We investigate the
cases where

Open - Loop

Closed - Loop

Open - Loop

Closed - Loop

6 patients

3

3

1 night 1 night1-4 weeks

Fig. 3. Study design.

• The insulin bolus matches the evening meal (6 pa-
tients in total)

• The insulin bolus is underdosed (6 patients in total)

The study design for the 2 cases is illustrated in Fig. 3.

The scenario during the clinical studies is the following:

• The patient arrives at 16:00.
• A meal is consumed at 18:00 and an insulin bolus

is administrated. The meal size is determined by the
weight of the patient. The bolus size depends on the
patient and the scenario (meal with the correct bolus
or underbolused meal).

• The loop is closed at 22:00 (for closed-loop studies
only).

• The closed-loop ends at 07:00 the following day (for
closed-loop studies only).

The purpose of the first part of the study (when the insulin
bolus matches the evening meal) is to validate the ability
of the controller to compensate for overnight physiological
changes in patients. The second part of the study (when
meals are underbolused) must ensure that the controller
can bring and keep blood glucose in the range 4.0-8.0
mmol/L.

The patient is equipped with 2 Dexcom Seven Plus CGMs
and a Medtronic Paradigm insulin pump. The CGMs pro-
vide glucose measurements every 5 minutes. The clinician
decides on the sensor used by the controller, based on the
accuracy of the sensor during the days before the study.
The other CGM can be used as a backup device. Insulin is
administrated to the patient through small discrete insulin
injections (also called microboluses) every 15 minutes.

It must be pointed out that the pump used for the trials
has discrete increments of 0.025U for the microboluses,
and a minimum continuous insulin injection (or basal rate)
of 0.025 U/hr. The controller handles these restrictions by
using hard constraints on the minimal insulin infusion rate
and by rounding the suggested microbolus to the nearest
0.025U (see Section 3.6).

In addition, blood samples are taken every 30 minutes in
order to measure more accurately the blood glucose (in
case of prolonged period of low blood glucose, the sampling
time is set to 15 minutes). The blood glucose was measured
by Hemocue and after the trial by YSI. These values are
not provided to the controller.

The clinician has the authority to prevent severe hypo-
glycemia by injection of intravenous glucose. Such a deci-
sion is based on the glucose history.
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Fig. 4. Graphical User Interface screenshot

2.2 Graphical User Interface

Fig 4 provides an overview of the graphical user interface
developed for the artificial pancreas. The glucose sensor
provides a glucose measurement every 5 minutes. The
glucose measurements are transmitted from the sensor to
the software via a wireless receiver.

The graphical user interface returns a new insulin mi-
crobolus suggestion every 15 minutes. At these times, it
also returns the glucose prediction and insulin prediction
profiles. The decision on the insulin microbolus can be
overruled if there is a safety risk for the patient. The exact
time before the next microbolus suggestion is provided by
the graphical user interface.

It is also possible to add comments if necessary. These com-
ments have no influence on the microboluses computation,
but are stored.

3. CONTROLLER DESIGN

This section presents the detailed description of the con-
troller. The controller computes a discrete-time offset-free
ARMAX model. This model is then used to optimize
the future injections of insulin. The controller must be
designed in a robust and safe way for the patient, especially
regarding low blood glucose. We use here a time-varying
glucose setpoint to avoid insulin overdose.

3.1 Model computation

Several research groups investigated low-order models
to describe glucose-insulin dynamics. Kirchsteiger et al.
(2011) used a third order transfer function, Finan et al.
(2009) identified ARX models and Percival et al. (2010)
applied a first order transfer function with a delay. In this
paper we use a Single Input-Single Output (SISO) second
order continuous-time transfer function

Y (s) = G(s)U(s), G(s) =
K

(τs+ 1)2
(1)

The input U(s) is the insulin intake and the output Y (s)
is the blood glucose, both expressed in terms of deviation
variables from a steady state, K is the static gain and τ
is the time constant. The gain and the time constant are
computed from known patient-specific parameters. These
parameters are the insulin action time and the insulin

sensitivity factor (ISF). They can be estimated for each
individual patient by looking at the impulse response for a
small insulin bolus. The insulin action time τ corresponds
to the time that blood glucose takes to reach its minimum.
The insulin sensitivity factor (ISF) corresponds to the
maximum decrease in blood glucose per unit of insulin
bolus. These parameters are empirically estimated by the
patient and his/her physician. However, these parameters
may dramatically vary from day to day for a given patient.

The impulse response in the temporal domain of the
transfer function (1) is

y(t) = K
t

τ2
exp(−t/τ) (2)

We shall now relate the insulin sensitivity factor and the
insulin action time to the gain K and the time constant
τ in (2). The insulin action time corresponds to the time
to reach the minimum blood glucose, it is therefore equal
to τ . We find K by computing the output of the impulse
response (2) at its minimum, i.e. at time t = τ . It gives

y(τ) = −ISF =
K

τ
exp(−1) (3)

Isolating K in the above equation yields to

K = −τ exp(1)ISF (4)

The transfer function (1) can be reformulated as a discrete-
time transfer function model in the form

y(t) = G(q−1)u(t), G(q−1) =
B̄(q−1)

Ā(q−1)
(5)

which is equivalent to

Ā(q−1)y(t) = q−nkB̄(q−1)u(t) (6)

Ā(q−1) and B̄(q−1) are

Ā(q−1) = 1 + ā1q
−1 + ā2q

−2 (7a)

B̄(q−1) = b̄1q
−1 + b̄2q

−2 (7b)

Fig 5 depicts the exact impulse response and its second
order approximation for a virtual patient. This patient is
simulated using the model developed by Hovorka et al.
(2004). The figure demonstrates that a second order model
can provide a fairly good approximation of a patient with
type 1 diabetes. Current insulin, such as the Novorapid
insulin documented in Nov (2002) has a similar impulse
response shape, but can provide even faster action (the
minimum in glucose is reached in 60-90 minutes).

3.2 Observer design for the first study

Odelson et al. (2006), Jørgensen and Jørgensen (2007)
and Åkesson et al. (2008) proposed several methods for
Kalman filter tuning. In our controller we use the following
discrete-time, linear ARMAX model
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A(q−1)y(t) = q−nkB(q−1)u(t) + C(q−1)ε(t) (8)

A, B and C are polynomials, and q−1 is the backward
shift operator. We assume that ε(t) ∼ Niid(0, σ). In the
first pilot study we used the following ARMAX model
description

A(q−1)y(t) = B(q−1)u(t) + (1− αq−1)e(t) (9)

in which

A(q−1) = (1− q−1)Ā(q−1) (10)

B(q−1) = (1− q−1)B̄(q−1) (11)

The model (9) is able to provide offset-free tracking due
to the integrator. The parameter α ∈ [0; 1] is a tuning
parameter. α = 0 corresponds to an integrated ARX
model, while α = 1 corresponds to an ARX model without
integrator. For further details about the choice of α, see
e.g. Huusom et al. (2010).

The ARX model (9) may be realized as a stationary state
space model in innovation form

xk+1 = Axk +Buk +Kεk (12)

yk = Cxk + εk (13)

The matrices A, B, C and K are written in the canonical
form

A =

[−a1 1 0
−a2 0 1
−a3 0 0

]
B =

[
b1
b2
b3

]

K =

[−α− a1
−a2
−a3

]
C = [1 0 0]

(14)

Fig. 6 shows the glucose and insulin predictions for the
first study. It can be noticed that the prediction is mostly
based on the two previous observations (which show an
increasing blood glucose) rather than on the global trend
(which shows a decreasing blood glucose).
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Fig. 6. Example of blood glucose prediction for the first
study. It can be seen that the controller relies more
on the local trend than on the global trend.

3.3 Observer design for the second study

In this section we consider the general ARMAX model (8)
in which we assume

C(q−1) = 1 + c1q
−1 + c2q

−2 + c3q
−3 (15)

and

A(q−1) = (1− q−1)Ā(q−1) (16)

B(q−1) = (1− q−1)B̄(q−1) (17)

in order to preserve the offset-free control property. There-
fore, the Kalman gain K in equation (14) becomes

K =

[
c1 − a1
c2 − a2
c3 − a3

]
(18)

(the matrices A, B and C remain unchanged). The design
of observer consists of setting the eigenvalues of A −
KC. Having the eigenvalues close to 0 makes the state
estimation error rapidly vanish, but on the other hand
the observer will be more sensitive to noise. Having the
eigenvalues close to 1 makes the observer less sensitive to
noise (and therefore more relying on the global trend) but
introduces a delay in the predictions. It can be shown that
these eigenvalues are the roots of the polynomial

χ(z) = z3 + c1z
2 + c2z + c3 (19)

χ(z) is the characteristic polynomial of A−KC, and the
coefficients ci, i = 1, 2, 3 are the same as the ones in
equations (15) and (18). Let α, β1 and β2 be the roots
of (19). We assume that α ∈ R, and that β1 and β2 are
either real or complex conjugate. Furthermore, these roots
must all lie inside the unit circle.

As for the first study, we fixed α = 0.99. The choice
of β1 and β2 has been made using data from the first
pilot study. For modeling purpose, we considered the
stochastic continuous-time model and measurements at
discrete times, i.e.
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Fig. 7. Example of blood glucose prediction for the first
study with the new observer. The controller is able to
predict more accurately the blood glucose trend.

dx(t) = f(t, x(t), u(t))dt+ σdω(t) (20a)

yk = h(tk, x(tk)) + vk (20b)

x(t) are the system states, u(t) are the known inputs (in-
sulin injections, meals and intravenous glucose injections)
and yk are discrete outputs (CGM measurements). The
function f is a continuous-time state-space description of
the transfer function (1).

We used the internally developed software ”Continuous
Time Stochastic Modelling” (CTSM) to estimate the vari-
ances (variance of process noise and measurement noise)
with the maximum likelihood method. We took these
variances to compute the predictive Kalman gain K, and
hence β1 and β2. The computation of β1 and β2 yielded

β1,2 = 0.8078± 0.1581i (21)

These roots give

c1 = −2.6056 c2 = 2.2770 c3 = −0.6708 (22)

Fig. 7 illustrates an other example of blood glucose and
insulin prediction. We have generated these prediction
plots by taking the same data sequence in which we
designed the observer. Unlike the previous case in Fig. 6,
the controller is able to predict more accurately the blood
glucose trend.

3.4 Computing the j-steps ahead predictions

If the k-th glucose measurement yk is available, the one-
step ahead prediction of the states and outputs is

x̂k+1|k = Ax̂k|k +Buk|k +Kεk (23a)

ŷk+1|k = Cx̂k+1|k (23b)

εk is the innovation term

εk = yk − Cx̂k|k−1 (24)

In the case where the k-th glucose measurement yk is not
available, the one-step ahead prediction of the states and
outputs is
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Fig. 8. Example of time-varying reference signal for differ-
ent values of the time constant τr.

x̂k+1|k = Ax̂k|k +Buk|k (25a)

ŷk+1|k = Cx̂k+1|k (25b)

Similarly, the j + 1 steps ahead predictions of the states
and the outputs for j = 1, 2, ... are

x̂k+j+1|k = Ax̂k+j|k +Buk+j|k (26a)

ŷk+j+1|k = Cx̂k+j+1|k (26b)

3.5 Time-varying glucose setpoint

The glucose trajectory is exponentially decreasing when
the blood glucose is above the target, which robustifies
the controller with respect to plant-model mismatches.
Consequently, the reference blood glucose is

r̂k+j|k(t) = ŷk|k exp

(
− tj
τr

)
(27)

The choice of the tuning parameters τr has an influence on
the rapidness and the robustness of the controller. Small
values of τr provide a faster return to the euglycemic range,
while larger values of τ ensure a more robust control. The
glucose setpoint profiles for different values of the time
constant τr are shown in Fig. 8.

3.6 Model Predictive Control with Soft Constraints

At the time tk, the open loop convex quadratic program
solved online is

min
{uk+j,vj}N−1

j=0

φ =
1

2

N−1∑
j=0

‖ŷk+j+1|k − r̂k+j+1|k‖22+

λ‖∆uk+j‖22 + κ‖vk+j‖22 (28a)

s.t. x̂k+1|k = Ax̂k|k−1 +Buk +Kek (28b)

ŷk+1|k = Cx̂k+1|k (28c)

x̂k+j+1|k = Ax̂k+j|k +Buk (28d)

ŷk+j+1|k = Cx̂k+j+1|k (28e)

umin ≤ uk+j ≤ umax (28f)

Gmin − yk+1 ≤ vk+j (28g)

vj ≥ 0 (28h)
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in which x̂k|k−1 and ek = yk−Cx̂k|k−1 are given. umin and
umax are the minimum and the maximum insulin infusion
rates allowed by the pump. ∆uk+j = uk+j − uk+j−1 is
the variation in the insulin infusion rate. Gmin depicts
the lower bound on blood glucose. The reference signal
r̂k+j+1|k is time-varying and its computation is given in
section 3.5.

The slack variables vj are introduced to penalize hypo-
glycemia. The hard input constraints (28f) limit the insulin
infusion rate. The penalty term κ‖vk+j‖22 is used to avoid
hypoglycemia and the penalty term λ‖∆uk+j‖22 prevents
the insulin infusion rate from varying too aggressively.

For the study we choose N = 120, i.e. a 10 hour prediction
horizon, and

umin = −uss + 0.025, umax = uss,

λ =
10

u2ss
, κ = 1000

(29)

We remind here that the input variables are deviation
variables from the steady state uss. Consequently, the
choice of umin = −uss + 0.025 allows the controller to
deliver the minimum basal rate (0.025U/hr), and umax =
uss prevents the pump from overdosing the insulin. The
high value of κ makes hypoglycemia undesirable.

4. STUDIES RESULTS

In this section we discuss the two studies conducted at
Hvidovre Hospital on the same patient. The patient has
an insulin sensitivity factor equal to 5 mmol/L/U and an
insulin action time equal to 5 hours. Her basal insulin is
uss = 0.85 U/hr.

4.1 Pilot studies results

Fig. 9 depicts the blood glucose and insulin profiles for
the first pilot study. The study started at 17:30. A meal
has been consumed at 18:00. An insulin overdosing led to
severe hypoglycemia and an intravenous glucose injection
at approximately 00:00. A microbolus decision has been
overruled at 01:30.

Fig. 10 depicts the blood glucose and insulin profiles for the
second pilot study. Intravenous glucose has been admin-
istrated at 10:00 and 12:00 to compensate for a too high
insulin sensitivity. The sensor has to be calibrated at 12:15
and 14:45. In despite of these disturbances, the controller
was able to keep the blood glucose within the range 4.0-
8.0 mmol/L after the second glucose administration. In
addition, the intravenous glucose is not included in the
model, and therefore can be considered as an unknown
disturbance. However, it can be noticed that insulin is still
slightly overdosed.

5. CONCLUSION

This contribution presents a closed-loop controller for
people with type 1 diabetes. We described a practical
way of computing the glucose-insulin dynamics model. The
controller has been tested two times on the same patient.
The most noticeable difference between the two studies

was the observer design. The trial results illustrated the
importance of observer design in state space models in
innovation form, and how modelling based on prior data
can be used to design the observer. Improvements are
being implemented on the controller in order to ensure
a more robust control of blood glucose and avoid the
observed insulin overdosing during the second pilot study.
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Zisser, L. Jovanovič, and D. E. Seborg. Experimantal
evaluation of a recursive model identification technique
for type 1 diabetes. J Diabetes Sci Technol, 3:1192 –
1202, 2009.

R. Hovorka, V. Canonico, L. J. Chassin, U. Haueter,
M. Massi-Benedetti, M. O. Federici, T. R. Pieber, H. C.
Schaller, L. Schaupp, T. Vering, and M. E. Wilinska.
Nonlinear model predictive control of glucose concen-
tration in subjects with type 1 diabetes. Physiological
Measurement, 25:905–920, 2004.

R. Hovorka, M. E. Wilinska, L. J. Chassin, and D. B.
Dunger. Roadmap to the artificial pancreas. Diabetes
Research and Clinical Practice, 74:178 – 182, 2006.

R. Hovorka, J. M. Allen, D. Elleri, L. J. Chassin, J. Harris,
D. Xing, C. Kollman, T. Hovorka, A. M. F. Larsen,
M. Nodale, A. De Palma, M. E. Wilinska, C. L. Acerini,
and D. B. Dunger. Manual closed-loop insulin delivery
in children and adolescents with type 1 diabetes: a phase
2 randomised crossover trial. Lancet, 375:743 – 751,
2010.

Jakob Kjøbsted Huusom, Niels Kjølstad Poulsen, Sten Bay
Jørgensen, and John Bagterp Jørgensen. Tuning of
methods for offset free MPC based on ARX model
representations. In 2010 American Control Conference
(ACC), pages 2355–2360, Baltimore, MD, USA, 2010.

J. B. Jørgensen and S. B. Jørgensen. Comparison of
prediction-error modelling criteria. In Proceedings of the
2007 American Control Conference (ACC 2007), 2007.

Harald Kirchsteiger, Giovanna Castillo Estrada, Stephan
Pölzer, Eric Renard, and Luigi del Re. Estimating
interval process models for type 1 diabetes for robust
control design. In Preprints of the 18th IFAC World
Congress, pages 11761 – 11766, 2011.

L. Magni, D. M. Raimondo, C. Dalla Man, G. De Nicolao,
B. P. Kovatchev, and C. Cobelli. Model predictive con-

Proceedings of the 17th Nordic Process Control Workshop 
Technical University of Denmark, Kgs Lyngby, Denmark 
January 25-27, 2012

138



18:00 20:00 22:00 00:00 02:00 04:00 06:00
2

4

6

8

10

12

14

16

B
lo

o
d

 G
lu

c
o

s
e

 [
m

m
o

l/
L

]

 

 

Normoglycemic range
Reference
Left CGM
Right CGM
Average
YSI
Hemocue

0 2 4 6 8 10 12
0

1

2

3

Time [hr]

In
s
u

lin
 [

U
/h

r]

 

 

Insulin (suggested)
Insulin (injected)

Fig. 9. Blood glucose and insulin profiles for the first pilot study. The insulin infusion rates are computed based on the
right CGM (green curve).
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Fig. 10. Blood glucose and insulin profiles for the second pilot study. The insulin infusion rates are computed based on
the left CGM (blue curve).
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Abstract: Recently, the interest in renewable energy sources is increasing. In the short future,
their penetration in the power systems will be significantly higher than today. Denmark is
working on achieving its goal by 2020 of having 30% of the energy production provided by
renewable sources. 50% of the total power consumption is expected to stem from wind turbines.
Due to the inherent stochasticity in renewable energy systems (RES), their energy production
is usually complicated to forecast and control. The aim of the smart grid in which consumers
as well as producers are controlled is to allow for larger variation in the power production due
to the significant amount of renewable energy. The multiple power generators and consumers
must be coordinated to balance the supply and demand for power at all times.
The aim of this study is to examine a control technique for large scale distributed energy systems
(DES), where a significant amount of renewable energy sources are present. Economic Model
Predictive Control (MPC) is applied to control the power generators, minimizing the cost and
producing the amount of energy required. We examine the large scale scenario, where multiple
power generators and consumers such as e.g. electrical vehicles, heat pumps for domestic heating,
and refrigeration and cooling systems must be controlled to balance the supply and demand
for power. The system is very large scale. To address the large scale of the system and be able
to compute the control decisions within a sample period, Dantzig-Wolfe decomposition is used
for solution of the resulting linear program describing the Economic MPC of such systems. The
controller obtained has been tested by simulations of a power portfolio system.

Keywords: Decoupled subsystems, Model based control, Predictive control, Optimization,
Power system control, Decomposition
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A model-based FDD method of interacting control loops 
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Abstract: The paper addresses fault detection and diagnosis (FDD) of interacting control loops and 
proposes a model-based method to diagnose all types of faults: sensor faults regarding output 
variables (output sensor faults) and measured disturbance variables (disturbance sensor faults), 
actuator faults and process faults. The method consists of an output observer and a bank of special 
observers. The output observer detects a fault and indicates whether it is an output sensor fault. If 
only one residual of the output observer deviates, the fault is concluded to be an output sensor 
fault; otherwise, the special observers are investigated to determine the faulty actuator or 
disturbance sensor.  

One special observer is assigned for each manipulated input (i.e. actuator) and disturbance input 
variable (i.e. disturbance sensor). Each of these observers involves Kalman filter as state 
estimation and an auxiliary PI controller. The auxiliary PI manipulates its specific input variable 
in the estimation of the particular observer to compensate the fault impact on the residual of the 
pairing output. If and only if the fault is the actuator or disturbance sensor fault for which the 
observer is assigned, other output residuals of the observer approach zero as well; in other words, 
the auxiliary PI effectively compensates the fault impact on the estimations of the particular 
observer. Consequently, all output residuals of one special observer approach zero whereas output 
residuals deviate in other special observers. To sum up, the method involves the structured 
residual approach to diagnose actuator and disturbance sensor faults; the output residuals of each 
special observer are insensitive to a single actuator or disturbance sensor fault and sensitive to all 
other faults. If there is no specific observer with all zero output residuals, the fault is concluded to 
be a process fault. The method is beneficial for its ease of implementation and the ability to 
correctly diagnose all types of faults.  

Finally, the method is applied to the fault detection and diagnosis of a basic mixing process. The 
simulation results demonstrate that the method can effectively diagnose all types of faults in 
strongly interacting control loops; on the other hand, the reliable diagnosis can hardly be achieved 
in the case of weak interaction. This indicates the key role of interactions in fault diagnosis. Thus, 
it should be aimed to maximize the interactions within each subsystem when decomposing a 
large-scale process. In a large-scale process, the proposed method can be used for a subsystem 
including MIMO control loops of which the dynamic model is available. Furthermore, the ability 
to diagnose disturbance sensor faults is beneficial since evaluating the diagnostic results of two 
sequential subsystems can improve the resolution.   

Keywords: Fault detection and diagnosis, interacting control loops, MIMO control loops, 
structured residuals, actuator faults, sensor faults  
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Reliable and accurate measurement of product compositions is one of the important issues in 
distillation column control. However, direct composition measurements are expensive, not so 
reliable and there is also a significant delay. Temperature measurements are robust, fast and 
cheap and represents proven technology in the process industry.  
 
Our estimation method (we call it Loss method) is a reformulation of the well-developed Self-
optimizing method proposed by Skogestad (2000) to make it adequate for the purpose of 
estimation. We have formulated the Loss method for open-loop and closed-loop estimators. 
With the term “open-loop” estimator, it is implied that the predicted variables are not used for 
control purposes. In "closed-loop" the estimates are used as feedback in control loops. The 
estimators are optimal in the sense that they give the smallest prediction error which is 
defined as the difference between the true value and the estimated value. We have compared 
the performance of the new static estimator with partial least squares (PLS) estimators (Di 
Ruscio 2000) and Steady State Kalman Filter on a distillation model. Since the focus of our 
work is on chemical processes, the time scales at which the sensor noise characteristics 
change are much larger than the time scale at which we study the system. Thus we assume the 
system and noise covariances are time-invariant. As a result, steady state Kalman Filter is 
used in this study. PLS and Kalman Filter are two of the estimators which have shown good 
performance for vast number of applications. However, the idea of the proposed estimator is 
to give optimal solution for the scenario in which the estimator is supposed to be used, which 
is proved mathematically.  
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Abstract

Design of Optimal Low-Order Feedforward

Controllers for Disturbance Rejection

Martin Hast, Tore Hägglund
Dept. of Automatic Control, Lund University,

Feedforward is an efficient method to reduce control errors both for reference

tracking and disturbance rejection, given that the disturbances acting on the

system are measurable. This paper treats the subject of disturbance rejection

and presents an analytic solution to the problem of designing a feedforward

lead-lag filter which minimizes the integrated square error when the system is

subject to a measurable step disturbance, d. The resulting feedforward controller
is optimal in an open-loop setting, see Figure 1, for first-order plants with time

delays, Pi.
In general, due to for instance modeling errors or non-measurable distur-

bances, feedforward alone is not sufficient in order to reject disturbances in a

satisfying fashion. The structure depicted in Figure 2 with H = 0 is a com-
mon control structure that utilizes both a feedforward and a feedback controller.

However, using this structure, the feedback controller C will interact with, or
even counteract the feedforward controller. Hence, the feedforward and feedback

controllers should be designed jointly. An alternative feedforward scheme was

presented in [1]. By choosing H = P2P3−P2P1G f f , the controller interaction can
be eliminated. Furthermore, the design of the feedforward controller reduces to

the equivalent problem in the open-loop case.

Along with the presented optimal design rule, examples that illustrate the

behavior of the resulting feedforward controller is presented. The performance

of the obtained optimal feedforward controllers have also been compared with

other available design methods e.g., [2].
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Figure 1 Open-loop structure.
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Figure 2 Closed-loop feedforward

structure.
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Abstract: Tightening global competition within the process industries sets higher standards for product 

quality, production efficiency and safety. These standards can be met with effective fault detection and 

diagnosis (FDD) systems that can manage complex processes.  FDD methods have been widely studied 

in the literature and applications have been presented to all control hierarchy levels; supervisory, 

stabilizing and basic control levels. Although the process monitoring task has partly shifted from 

operators to computers, the knowledge requirements of process operators have not decreased. In addition, 

the design and implementation of monitoring systems has generated new requirements for engineers 

entering the field. 

This paper presents a toolkit developed for use in a master’s level course on process monitoring methods. 

The course is essential in the education of process automation master students at the Aalto University 

School of Chemical Technology. The toolkit contains FDD methods for all control hierarchy levels of the 

plant automation system and an application to a three layer board machine as a case study. The toolkit 

has been tested with industrial data from the board machine. Additionally, utilizing a user friendly 

interface, three guided exercises around the use cases were developed for educational purposes: a 

supervisory level FDD method for a thickness sensor fouling; a stabilizing level FDD method for 

detecting faults in the drying groups; and a basic level FDD for detecting valve stiction. 
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Abstract: Slug flow condition at offshore oilfields leads to many disadvantages and 

an effective method is needed to prevent it. Reducing the opening of the top-side 

choke valve is one solution which reduces the production rate. On the other hand 

design changes like building slug catcher or full separation are costly. Therefore, 

active control of the production choke valve is the recommended anti-slug solution. 

The aim is to have a non-oscillatory flow regime together with maximum of average 

valve opening which gives the maximum production rate.  

Focus of this research is to find structure of a simple yet robust structure for anti-

slug control system. In order to find good control variables for stabilization, 

experiments on a small-scale test rig are performed. The control variables or 

combination of control variables (in cascade) which could be able to stabilize the 

system with larger average of the choke valve opening are preferable control 

variables.  

Similar research has been done previously, but it is repeated in this work using a 

new closed loop tuning method by Skogestad and Grimholt (2011) Using this 

systematic approach ensures that the results from the different experiments are 

comparable. 

Also, bifurcation diagrams are generated for the test rig and a simplified model by 

Jahanshahi and Skogestad (2011) is fitted to the experimental data. Finally, 

experimental results are compared to the results of the controllability analysis using 

the simplified model. 

 
Keywords: Oil production, two-phase flow, riser slugging, anti-slug control, 
controllability analysis. 
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Abstract: Global competition forces process industries to continuously optimize plant operation. One of 
the latest trends for efficiency and plant availability improvement is to set up fault diagnosis and 
maintenance systems for on-line industrial use. Because model or data-based diagnosis of all components 
cannot be realized on-line on a large-scale basis, a scalable procedure has first to be developed to narrow 
down the whole plant to the most likely faulty components responsible for abnormal process behavior. 
One of the key elements in the development of such systems is fault analysis. The aim of the fault 
analysis is to identify the main causes for production losses and plant shutdowns, to find out the typical 
faults and the faulty devices and thus to identify the main focus areas for FDD system development. This 
paper addresses fault analysis performed for a large-scale industrial board machine process. The analysis 
results are presented and discussed based on this industrial case study.  

Keywords: Fault detection, fault diagnosis, large-scale systems, paper industry, statistical analysis 

1. INTRODUCTION 

Tightening global competition, increased product quality 
requirements as well as safety and environmental regulations 
have forced the process industries to continuously optimize 
the efficiency and profitability of its plants. Better 
profitability can generally be achieved through process 
optimization, by cutting costs and by reducing down-time 
caused by unplanned and planned shutdowns. The 
optimization can be further enhanced by focusing on 
preventing off-spec production caused by process 
disturbances  and  faults.  To  this  end,  there  has  been  an  
increasing interest in applying process monitoring and fault 
diagnosis methods in the process industry. Reviews on the 
applications have been published e.g. by Isermann (2011) and 
Patton et al. (2000). 

Process knowledge has always played a key role in the 
development of fault detection and diagnosis (FDD) systems 
for process industries. As a result, the FDD methods have 
been classified in three categories based on the type of 
knowledge they possess: quantitative model-based, 
qualitative model-based and process history based methods 
(Venkatasubramanian et al., 2003a, b, c). The methods in 
each category have their strengths and weaknesses, and it has 
been stated that no single method is meeting the requirements 
for a good diagnostic system (Dash and Venkatasubramanian, 
2000). To overcome the disadvantages, hybrid approaches 
that either combine the results of different methods or 
combine incomplete process knowledge of methods from 
different categories have been proposed (e.g. Chung et al., 
1994; Lee et al., 2003; Vedam and Venkatasubramanian, 
1999). 

These methods are generally sufficient for unit processes and 
small-sized processes, but they become in most cases 
inefficient in large-scale processes. Therefore, process 
decomposition-based strategies have been developed to 
tackle the challenges of large-scale systems. A process can be 
decomposed in a structural or functional manner by utilizing 
either a top-down or a bottom-up strategy. For example, 
Prasad et al. (1998) have proposed a decomposition 
methodology based on the structure of a chemical plant. 
However, there are no well-defined criteria to evaluate the 
optimality of these decomposition schemes. 

A methodology for developing a FDD system for a large-
scale process consists of the main four phases: process 
decomposition, fault analysis, selection and construction of 
the diagnostic technique for each subsystem, and integration 
of the diagnostic information (Jämsä-Jounela, 2011). The 
final phases of the methodology consist of the validation and 
industrial implementation of the algorithms (Kettunen, 2010). 

A major step in increasing the economic efficiency is to 
improve the plant availability. Because model or data-based 
diagnosis of all components cannot be realized on-line on a 
large-scale basis, a scalable procedure has first to be 
developed which narrows down the whole plant to the most 
likely components responsible for the abnormal behavior of 
the plant. 

When developing the FDD system for industrial use, the most 
important phase is the fault analysis. The aim of the fault 
analysis  is  to  find  out  the  focus  areas  for  the  FDD  system  
development and is accomplished through examining the 
main reasons for the production losses. In addition, the 
identification of the most common faults, their 
characteristics, locations, causes, and the faulty devices 
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decides eventually the selection of the suitable FDD methods 
to be used in the system under development. 

This paper presents fault analysis performed at a large-scale 
industrial board machine process in order to facilitate the 
development of a FDD system. The paper is structured as 
follows. First, Chapter 2 presents the process description and 
its control strategy. Second, Chapter 3 describes the test case 
process decomposition and Chapter 4 presents the performed 
fault analysis. Finally, Chapter 5 concludes the findings of 
using the fault analysis as a tool in fault detection and 
diagnosis development of the board machine.  

 
2. PROCESS DESCRIPTION AND ITS CONTROL 

STRATEGY 

The board making process begins with the preparation of raw 
materials in the stock preparation section. Different types of 
pulp are refined and blended according to a specific recipe in 
order to achieve the desired composition and properties for 
the board grade to be produced. The consistency of the stock 
is controlled with dilution water. 

The blended stock passes from the stock preparation to the 
short circulation. First,  the stock is diluted in the wire pit to 
the correct consistency for web formation. Next, the diluted 
stock is cleaned and screened, after which it passes to the 
head box, from where it  is sprayed onto the wire in order to 
form a solid board web. 

The excess water is first drained through the wire and later by 
pressing the board web between rolls in the press section. The 
remaining water is evaporated off in the drying section using 
steam-heated drying cylinders. After the drying, the board is 
calendered in two phases in order to achieve desired surface 
properties. Details of the process can be found in Cheng et al. 
(2011) and in Tikkala et al. (2011). 

The main control system of the board machine is the quality 
control system (QCS), which represents the highest level in 
the control hierarchy. By utilizing model-predictive control 
schemes, it controls the main quality variables, basis weight 
moisture, and thickness, in the machine direction and in the 
cross direction. The quality variables are measured after the 
calender section with a measurement scanner that traverses 
constantly across the web. The calculated control actions are 
delivered as setpoints to lower level controllers. 

In the machine direction, the stock flow controller setpoints 
are adjusted according to the basis weight controller, while 
the steam pressure setpoints in the drying section are 
governed by the moisture controller. In the cross direction, 
the QCS system is controlling special actuators that adjust the 
profiles of the quality variables. The basis weight profile is 
controlled with the dilution water in the middle layer 
headbox, while the moisture profile is controlled with a steam 
box located before the press section and with a moisturizing 
device in the drying section. The thickness profile is 
controlled at the second calender. 

These controls are supported by a large number of basic 
controls, adjusting pressures, flows, level, etc. around the 
board machine.  

 
3. PROCESS DECOMPOSITION 

When developing the FDD system application for large-scale 
industrial plants, a decomposition methodology based on the 
structure of the factory is recommended (Prasad et al., 1998). 
Based on the plant main objectives, the plant is decomposed 
first to unit processes, second equipment, and finally to field 
instruments. Plant topology, PI-diagrams, and expert 
knowledge are used for specifications. 

In this case study, the board machine has been first 
decomposed in nine sections as follows: stock preparation, 
short circulation, broke processing, wire section, press 
section, drying section, calender section, reeling, and QCS. 
Next, the sections are decomposed in equipment and field 
instruments. As an example, the decomposition of the board 
machine focusing on the drying section is shown in Fig. 1. 

 

Fig. 1. Decomposition of the board machine focusing on 
the drying section 

 

4. FAULT ANALYSIS 

In the year 2009, the automation system of the board machine 
at Imatra Mills was updated and the 1st calendar was 
renewed. Due to these major updates, the board machine was 
selected as a good candidate for the FDD project. 

The  fault  analysis  aims  at  finding  the  main  focus  areas  for  
FDD system development. For this purpose, the long-term 
production and maintenance data from the year 2010 were 
collected for the purpose of this study.  

In the fault analysis, production losses were first studied by 
analyzing the web breaks and shutdowns. Next, fault 
statistics are used to identify the typical fault types in each 
unit process and the corresponding faulty devices. Finally, 
the results of the interviews of the plant personnel are used in 
confirming the findings of the main focus areas for the FDD 
system development. 

4.1 Analysis of the Production Losses 
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Web breaks and shutdowns are studied as a first phase of the 
fault analysis. The distribution of the production time, the 
web breaks, and the shutdowns of the test case are presented 
in Table 1. These events caused interruptions in the board 
production for one third of the analyzed time interval during 
the year 2010.  

Both unplanned and planned shutdowns involved in total a 
three-month interference of the production which was 
remarkably longer than the additional two-week interference 
created by the web breaks. Additionally, the statistics show 
that the web breaks are nearly always due to operational 
reasons whereas unplanned shutdowns can often have equally 
a maintenance source. The operational causes consist mainly 
of process disturbances whereas maintenance faults are, for 
example, mechanical failures.  

The studied year was exceptional in terms of normal 
production efficiency as it was the first complete production 
year after implementing the new equipment. The plant 
experts stated that the reported data depict typical numbers at 
this stage of implementation of the new device. Typically, 
start-up related problems last three years. 

Table 1.  Distribution of production time, web breaks, 
and shutdowns, and the cause distribution of the web 

breaks and unplanned shutdowns 

Event Duration  Cause 
 h %  h % 
Web break 13.2 5 Maintenance 0.6 4 
   Operational 12.5 95 
   Unspecified 0.2 1 
Unplanned 
shutdowns 

42.7 15 Maintenance 21.3 50 
  Operational 20.4 48 
  Unspecified 1.0 2  

Planned shutdowns 49.9 16     
Normal production 186.1 64     

Total 288.9     
 

When producing special products, the sensitivity of each 
product to web breaks and shutdowns has to be carefully 
checked. The effect of the produced board grade on the 
frequency of the web breaks and shutdowns was studied on 
two types of board, A and B. The types are categorized into 
three or four board grade blocks according to the board basis 
weight: low, mid, and high.  

The statistics show that board grade blocks with the lowest 
basis weight have an increased risk for web breaks (Table 2). 
Also, the board grade block with the highest basis weight is 
susceptible to web breaks as seen in the case of the board 
type B. This type of dependency on the board grade block 
basis weight was not shown for shutdowns, as can be seen in 
Table 3. The analysis of the shutdowns reveals that the 
production of the grades in the block B (high) suffers also 
from repetitive shutdowns.  

Table 2.  The statistics of the web breaks by grade blocks 
of board types A and B of various basis weights. The cases 

with the highest probabilities of breaks are highlighted 

Grade block 

Web Breaks 

Production 
time (h) 

Number of 
breaks  

Percentage of 
production 

time loss (%) 
A (low) 1073 87 6 
A (mid-low) 2365 365 4 
A (mid-high) 269 36 5 
A (high) 199 10 3 
B (low) 360 30 6 
B (mid) 813 41 4 
B (high) 91 8 10 
 

Table 3.  The statistics of the shutdowns by grade blocks 
of board types A and B of various basis weights. The cases 

with the highest probabilities of shutdowns are 
highlighted 

Grade block 

Shutdowns 

Production 
time (h) 

Number of 
shutdowns  

Percentage of 
production 

time loss (%) 
A (low) 1073 42 17 
A (mid-low) 2365 172 21 
A (mid-high) 269 9 15 
A (high) 199 3 17 
B (low) 360 11 14 
B (mid) 813 22 13 
B (high) 91 6 31 
 

The results of the analysis of the production losses suggest 
that the different operation conditions should be considered 
when developing FDD systems for a board machine e.g. 
focusing the development only on the specific board grades 
in question. 

4.2 Distribution of the Faults by Fault Types, Process 
Sections, and Devices 

The aim of the fault statistics is also to identify the most 
typical fault types, the faultiest unit processes, and the 
devices connected to the faults. 

In the study of the typical fault types, a malfunction was 
reported as the most common fault type. This includes the 
problems incurred by a device that is functioning but in an 
incorrect way. As can be seen in Fig. 2, other remarkable 
fault types were leakages and other damages that produced 
over 10 % of all faults each. Clogging and jamming or 
loosening and disengagement presented every tenth fault. 
Vibration alone gave almost 5 % of the faults.  

To study the fault distribution by unit processes, the results of 
the decomposition of the board machine were used. Among 
the first eight sections, the faults were distributed quite 
evenly, but the QCS had twice as many faults as the other 
sections as seen in Fig. 3. 
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Fig. 2. Distribution of faults by the fault type 

The  faults  that  could  not  be  restricted  into  one  of  the  unit  
processes were put into the category named Other functions. 
These include, among others, faults located in the ventilation 
of the machine hall and other faults from the supporting 
facilities of the plant. 

 

Fig. 3 Distribution of the faults by the process sections 

Within the specific process sections, the main fault types and 
devices were identified. Next, the QCS faults were studied 
separately as will be explained in Chapter 4.4.  

The devices of the process units and their main faults are 
listed in Table 4. As can be seen in the table, process control 
devices caused the majority of the faults. In addition, valves 
were typical sources of malfunctions and leakages. 

Well-controlled drying is vital in board making, but the 
drying section suffers most from various leakages as can be 
seen in Table 5. Furthermore, the highlighted results indicate 
that problems in operation of valves cause every fifth fault. 
Also leakages of pumps and pipes are highlighted as 
recommended targets of the FDD system development.  

Table 4.  Classification of the main process devices and 
their main fault types. The devices chosen for further 

FDD analysis are highlighted 

Fault type Percentage of all 
faults 

Device 

Malfunction 39.3 % Actuators* 
  Automations* 
  Control systems* 
  Positioners* 
  Sensors* 
  Transmitters* 
  Valves 
  Pumps 
  Drives 
  Drying cylinders 
   Hydraulic devices 
Leakage 15.5 % Valves 
  Pumps 
  Pipes 
  Hydraulic devices 
  Sensors* 
  Rolls 
  Heat exchangers 
   Tanks 
Vibration 4.1 % Roll 

* Process control devices  
 

Table 5.  The fault types by device in the drying section of the board machine. The focus areas of FDD development in 
this section are highlighted, other remarkable fault sources are bordered with dashed line 

  Fault type  
 DRYING SECTION Leakage Loosening, 

disengagement 
Malfunction Noise Other 

damage 
Overheating Total 

D
ev

ic
e 

Drive - - - - - 2.3 % 2.3 % 
Drying cylinder - 6.8 % 4.5 % - 2.3 % - 13.6 % 
Gear and transmission 4.5 % - - - 2.3 % - 6.8 % 
Heat exchanger 2.3 % - - - - - 2.3 % 
Mechanical - - 2.3 % - 4.5 % - 6.8 % 
Other mechanical device - - 4.5 % 2.3 % - - 6.8 % 
Pipe 9.1 % - - - - - 9.1 % 
Positioner - - 9.1 % - - - 9.1 % 
Pressure device 2.3 % - - - - - 2.3 % 
Pump 11.4 % - - - 6.8 % 2.3 % 20.5 % 
Roll 6.8 % 2.3 % - - 2.3 % - 11.4 % 
Valve 2.3 % - 6.8 % - - - 9.1 % 

 Total 38.6 % 9.1 % 27.3 % 2.3 % 18.2 % 4.5 % 100.0 % 
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4.3 SISO Level Fault Study 

The SISO level study provides supporting data for choosing 
suitable locations for further FDD algorithm development. 
The scope of the study was limited to the most common fault 
types that were identified as malfunctions and leakages.  

The malfunctions were mostly related to valves and located 
in the stock preparation and in the drying section. In addition, 
also the faults related to the consistency sensor were 
abundant in the stock preparation and involved further 
problems in other process sections.  

4.4 QCS Fault Analysis 

The QCS faults were analysed separately due to its 
substantial importance to the board making process.  

Table  6  lists  the  origins  of  all  faults  occurred  in  the  QCS.  
Furthermore, the table compares the shares of each cause 
between the typical QCS fault type categories that are named 
as malfunctions, sensor malfunctions, and actuator 
malfunctions. 

Table 6.  Causes of all QCS faults, sorted by 
malfunctions, sensor malfunctions, and actuator 

malfunctions. The main cause is highlighted. 

All causes  Mal-
functions 

Sensor 
mal-
functions 

Actuator 
mal-
functions 

Component 
failure 1.8 % 1.1 % 1.6 % 0.0 % 

Corrosion/ 
oxidation 0.9 % 1.1 % 0.0 % 9.1 % 

Exceptional 
conditions 1.8 % 2.1 % 1.6 % 9.1 % 

Impurities, 
moisture 38.6 % 46.8 % 69.4 % 9.1 % 

Misoperation 6.1 % 7.4 % 0.0 % 9.1 % 
Normal wear 7.9 % 8.5 % 8.1 % 18.2 % 
Other failure 3.5 % 3.2 % 1.6 % 0.0 % 
Program fault 5.3 % 6.4 % 0.0 % 0.0 % 
Safety switch 2.6 % 3.2 % 0.0 % 9.1 % 
Unknown/ 
unspecified 

31.6 % 20.2 % 17.7 % 36.4 % 

Total 100.0 % 100.0 % 100.0 % 100.0 % 
 

As can be seen from the table, impurities and moisture gave 
almost two faults out of five. In addition, normal wear was a 
remarkable issue invoking approximately 8 % of all faults.  

Considering only malfunctions in general, almost half of the 
faults in the QCS were due to impurities and moisture, as can 
be seen in Table 6. Furthermore, the table shows that among 
sensor malfunctions, this cause was even more common 
unlike among actuator malfunctions where normal wear was 
the  most  common  source  for  a  malfunction.  Among  the  
sensor malfunctions and the malfunctions in general, normal 
wear was the second most frequent cause. Other more regular 
reasons for malfunctions in general were misoperation and 

program faults even though sensors and actuators hardly 
suffered from these causes. 

4.5 Recommendations for the Main Focus Areas of the FDD 
Development  

As  a  result  of  the  fault  analysis,  the  following  areas  were  
identified as the main focus areas for the FDD development: 
QCS (board thickness measurements), the drying section 
(clogging, jamming, and leakages of valves; condensate 
problems), valves (malfunctions and leakages), and 
consistency sensor (malfunctions). 

At the highest process control and monitoring level, the FDD 
development should be set on the QCS due to its high share 
of the faults and its substantial importance to the board 
making process. Especially, the faults in the measurements of 
board thickness are recommended to be studied.  

At the unit process level, the FDD development is 
recommended to be directed to the drying section that plays a 
key role due to its importance and strongly affects to the 
function of the other sections of the process. Especially, the 
clogging, jamming, and leakages of valves, and the 
condensate problems are selected as good candidates for the 
FDD development.  

At the SISO level, malfunctions and leakages are selected for 
the FDD development In addition, the faults of the 
consistency sensor, of which the proper function is crucial for 
obtaining the right board quality, is one candidate for FDD 
development. 

The board making experts confirmed the presented key areas 
for the FDD system development at the board machine at the 
Imatra Mills. 

5. CONCLUSIONS 

In  this  paper,  the  fault  analysis  of  a  board  machine  was  
presented. The performed analysis provided a practical tool 
and substantial benefits in focusing the FDD development of 
the large-scale system.  

The case study of an industrial board machine confirmed that 
the fault analysis suited well in screening the target areas of 
FDD improvements. The FDD development is necessary in 
this study at all process hierarchy levels, but the needs vary 
by the level and by the process section. 
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Abstract: Operation of a modern industrial plant can be severely affected by the operation of its key 

devices, such as valves. Namely, the presence of stiction in a valve can cause poor performance in the 

control loop and consequently, in the worst cases, degrade the efficiency of the whole process and the 

quality of the product. Thus, the performance of the control loops must be maintained which requires 

development and implementation of FDD methods for valve stiction. This paper presents an application of 

the histogram and curve fitting stiction detection methods for the valves of a board machine, and both 

methods are based on the shape analysis of oscillating signals in the control loop. The FDD application is 

tested and validated on case studies selected from the fault analysis and the operational data of an 

industrial board machine. The results show that both methods can successfully diagnose the presence of 

valve stiction in an industrial environment.  

Keywords: Fault detection and diagnosis, valve, oscillations, shape analysis, stiction, board machine 
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Abstract: Optimal process control solutions such as model predictive controllers or simply PID
controllers with optimized performance have a cost function to be minimized. Often, there are additional
constraints which cannot be violated when searching the optimum solution in limited but typically
multidimensional search space. This paper presents a novel optimizer for solving multidimensional non-
linear optimization tasks including control and identification problems. The proposed method combines
heuristic and gradient-based methods adding randomness which eventually results in a hybrid
optimization solver allowing non-linearities and constraints of an optimized cost function.

Keywords: Optimization, non-linear, evolutionary, heuristic, iterative, control, identification.

1. INTRODUCTION

Optimization of a given cost function is a backbone in control
design and, especially, system identification. The cost
function is often a scalar valued function with one-
dimensional or multi-dimensional search space. The function
to be optimized (typically minimized) can be linear or non-
linear and with or without constraints. An extensive and
elaborate insight to system identification problems with
various cost functions to be minimized are given in
Söderström & Stoica (1989) and Ljung (1999).

A good example of a control design based optimization
problem for the PI controllers is given in Åström et. al (1998)
and more can be found in Åström & Hägglund (1995). The
multidimensional optimization problems can be faced e.g
with model predictive controls. A good review to those
formulations are given in Maciejowski (2002).

Numerical non-linear multidimensional optimization methods
are numerous and they can be classified e.g in terms of the
applied theory.  The gradient-based methods include a family
of Newton based and quasi-Newton based methods such as
Davidon-Fletcher-Powell method (Fletcher 1987, Davidon
1991). The Levenberg-Marquardt method is rather similar to
the  these  methods  but  is  considered  a  method  of  its  own
(Levenberg 1944, Marquardt 1963).

The downhill simplex method (alias amoeba method or
Nelder-Mead method) is a good example of non-linear
optimizaton method that does not require derivatives of the
cost function (Nelder & Mead 1965). Another totally
different classes of optimizers for non-linear problems are
genetic algorithms (Holland 1975) and evolutionary
programming based methods. A good review to both are
given in Bäck (1996). What these methods share with the
Nelder-Mead method is that they neither require computation
of the derivatives of the cost function to be optimized.

This paper presents a novel optimization method combining
features of search direction based (gradient-based) methods
and evolutionary and genetic algorithms. The resulted
iterative method Heuristic Evolutionary Random Optimizer
(HERO) does not require computation of the cost function
derivatives but involves a heuristic evaluation of search
direction at each iteration. Furthermore, genetic algorithm –
type mutation based on randomness is included in the solver.

HERO solver is applicable for non-linear optimization tasks
with or without equality and inequality constraints. In this
paper, the method is described and finally tested with some
well-known benchmark functions and, also, with a PI control
design and a system identification task.

2. ESSENCE OF OPTIMIZATION

By definition, optimization is about finding the solution for
either minimizing or maximizing the given cost function in
the presence of given constraints (constrained optimization)
or without them (unconstrainted optimization). The
constraints can be of either equality or inequality type, or
both. Typically, the cost function is a scalar-valued function
with several  variables for optimization in the
multidimensional search space. The cost function itself can
be linear or non-linear such as quadratic.

There are numerous different optimization problems and
almost equally many optimization algorithms (solvers). Yet,
for any optimization solver, the following pitfalls are lurking
and challenging any solver:

Large search space and/or several dimensions
Shape of search space
Equality and/or inequality constraints
Existence of several local optima
Numerical accuracy requirements

Proceedings of the 17th Nordic Process Control Workshop 
Technical University of Denmark, Kgs Lyngby, Denmark 
January 25-27, 2012

154



To meet the requirements above, Heuristic Evolutionary
Random Optimizer (HERO) was designed with the idea of
coming up with an optimization algorithm that would
combine the essence of derivative-based and evolutionary
algorithms for solving multidimensional non-linear
optimization problems.

Systematic search direction

Population of solution candidates

Derivative-based algorithms

Evolutionary algorithms

HERO
algorithm

No systematic search direction

No population of solution candidates

Systematic
search direction

Population of
solution
candidates

Figure 1. HERO optimizer combines features of both
derivative-based and evolutionary optimization routines.

3. PROPOSED OPTIMIZER

Consider a scalar-valued cost function f with an n-
dimensional search space subject to minimization:

maxmin,,)(min xxxxx
x

nf         (1)

There may be equality and/or inequality constraints such as

0)(xg         (2)

which can be treated by including a penalty in the cost
function (1) as follows

0,)(,0max)(min xx
x

gf         (3)

3.1 Initialization

Given the task of (1) or (3), HERO solver needs to be
initialized first. In initialization, a set of population  members

)0(ix , i =1…N are placed at equidistant intervals over the
search space. Consequently, the population size is N = grid ^
n, where grid is the resolution of the grid. The grid size is a
design parameter of HERO solver. Figure 2 illustrates what
the initialized grid might look like for a two-dimensional
search space (grid = 5). The initial population with N = 25 is
evenly spread over the search space.

x1

x2

max(x1)min(x1)
min(x2)

max(x2)

Figure 2. Initialized grid for solution population for a 2-
dimensional optimization problem.

3.2 Iteration cycle

After initialization, all the initialized population members ix ,
(i =  1…N) are being iterated based on the previous
population members. The iteration formula for updating the
population members is:

)()()()1( kkkk iiii edxx         (4)

where k is iteration cycle, i = 1…N denotes the ith population
member, id  search direction for the ith population member,

ie  random  factor  for  the ith population member, search
speed (0-1) and randomness factor (0-1). Given (4), a new
population member )1(kix  is formed from the previous
member )(kix  corrected by the deterministic search
direction )(kid  and the random factor ei(k).

3.3 Search direction and speed

The search direction di(k) is an essential part in a
gradient/derivative-based optimization algorithm where the
direction is typically computed using the first (Jacobian) or
the second derivatives (Hessian) of the cost function or their
estimates. Here, however, the search direction di(k) is
computed without cost function derivatives as follows:

)()()( kkk ibesti xxd         (5)

where xbest(k) is the best solution of all N population
members at the iteration cycle k. The computation formula
for the search direction is intuitively appealing as obviously
all the population members are always being guided towards
the best solution at that time. This heuristic selection is rather
simple but, as proven later with test benches, it is also rather
efficient.

The search speed (0-1) is a design parameter determining
the length of the step towards the best current solution at each
iteration cycle. By setting 0  there is no deterministic
search direction but only the random factor affecting. By
setting 1 , the population member is always taken exactly
to the current best solution. It is advisable to avoid these
extreme choices by allowing values 10 . The search
speed can be given an interpretation of a first-order low-pass
filter with a time constant T indicating how many iterations
would be ideally needed for reaching the best solution at that
iteration. In the later simulations, the search speed with T = 3
is set to )/1exp(-1 T = 0.72.

3.4 Random factor

Random factor ei(k) is white noise having its elements
initialized to zero. The propability of having non-zero
elements depends on progress of finding the best solution. If
during consecutive iterations there is no progress, propability
increases and, vice versa.  The randomness factor  (0-1)
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can be made adaptive by adjusting it  as a function of search
direction norm during each iteration cycle. The random factor
and its adaptation has a lot of common with mutation
operation in genetic algorithms. Consequently, the random
factor has an important role in preventing the algorithm to get
stuck with a local optimum.

3.5 Termination of optimization

An optimization algorithm always needs a termination
criterion. It is suggested to use a pre-set limit for either a
minimum absolute change in the solution or a minimum
absolute change in the cost function to be minimized. In
addition, the maximum number of iterations should be
limited prior to calling the optimization routine.

4. TEST BENCHES FOR HERO

There are several known test benches for testing optimization
routines. In this paper, three of them are selected: functions
of Rosenbrock, Rastrigin and six-hump camel back. In
addition, a novel cost function for tuning a PI controller is
given and used for testing performance of the proposed
optimization routine. Also, a real system identification case
of a power boiler is given using the introduced HERO solver.
The boiler can be considered as a first-order dynamic
multivariable process with two inputs and one output. The
data used for model identification covers half a year’s boiler
operation.

4.1 Rosenbrock function

The Rosenbrock function is

22
12

2
1 )(100)1()( xxxf x         (6)

with the constraints -3 < x1 < 3 and -3 < x2 < 3. The function
has a long, narrow, parabolic shaped flat valley with a single
global optimum f(1,1)  =  0.  The  valley  is  rather  easy  to  find
but the optimum is not due to the valley’s flatness (figure 3).

-1.5 -1 -0.5 0 0.5 1 1.5 2

0

1

2

3

4

5
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Rosenbrock: y(x1,x2) = (1-x1)2 + 100*(x2-x12)2 with Global minimum y(1,1) = 0

Figure 3. Rosenbrock function. Upper: bird-eye view with
colormap. Lower: 3D view.

For  comparison,  HERO  solver  is  compared  to  genetic
algorithm (GA) and Nelder-Mead (NM) algorithm. Testing is
based on 100 optimization runs that were executed with the
results given in the table 4. Based on the results,  HERO has
the best performance (cost function average) with no single
failure during 100 different optimization runs.

Table 4. Comparison of optimizaton runs between GA, NM
and HERO solvers for Rosenbrock function.

Algorithm Cost
function
Average

Cost
function

Std

Failed
optimization

runs (%)

Details

GA 0.0427 0.0521 0 Population = 36, Crossover rate =
0.2, Mutation rate = adaptive

NM 0.0710 0.2568 6 Random initialization

HERO 0.000277 0.000375 0 Grid = 6, a = 0.72, µ = adaptive

4.2 Rastrigin function

The Rastrigin function is
))2cos(10())2cos(10(20)( 2

2
21

2
1 xxxxf x (7)

with the constraints -3 < x1 < 3 and -3 < x2 < 3. The function
has several local minima regularly distributed with a single
global optimum f(0,0) = 0. It is difficult to find the global
optimum (figure 5).
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Figure 5. Rastrigin function. Upper: bird-eye view with
colormap. Lower: 3D view.

For comparison, HERO solver is again compared to genetic
algorithm (GA) and Nelder-Mead (NM) algorithm with 100
optimization runs with the results given in the table 6. Based
on the results, HERO has no single failure during 100
different optimization runs and it gives the second best
performance (cost function average) after the GA method.

Table 6. Comparison of optimizaton runs between GA, NM
and HERO solvers for Rastrigin function.

Algorithm Cost
function
Average

Cost
function

Std

Failed
optimization

runs (%)

Details

GA 0.000002 0.000008 0 Population = 36, Crossover rate =
0.2, Mutation rate = adaptive

NM 2.3183 1.9444 90 Random initialization

HERO 0.0299 0.0240 0 Grid = 6, a = 0.72, µ = adaptive
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4.3 Six-hump camel back function

The six-hump camel back function is

2
2

2
221

2
1

3/4
1

2
1 )44()1.24()( xxxxxxxf x

        (8)
with the constraints -3 < x1 < 3 and -3 < x2 < 3. The six-hump
camel back function has six local minima two of which are
also global minima f(-0.0898,0.7126) = f(0.0898,-0.7126) = -
1.0316. The global minimum is especially hard to find due to
six local minima (figure 7).
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Figure 7. Six-hump camel back function. Upper: bird-eye
view with colormap. Lower: 3D view.

Again, for comparison, HERO solver is compared to genetic
algorithm (GA) and Nelder-Mead (NM) algorithm with 100
optimization runs with the results given in the table 8. Based
on the results, HERO has no single failure during 100
different optimization runs and it also has the best
performance (cost function average).

Table 8. Comparison of optimizaton runs between GA, NM
and HERO solvers for six-hump camel back function.

Algorithm Cost
function
Average

Cost
function

Std

Failed
optimization

runs (%)

Details

GA -1.0277 0.0123 0 Population = 36, Crossover rate =
0.2, Mutation rate = adaptive

NM -0.8478 0.5813 14 Random initialization

HERO -1.0316 0 0 Grid = 6, a= 0.72, µ = adaptive

4.4 PI controller optimization

The PI controlled process model is a pure delay process

Lsesg )(       (9)

with a dead time of L =  1  sec.  Given  a  cost  function  of  an
integrated error due to a step load disturbance disturbing the
closed control loop

0

1)(
i

IE k
dtteJ       (10)

and a constraint on maximum sensitivity Ms =  1.4,  the  PI
controller parameters proportional gain kp and integral gain ki
can be obtained by minimizing the cost function JIE. It has
been shown by Åström et. al (1998) that these parameters are
kp = 0.158 and ki = 0.472. The method given by Åström et. al
is rather elegant with variable elimination for simplified
iterable equations. However, for comparison with HERO
solver, the cost function JIE is now re-formulated as follows:

0

ˆ
)()ˆ(

i

ss
ss k

MM
dtteMMJ       (11)

where Ms is designed maximum sensitivity and sM̂  real
maximum sensitivity. The given formulation (11) simplifies
optimization as the constraint of Ms is now included directly
in the cost function J to be minimized leaving no constraints
other than a stability region determined by proportional gain
kp and integral gain ki as illustrated in figure 9.
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Figure 9. PI controller tuning space with a stability region
(limited  by  solid  line)  and with  a  set  of  PI  tunings  for Ms =
1.4 (tunings on dotted curve). The optimal tuning for
minimizing JIE for Ms = 1.4 is marked with a black dot.

As previously, HERO solver is compared to genetic
algorithm (GA) and Nelder-Mead (NM) algorithm with 100
optimization runs with 50 iterations each with the results
given  in  the  table  10.  Based  on  the  results,  HERO  has  no
single failure during 100 different optimization runs and it
also has the best performance in terms of the optimal
solution. In this comparison, all the methods yielded rather
equally low cost function values which is due to the flat
shape of the Ms curve (fig. 9) near the optimum.

Table 10. Comparison of optimizaton runs between GA, NM
and  HERO  solvers  for  a  PI  controller  design.  The  optimal
parameters are kp = 0.158 and ki = 0.472.

Algorithm Optimal
Kp

Average

Optimal
Ki

Average

Failed
optimization

runs (%)

Details

GA 0.1926 0.4153 0 Population = 36, Crossover rate =
0.2, Mutation rate = adaptive

NM 0.2949 0.4274 3 Random initialization

HERO 0.1619 0.4589 0 Grid = 6, a = 0.72, µ = adaptive
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Figure 11. Process responses for the optimal PI controller
tuning. Upper: Process output for setpoint up/down changes
and up/down load disturbances. Lower: Control signal.

4.5 Process model identification

There is a co-generation power plant with a 280 MW
bubbling fluidized bed boiler burning biomass, peat and
sludge. The boiler inputs are fuel flow, total combustion air
and  feed  water  flow  and  the  boiler  output  is  its  generated
steam. The task is to identify a simple first-order
multivariable model using the real collected process data on 6
months (180 days) with 1 hour sampling rate.

Basically, the data set with 1 hour sampling reflects steady
states of the boiler. Therefore, the feed water flow can be
ignored as a model input because, typically, in steady-states
with a constant steam drum level, the feed water flow equals
to the steam flow out of the boiler. Consequently, the
simplified first-order discrete-time 2x1 process model subject
to identification can be formulated as:

)(
)(
)(

)()1(
2

1 ke
ku
ku

kyky BA       (12)

where y = generated steam flow (kg/sec), u1 =  fuel  power
(MW), u2 = total combustion air (kg/sec) and e = white noise
(kg/sec). Figure 12 shows the measurements of boiler live
steam, fuel power and total combustion air for 6 months.
There are faster hour and daily based changes due to a
varying boiler load but also a slower decreasing trend due to
a seasonal shift from winter to summer.

The cost function J to  be  minimized  for  identifying  the
process model is the 2-norm of the model residual:
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where N = (6 x 30 x 24) / 2 = 2160.
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Figure 12. Boiler  measurements  for  6  months  with  1  hour
sampling. Top: generated steam (kg/sec). Middle: Fuel power
(MW). Bottom: Total combustion air (kg/sec).

For model identification, the first 3 months (90 days) of the
recorded process data is selected. The HERO solver is run
with 200 iterations and with grid =  3  only.  There  are  three
parameters to be estimated in A and B in the range of -2…2.
As a result, the minimized cost function receives a value of J
= 234.1 after 200 iterations with the model parameters

8284.0A  and 050.00368.0B  having a static gain
0.51. The identification results are plotted in figure 13. The
parameters seem to have almost converged before HERO
solver was stopped after 200 iterations.

For comparison, model identification (12) using a Least
Squares (LS) method yields the parameters 8438.0A  and

0547.00294.0B  having a static gain 0.54. The cost
function J =  445.9  is  clearly  higher  than  with  the  HERO
solver, however, it must be kept in mind that the LS method
has a slightly different cost function which it minimizes and
comparison of that cost function would not be beneficial for
HERO solver.

For model validation, the last 3 months (90 days) of the
recorded process data is used. Figure 14 shows both
comparison of real and predicted process output zoomed for
20 days and the model residual for the whole validation data
period of 90 days.
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Figure 13. Model identification of the power boiler with
HERO. Top: Cost function J. Middle: Model parameter A.
Bottom: Model parameters B.
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Figure 14. Model identification fit of the power boiler data.
Upper: Zoomed set of real (thin) and predicted boiler output
(thick) for 20 days.  Lower: Model residual (kg/sec) for the
whole validation data of 90 days.

5. CONLUSION

This paper presented a novel method called HERO (Heuristic
Evolutionary Random Optimizer) for solving non-linear
multidimensional optimizaton problems with constraints. The
iterative method combines features of search direction based
and evolutionary/genetic algorithm based algorithms. The
proposed HERO solver for optimization task as given by (1)
or (3) does not require computation of the
derivatives/gradients of the cost function. It is population-
based method such as genetic algorithms having also a
mutation function in terms of the random term. Calculation of

the search direction is based on heuristic approach of heading
towards the currently best solution. And, in order to not get
stuck with a local minimum, there is adaptation mechanism
based on mutation to excite the solver over the local solution.
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Abstract 

Obligations for increasing the sustainability level of energy resources have presented industry with a 

challenge to replace fossil fuels with renewable ones. This poses additional challenges since, energy 

systems based on fossil sources have been used for decades, whereas, sustainable systems are a relatively 

young technology. Consequently, the complete replacement of non-renewable fuels with renewable ones 

requires considerable technological effort. Therefore, significant amount of research is required before 

sustainable energy systems could reach the required maturity.   

One of the most mature renewable energy technologies and the most commercially appealing is biomass 

combustion. Biomass combustion is successfully utilized in BioGrate-boiler technology, which has been 

developed by MW Biopower, nevertheless, biomass combustion presents several difficulties. Specifically, 

the properties of biomass vary significantly depending on its origin, processing and handling techniques. 

Moreover, variable properties cause large fluctuations in power production and thus, set challenges for an 

existing control strategy to maintain the process within its constraints. As a consequence, improving the 

existing control strategy and, thus, boiler efficiency, requires an extensive knowledge and understanding of 

biomass combustion. This knowledge is not always possible to obtain through direct process measurements 

due to aggressive furnace environment. Thus, it must be obtained by an alternative way, namely, through a 

mechanistic model.  

This paper considers the utilization of first principles model of a BioGrate boiler in a biomass combustion 

study. The dynamic model of a BioGrate boiler, upon which the study is based, is heterogeneous, including 

solid and gas phases. Furthermore, the model considers chemical reactions in both gas and solid phases. In 

addition, fuel movement on the grate is included into the model. The energy required by the process is 

employed through a radiation function validated by industrial data. The model is implemented in a MATLAB 

environment and tested with industrial data. The results of detailed industrial validation for the model are 

presented and discussed. 

  

Proceedings of the 17th Nordic Process Control Workshop 
Technical University of Denmark, Kgs Lyngby, Denmark 
January 25-27, 2012

160



Iterative Methods for MPC on Graphical
Processing Units

Nicolai Fog Gade-Nielsen ∗, John Bagterp Jørgensen ∗

Bernd Dammann ∗

∗ DTU Informatics, Technical University of Denmark
({nfga,jbj}@imm.dtu.dk)

Abstract:
The high floating point performance and memory bandwidth of Graphical Processing Units
(GPUs) makes them ideal for a large number of computations which often arises in scientific
computing, such as matrix operations. GPUs achieve this performance by utilizing massive par-
allelism, which requires reevaluating existing algorithms with respect to this new architecture.
This is of particular interest to large-scale constrained optimization problems with real-time
requirements.
The aim of this study is to investigate different methods for solving large-scale optimization
problems with focus on their applicability for GPUs. We examine published techniques for
iterative methods in interior points methods (IPMs) by applying them to simple test cases,
such as a system of masses connected by springs. Iterative methods allows us deal with the
ill-conditioning occurring in the later iterations of the IPM as well as to avoid the use of dense
matrices, which may be too large for the limited memory capacity of current graphics cards.

Keywords: Model based control, Predictive control, Optimization, Iterative methods,
Graphical Processing Unit
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Abstract 

Profitability is the major concern of a chemical plant and is achieved by operating the plant at the nominal 
point obtained from the optimizer. The optimizer minimizes a suitable cost function subject to equality and 
inequality constraints. Often, the solution of the optimizer is constrained i.e, there are several active 
constraints. Typically, it is assumed that these active constraints are controlled. However, presence of 
uncertainties in the form of measurement noise, modeling error, parametric uncertainties and disturbances 
cause violation of constraints. Thus, the suggested approach to ensure feasible operation is to keep away 
from constraints which in turn results in the lost profit 1.  Therefore the objective of our work is to propose 
a formulation that obtains the trade off solution between feasibility and profitability.  
 
In this work, we propose a stochastic formulation that ensures feasible operation for the prescribed 
confidence limit. In this formulation, we have assumed full state feedback and disturbance as the only 
source of uncertainty and is characterized by Gaussian white noise. Following Peng et al2, the dynamic 
operating region is defined for the given disturbances which follow from the closed loop covariance 
analysis of the state space model of the process. Controller selection also plays a crucial role in shaping the 
dynamic operating region while the size of the region is characterized by the prescribed confidence limit 
and variance of the disturbance considered. Thus consideration of the controller gain as a decision variable 
is important in determining the optimal operating point which minimizes the loss in profit. Therefore, the 
focus of our work is to propose an optimization formulation that determines the minimum backed off 
operating point by finding a suitable controller gain. 
 
The formulated minimum back off operating point selection problem is a non convex non linear program 
with linear cost to be solved which does not guarantee an optimal solution. Thus the problem is relaxed by 
exploiting convexity in the constraints using Linear Matrix Inequality (LMI) theory. Since not all 
constraints could be convexified, we propose a simple two stage iterative procedure that reduce the 
variability of the economically important (i.e., active constrained) variables by progressively increasing the 
variability of the economically unimportant variables at each iteration. The optimal solution from our 
proposed solution methodology is compared with Peng et al2 solution obtained using computationally 
expensive branch and bound technique. Work in progress to extend the current formulation for quadratic 
cost such that back-off for the nominally unconstrained variables could also be determined. 
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Abstract: Model predictive control (MPC) of a class of nonlinear systems is considered in
this paper. We will use Linear Parameter Varying (LPV) model of the nonlinear system.
By taking the advantage of having future values of the scheduling variable, we will simplify
state prediction. Consequently the control problem of the nonlinear system is simplified into a
quadratic programming. Wind turbine is chosen as the case study and we choose wind speed as
the scheduling variable. Wind speed is measurable ahead of the turbine, therefore the scheduling
variable is known for the entire prediction horizon.

Keywords: Model predictive control, linear parameter varying, nonlinear systems, wind
turbines, LIDAR measurements.

1. INTRODUCTION

Model predictive control (MPC) has been an active area
of research and has been successfully applied on different
applications in the last decades (Qin and Badgwell (1996)).
The reason for its success is its straightforward ability to
handle constraints. Moreover it can employ feedforward
measurements in its formulation and can easily be ex-
tended to MIMO systems. However the main drawback of
MPC was its on-line computational complexity which kept
its application to systems with relatively slow dynamics for
a while. Fortunately with the rapid progress of fast compu-
tations, better optimization algorithms, off-line computa-
tions using multi-parametric programming (Baotic (2005))
and dedicated algorithms and hardware, its applications
have been extended to even very fast dynamical systems
such as DC-DC converters (Geyer (2005)). Basically MPC
uses a model of the plant to predict its future behavior in
order to compute appropriate control signals to control
outputs/states of the plant. To do so, at each sample
time MPC uses the current measurement of outputs/states
and solves an optimization problem. The result of the
optimization problem is a sequence of control inputs of
which only the first element is applied to the plant and
the procedure is repeated at the next sample time with
new measurements (Maciejowski (2002)). This approach is
called receding horizon control. Therefore basic elements
of MPC are: a model of the plant to predict its future, a
cost function which reflects control objectives, constraints
on inputs and states/outputs, an optimization algorithm
and the receding horizon principle. Depending on the
type of the model, the control problem is called linear
MPC, hybrid MPC, nonlinear MPC etc. Nonlinear MPC

? This work is supported by the CASED Project funded by grant
DSF-09- 063197 of the Danish Council for Strategic Research.

is normally computationally very expensive and generally
there is no guarantee that the solution of the optimization
problem is a global optimum. In this work we extend
the idea of linear MPC using linear parameter varying
(LPV) systems to formulate a tractable predictive control
of nonlinear systems. To do so, we use future values of
a disturbance to the system that acts as a scheduling
variable in the model. However there are some assumptions
that restrict our solution to a specific class of problems.
The scheduling variable is assumed to be known for the
entire prediction horizon. And the operating point of the
system mainly depends on the scheduling variable.

2. PROPOSED METHOD

Generally the nonlinear dynamics of a plant could be
modeled as the following difference equation:

xk+1 = f(xk, uk, dk) (1)

With xk, uk and dk as states, inputs and disturbances
respectively. Using the nonlinear model, the nonlinear
MPC problem could be formulated as:

min
u

`(xN ) +
N−1∑
i=0

`(xk+i|k, uk+i|k) (2)

Subject to xk+1 = f(xk, uk, dk) (3)

uk+i|k ∈ U (4)

x̂k+i|k ∈ X (5)

Where ` denotes some arbitrary norm and U and X
show the set of acceptable inputs and states. As it was
mentioned because of the nonlinear model, this problem
is computationally too expensive. One way to avoid this
problem is to linearize around an equilibrium point of the
system and use linearized model instead of the nonlinear
model. However for some plants assumption of linear
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model does not hold for long prediction horizons as the
plant operating point changes, for example based on some
disturbances that act as a scheduling variable. An example
could be a wind turbine for which wind speed acts as a
scheduling variable and changes the operating point of the
system.

2.1 Linear MPC formulation

The problem of linear MPC could be formulated as:

min
u0,u1,...,uN−1

‖xN‖Qf +
N−1∑
i=0

‖xk+i|k‖Q + ‖uk+i|k‖R (6)

Subject to xk+1 = Axk +Buk (7)

uk+i|k ∈ U (8)

x̂k+i|k ∈ X (9)

Assuming that we use norms 1, 2 and ∞ the optimization
problem becomes convex providing that the sets U and X
are convex. Convexity of the optimization problem makes
it tractable and guarantees that the solution is the global
optimum. The problem above is based on a single linear
model of the plant around one operating point. However
below we formulate our problem using linear parameter
varying systems (LPV) in which the scheduling variable is
known for the entire prediction horizon.

2.2 Linear Parameter Varying systems

Linear Parameter Varying (LPV) systems are a class
of linear systems whose parameters change based on a
scheduling variable. Study of LPV systems was motivated
by their use in gain-scheduling control of nonlinear systems
(Apkarian et al. (1995)). LPV systems are able to handle
changes in the dynamics of the system by parameter
varying matrices.

Definition (LPV systems) let k ∈ Z denote discrete
time. We define the following LPV systems:

xk+1 = A(γk)xk +B(γk)uk (10)

A(γk) =

nγ∑
j=1

Ajγk,j B(γk) =

nγ∑
j=1

Bjγk,j (11)

Which A(γk) and B(γk) are functions of the scheduling
variable γk. The variables xk ∈ Rnx , uk ∈ Rnu , and γk ∈
Rnγ are the state, the control input and the scheduling
variable respectively.

2.3 Problem formulation

Using the above definition, the linear parameter varying
(LPV) model of the nonlinear system with disturbances is
of the following form:

x̃k+1 = A(γk)x̃k +B(γk)ũk +Bd(γk)d̃k (12)

This model is formulated based on deviations from the
operating point. However we need the model to be formu-
lated in absolute values of inputs, states and disturbances.
Because in our problem the steady state point changes
as a function of the scheduling variable and we need to
introduce a variable to capture its bahavior. In order to
rewrite the state space model in the absolute form we use:

x̃k = xk − x∗k (13)

ũk = uk − u∗k (14)

d̃k = dk − d∗k (15)

x∗k, u
∗
k and d∗k are values of states, inputs and disturbances

at the operating point. Therefore the LPV model becomes:

xk+1 = A(γk)(xk − x∗k) +B(γk)(uk − u∗k)

+Bd(γk)(dk − d∗k) + x∗k+1
(16)

Which could be written as:

xk+1 = A(γk)xk +B(γk)uk +Bd(γk)dk + λk (17)

with

λk = x∗k+1 −A(γk)x∗k −B(γk)u∗k −Bd(γk)d∗k (18)

Now having the LPV model of the system we proceed to
compute state predictions. In linear MPC predicted states
at step n is:

xk+n = Anxk +
n−1∑
i=0

AiBuk+(n−1)−i

for n = 1, 2, . . . , N

(19)

However in our method the predicted state is also a func-

tion of scheduling variable Γn = (γk+1, γk+2, . . . γk+n)
T

for n = 1, 2, . . . , N − 1 and we assume that the scheduling
variable is known for the entire prediction. Therefore the
predicted state could be written as:

xk+1(γk) = A(γk)xk +B(γk)uk +Bd(γk)dk + λk (20)

And for n ∈ Z, n ≥ 1:

xk+n+1(Γn) =
0∏
i=n

A(γk+i)xk

+

n−1∑
j=0

(
1∏

i=n−j
A(γk+i)

)
B(γk+j)uk+j

+
n−1∑
j=0

(
1∏

i=n−j
A(γk+i)

)
Bd(γk+j)dk+j

+
n−1∑
j=0

(
0∏

i=n−j
A(γk+i)

)
λk+(n−1)−j

+B(γk+n)uk+n +Bd(γk+n)dk+n + λk+n

(21)

Using the above formulas we write down the stacked
predicted states which becomes:

X = Φ(Γ)xk +Hu(Γ)U +Hd(Γ)D + Φλ(Γ)Λ (22)

with

X = (xk+1 xk+2 . . . xk+N )
T

(23)

U = (uk uk+1 . . . uk+N−1)
T

(24)

D = (dk dk+1 . . . dk+N−1)
T

(25)

Γ = (γk γk+1 . . . γk+N−1)
T

(26)

Λ = (λk λk+1 . . . λk+N−1)
T

(27)

In order to summarize formulas for matrices Φ,Φλ,Hu and
Hd, we define a new function as:

ψ(m,n) =
n∏

i=m

A(γk+i) (28)

Therefore the matrices become:
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Φ(Γ) =


ψ(1, 1)
ψ(2, 1)
ψ(3, 1)

...
ψ(N, 1)



Φλ(Γ) =


I 0 0 . . . 0

ψ(1, 1) I 0 . . . 0
ψ(2, 1) ψ(2, 2) I . . . 0

...
...

...
. . .

...
ψ(N − 1, 1) ψ(N − 1, 2) ψ(N − 1, 3) . . . I



Hu(Γ) =


B(γk) 0 . . . 0

ψ(1, 1)B(γk) B(γk+1) . . . 0
ψ(2, 1)B(γk) ψ(2, 2)B(γk+1) . . . 0

...
...

. . .
...

ψ(N − 1, 1)B(γk) ψ(N − 1, 2)B(γk+1) . . . B(γN−1)



Hd(Γ) =


Bd(γk) 0 . . . 0

ψ(1, 1)Bd(γk) Bd(γk+1) . . . 0
ψ(2, 1)Bd(γk) ψ(2, 2)Bd(γk+1) . . . 0

...
...

. . .
...

ψ(N − 1, 1)Bd(γk) ψ(N − 1, 2)Bd(γk+1) . . . Bd(γN−1)


After computing the state predictions as functions of

control inputs (22), we can write down the optimization
problem similar to a linear MPC problem as a quadratic
program:

min
U

XTQX + UTRU

Subject to: U ∈ U
X ∈ X

(29)

3. CASE STUDY

The case study here is a wind turbine. Wind turbine
control is a challenging problem as the dynamics of the
system changes based on wind speed which has a stochastic
nature. The method that we propose here is to use wind
speed as a scheduling variable. With the advances in
LIDAR technology (Harris et al. (2006)) it is possible to
measure wind speed ahead of the turbine and this enables
us to have the scheduling variable of the plant for the entire
prediction horizon.

3.1 Modeling

Nonlinear model For modeling purposes, the whole wind
turbine can be divided into 4 subsystems: Aerodynam-
ics subsystem, mechanical subsystem, electrical subsys-
tem and actuator subsystem. The aerodynamic subsys-
tem converts wind forces into mechanical torque and
thrust on the rotor. The mechanical subsystem consists
of drivetrain, tower and blades. Drivetrain transfers rotor
torque to electrical generator. Tower holds the nacelle and
withstands the thrust force. And blades transform wind
forces into toque and thrust. The generator subsystem
converts mechanical energy to electrical energy and finally
the blade-pitch and generator-torque actuator subsystems
are part of the control system. To model the whole wind
turbine, models of these subsystems are obtained and at
the end they are connected together. A wind model is
obtained and augmented with the wind turbine model to
be used for wind speed estimation. Figure 1 shows the

basic subsystems and their interactions. The dominant
dynamics of the wind turbine come from its flexible struc-
ture. Several degrees of freedom could be considered to
model the flexible structure, but for control design mostly
just a few important degrees of freedom are considered. In
figure 2 basic degrees of freedom which are normally being
considered in the design model are shown. However in this
work we only consider two degrees of freedom, namely
the rotational degree of freedom (DOF) and drivetrain
torsion. Nonlinearity of the wind turbines mostly comes
from its aerodynamics. Blade element momentum (BEM)
theory (Hansen (2008)) is used to numerically calculate
aerodynamic torque and thrust on the wind turbine. This
theory explains how torque and thrust are related to wind
speed, blade pitch angle and rotational speed of the ro-
tor. In steady state, i.e. disregarding dynamic inflow, the
following formulas can be used to calculate aerodynamic
torque and thrust.

Qr =
1

2

1

ωr
ρπR2v3eCp(θ, ω, ve) (30)

Qt =
1

2
ρπR2v2eCt(θ, ω, ve) (31)

In which Qr and Qt are aerodynamic torque and thrust, ρ
is the air density, ωr is the rotor rotational speed, ve is the
effective wind speed, Cp is the power coefficient and Ct is
the thrust force coefficient. The absolute angular position
of the rotor and generator are of no interest to us, therefore
we use ψ = θr− θg instead which is the drivetrain torsion.
Having aerodynamic torque and modeling drivetrain with
a simple mass-spring-damper, the whole system equation
with 2 degrees of freedom becomes:

Jrω̇r = Qr − c(ωr −
ωg
Ng

)− kψ (32)

(NgJg)ω̇g = c(ωr −
ωg
Ng

) + kψ −NgQg (33)

ψ̇ = ωr −
ωg
Ng

(34)

Pe = Qgωg (35)

In which Jr and Jg are rotor and generator moments of
inertia, ψ is the drivetrain torsion, c and k are the driv-
etrain damping and stiffness factors respectively lumped
in the low speed side of the shaft and Pe is the generated
electrical power. For numerical values of these parameters
and other parameters given in this paper, we refer to
(Jonkman et al. (2009)).

Wind

AerodynamicsPitch Servo Tower

Drivetrain

GeneratorGen. Servo

vfw

ve
FTθ

vt

Q Pout

Qr ωr

ωg Qg

θin

Qin

Fig. 1. Wind turbine subsystems
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Fig. 2. Basic degrees of freedom

Linearized model As it was mentioned in the previous
section, wind turbines are nonlinear systems. A basic
approach to design controllers for nonlinear systems is to
linearize them around some operating points. For a wind
turbine, the operating points on the quasi-steady Cp and
Ct curves are nonlinear functions of rotational speed ωr,
blade pitch θ and wind speed v. To get a linear model of
the system we need to linearize around these operating
points. Rotational speed and blade pitch are measurable
with enough accuracy, however this is not the case for the
effect of wind on the rotor. Wind speed changes along the
blades and with azimuth angle (angular position) of the
rotor. This is because of wind shear and tower shadow and
stochastic spatial distribution of the wind field. Therefore
a single wind speed does not exist to be used and measured
for finding the operating point. We bypass this problem by
defining a fictitious variable called effective wind speed (ve)
which shows the effect of wind in the rotor disc on the wind
turbine. In our two DOFs model only the aerodynamic
torque (Qr) and electric power (Pe) are nonlinear. Taylor
expansion is used to linearize them.

∆Qr(ω, θ, ve) =
∂Qr
∂ω︸︷︷︸
a

∆ω +
∂Qr
∂θ︸︷︷︸
b1

∆θ +
∂Qr
∂ve︸︷︷︸
b2

∆ve (36)

∆Pe =
∂Pe
∂ωg︸︷︷︸
Qg0

∆ωg +
∂Pe
∂Qg︸ ︷︷ ︸
ωg0

∆Qg (37)

For the sake of simplicity in notations we use Qr, Pe,
θ, ω and ve instead of ∆Qr, ∆Pe, ∆θ, ∆ω and ∆ve
around the operating points from now on. Using the
linearized aerodynamic torque, the 2 DOFs linearized
model becomes:

ω̇r =
a− c
Jr

ωr +
c

Jr
ωg −

k

Jr
ψ + b1θ + b2ve (38)

ω̇g =
c

NgJg
ωr −

c

N2
g Jg

ωg +
k

NgJg
ψ − Qg

Jg
(39)

ψ̇ = ωr −
ωg
Ng

(40)

Pe = Qg0ωg + ωg0Qg (41)

A more detailed description of the model and linearization
is given in (Mirzaei et al. (2011)).

LPV model Collecting all the discussed models, matrices
of the state space model become:

A(γ) =


a(γ)− c
Jr

c

Jr
− k

Jr
c

NgJg
− c

N2
g Jg

k

NgJg
1 −1 0

 C =

(
1 0 0
0 1 0
0 Qg0 0

)

(42)

B(γ) =

b1(γ) 0

0 − 1

Jg
0 0

 D =

(
0 0
0 0
0 ωg0

)
(43)

In which x = (ωr ωg ψ)
T

, u = (θ Qg)
T

and y =

(ωr ωg Pe)
T

are states, inputs and outputs respectively.
In the matrix B, parameter b1 is uncertain. Therefore the
uncertain linear state space model becomes:

ẋ = A(γ)x+B(γ)u

y = Cx+Du

3.2 Control objectives

The most basic control objective of a wind turbine is to
maximize captured power during the life time of the wind
turbine. This means trying to maximize captured power
when wind speed is below its rated value. This is also
called maximum power point tracking (MPPT). However
when wind speed is above rated, control objective becomes
regulation of the outputs around their rated values while
trying to minimize dynamic loads on the structure. These
objectives should be achieved against fluctuations in wind
speed which acts as a disturbance to the system. In this
work we have considered operation of the wind turbine in
above rated (full load region). Therefore we try to regulate
rotational speed and generated power around their rated
values and remove the effect of wind speed fluctuations.

3.3 Offset free control

Persistent disturbances and modeling error can cause an
offset between measured outputs and desired outputs.
To avoid this problem we have employed an offset free
reference tracking approach (see Muske and Badgwell
(2002) and Pannocchia and Rawlings (2003)). Our RMPC
solves the regulation problem around the operating point.
However we regulate around the operating point (x∗k and
u∗k) which results in offset from desired outputs. To avoid
this problem in our control algorithm we shift origin in our
regulation problem to x0k and u0k instead. In order to find
new origins, we have augmented linear model of the plant
with a disturbance model that adds fictitious disturbances
to the system. The fictitious disturbances compensate the
difference between measured outputs and desired outputs.
State space model of the augmented system is:

x̃k+1 = Ãx̃k + B̃uk (44)

yk = C̃x̃k +Duk (45)

in which the augmented state and matrices are:
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Table 1. Performance comparison between gain
scheduling approach and linear MPC

Parameters Proposed approach Linear MPC

SD of ωr (RPM) 0.111 0.212
SD of Pe (Watts) 4.686× 104 8.048× 104

Mean value of Pe (Watts) 4.998× 106 4.998× 106

SD of pitch (degrees) 2.67 2.95
SD of shaft moment (N.M.) 256 293

x̃k =

x̂k+1

d̂k+1

p̂k+1

 Ã =

(
A Bd 0
0 Ad 0
0 0 Ap

)
(46)

B̃ = (B 0 0)
T

C̃ = (C 0 Cp) (47)

x̂k, d̂k and p̂k are system states, input/state and output
disturbances respectively. (A,B,C,D) are matrices of the
linearized model, Bd and Cp show effect of disturbances
on states and outputs respectively. Ad and Ap show
dynamics of input/state and output disturbances. For
more information and how to choose these matrices we
refer to (Muske and Badgwell (2002)) and (Pannocchia
and Rawlings (2003)). Since the disturbances are not
measurable, an extended Kalman filter is designed to
estimate them. The estimated disturbances are used to
remove any offset between desired outputs and measured
outputs. Based on this model and estimated disturbances,
x0k and u0k which are offset free steady state input and
states can be calculated:(

A− I B
C D

)(
x0k
u0k

)
=

(
−Bdd̂k
−Cpp̂k

)
(48)

After calculating these values, we simply replace x∗k and
u∗k in (18) with x0k and u0k which results in:

λk = x0k+1 −A(γk)x0k −B(γk)u0k −Bd(γk)d∗k (49)

4. SIMULATIONS

In this section simulation results for the obtained con-
troller are presented. The controller is implemented in
MATLAB and is tested on a full complexity FAST
(Jonkman and Jr. (2005)) model of the reference wind
turbine (Jonkman et al. (2009)). Simulations are done with
realistic turbulent wind speed, with Kaimal model (iec
(2005)) as the turbulence model and TurbSim (Jonkman
(2009)) is used to generate wind profile. In order to stay in
the full load region, a realization of turbulent wind speed is
used from category C of the turbulence categories of the
IEC 61400-1 (iec (2005)) with 18m/s as the mean wind
speed.

4.1 Stochastic simulations

In this section simulation results for a stochastic wind
speed is presented. Control inputs which are pitch refer-
ence θin and generator reaction torque reference Qin along
with system outputs which are rotor rotational speed ωr
and electrical power Pe are plotted in figures 3-6 (red-
dashed lines are results of linear MPC and solid blue lines
show the results of the proposed approach.) Simulation
results show good regulations of generated power and
rotational speed. Table 1 shows a comparison of the results
between the proposed approach and MPC approach based
on linearization at each sample point (Henriksen (2007)).

As it could be seen from the table and figures, the pro-
posed approach gives better regulation on rotational speed
and generated power (smaller standard deviations) while
maintaining a smaller shaft moment and pitch activity.
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0 200 400
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25

Fig. 3. Blade-pitch reference (degrees, red-dashed line
is linear MPC and solid blue line is the proposed
approach)
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41

42

Fig. 4. Generator-torque reference (kNM, red-dashed line
is linear MPC and solid blue line is the proposed
approach)
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Modelica	  library	  for	  simulation	  of	  bioprocesses	  
	  
Jan	  Peter	  Axelsson,	  senior	  consultant,	  
Vascaia	  AB,	  121	  77	  Stockholm,	  Sweden.	  
	  
Developing	  models	  for	  bioprocesses	  requires	  a	  combination	  of	  knowledge	  from	  different	  
fields	  like	  reactor	  dynamics,	  liquid-‐gas	  transfer,	  cell	  metabolism	  etc.	  	  Part	  of	  this	  
knowledge	  is	  well	  established	  and	  can	  be	  re-‐used,	  while	  modelling	  of	  cell	  metabolism	  or	  
product	  formation	  may	  be	  more	  unique.	  Further	  the	  same	  reactor	  may	  be	  operated	  in	  
different	  ways:	  batch,	  fed-‐batch,	  continuous,	  or	  using	  perfusion.	  	  Finally	  it	  is	  of	  interest	  
to	  evaluate	  various	  configurations	  of	  control	  systems.	  	  
	  
Here	  a	  small	  library	  in	  Modelica	  is	  developed	  for	  simulation	  of	  bioprocesses	  based	  on	  
text	  book	  know-‐how	  and	  simplified	  models	  of	  microbial	  cell	  growth	  and	  metabolism	  [1]	  
and	  [2].	  	  Despite	  its	  simplicity	  it	  is	  rich	  enough	  to	  require	  some	  thought	  on	  interfaces	  
and	  connnections	  between	  different	  parts	  to	  facilitate	  re-‐use	  of	  models.	  	  The	  presentati-‐
on	  will	  focus	  on	  this	  modelling	  or	  structuring	  aspectes.	  The	  library	  enables	  the	  user	  to	  
configure	  systems	  based	  on	  well-‐proven	  components	  on	  a	  high-‐level.	  	  
	  
The	  implementation	  of	  the	  library	  is	  made	  in	  JModelica	  which	  incorporates	  optimization	  
to	  the	  Modelica	  language	  [3].	  	  The	  optimization	  tools	  is	  used	  in	  two	  ways.	  	  In	  one	  
example	  a	  certain	  critical	  parameter	  is	  estimated	  in	  the	  microbial	  model	  during	  an	  
experiment	  in	  a	  continuous	  reactor,	  see	  Figure	  1.	  In	  another	  example	  the	  same	  culture	  is	  
run	  in	  fed-‐batch	  mode	  and	  the	  optimal	  feed-‐profile	  is	  determined.	  

	  
Figure	  1.	  Shift-‐up/down	  of	  flow	  rate	  in	  continuous	  cultivation	  of	  yeast	  (noisy	  line)	  in	  
comparison	  with	  simulation	  (solid	  line),	  see	  [1].	  
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Modeling and simulating an electrical grid
subsystem for power balance analysis ?

Luminita C. Totu, John Leth, Rafael Wisniewski

Department of Electronic Systems, Aalborg University
(e-mail: lct,jjl,raf@es.aau.dk)

Abstract: We present an approach for power balance analysis in Smart Grids where the physical
behavior of different electrical devices is modeled at unit level, and the collective load and
generation curves can later be obtained by aggregation. In this way, new behaviors, flexibilities
and intelligent strategies for power consumption and generation can be easily introduced at the
user-level and the system-level impact analyzed on the aggregated profiles. The future aim is to
investigate bottom-up balancing strategies, where units with a flexible energy band can react
independently to power balance signals such as dynamic prices.

Keywords: power balance, smart grid, modeling

1. THE GRID SUBSYSTEM

In the following, the term grid subsytem is used to refer to
a geographical region of a national electrical network com-
posed of low and medium voltage lines and the end-users,
with only one connection to the high voltage transmission
system.

The grid subsystem will be modeled as an aggregation of
individual electrical units interconnected by the electrical
network. Only the active power is considered and the
electrical network is simplified to a summation representa-
tion (Fig. 1). While clearly incomplete, this simplification
captures the first essential property of the electrical power
system: power consumption must be met in real-time by
the power production.

Fig. 1. Representation of a grid subsystem, where each
Ui element is an electrical device and the summation
element Σ represents the electrical network.

At every time instance, an individual unit connected to
the grid is either a producer or a consumer of active power.
The outputs of all units, producers (+) and consumers (-),

? This work is supported by the Southern Denmark Growth Forum
and the European Regional Development Fund under the project
”Smart & Cool”.

need to be in balance. Whenever the sum is not zero, there
is an instantaneous exchange through an external sink-
source element that maintains balance. The sink-source
has signification of an inter-regional electrical transmission
connection. As anticipation, the external power exchange
will be used as part of an optimization objective. For
example, if the objective is to keep the subsystem indepen-
dent of the interconnection link, then the optimal power
exchange is 0.

Each electrical unit Ui operates independently and is
composed of two systems: the service module and the
physical device (Fig. 2).

Physical DeviceService Module

External
 factors

External
events

On/Off;
set-point;
parameters

Power
output

Fig. 2. Each electrical unit is composed of a physical device
and a service module.

The physical device performs an energy converting task
according to some configuration parameters and refer-
ences, and operates under disturbances, such as weather
and ambient factors. The output of the physical device
is the electric power, either produced or consumed. The
functionality will generally be modeled by employing first
principles from physics, resulting in a mathematical de-
scription by differential equations.

The service module operates the ”knobs and buttons” of
the physical device, such as ON/OFF controls, parameters
or reference settings. The service module is subject to
external events but can also have internal logic or time
plans. Modeling of the service module will include discrete
event formalisms and stochastic elements.
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In a traditional grid, the power balance is maintained at
the global level by a number of large capacity power gen-
erators with highly controllable characteristics and which
can quickly adapt their power output to new levels. The
baseline production and availability of these generators is
planed ahead of time based on consumption and gener-
ation predictions. In the Smart Grid, the power balance
control needs to be distributed in the grid to cope with
increasing intermittent generation and increasing peaks in
the load, and more end-users of electricity will take an
active part in this process.

Some form of coordination is needed among the indepen-
dent units in the SmartGrid to maintain power balance at
the system level. We consider a feedback mechanism that
shares a power balance signal from the global level to the
local units. In particular, the power flow measured in the
sink-source can be shared with the service module (Fig.
3). Flexibility profiles in the service module will make it
possible to react to the balance signal within limits of local
operation constraints.

Service Module

External
events

On/Off;
set-points;
parameters

Power
balance
signal / sink
source flow

Fig. 3. The service module receives information about the
global subsystem.

2. UNIT MODELS

This section presents simplified unit models for both power
consuming and power producing devices with intermittent
characteristics. It is mentioned that for the balance power
problem only slow and mid-range dynamics are considered.
Fast dynamics are assumed to be compensated by a grid
frequency control scheme that is not discussed here.

2.1 Devices with externally driven ON/OFF states

Many types of electrical units such as lights, TVs, etc.,
have an ON/OFF operation that is directly driven by
external events. This behavior can be represented as a
continuous time stochastic process with a discrete state-
space of two elements: x = 1 is the ON state and x = 0 is
the OFF state.

x=0 x=1

eON

eOFF

Fig. 4. The ON/OFF behavior

It is the occurrence in time of the events that is of
particular interest. It can be considered that the ON and
OFF events occur in a purely random manner, but with
a varying frequency depending on the time of day. That

is because, for example, it is more likely to switch a
light in the evening than at midday. Two independent,
nonhomogeneous Poisson processes will be used next to
represent the arrival of the ON and OFF events. For an
introduction to Poisson processes and the more general
point process, we refer to Cox and Miller (1965).

Let ∆t be a small time interval and N(a, b) a variable
counting the number of events occurring in the interval
(a, b]. Looking in the small time interval ∆t, there are
three possibilities: no event, one event, or more than
one event occurs. The probability of having more than
one event occurring is very low, the probability of one
event occurring is dependent on rate parameter varying
with the time, and the probability remaining until 1
corresponds to the no event case. This is the definition of
a nonhomogeneous Poisson process. The notation o(∆t)
below is used to denote terms which vanish with a small
time interval, lim∆t→0

o(∆t)
∆t = 0.prob

(
N(t, t+ ∆t) = 1

)
= λ(t)∆t+ o(∆t)

prob
(
N(t, t+ ∆t) ≥ 2

)
= o(∆t)

(1)

We let λON (t) and λOFF (t) denote the variable rates of
the two types of events. These can be taken as piecewise
constant functions along the hours of the day, with differ-
ent profiles for different devices. The ON/OFF mechanism
together with the rate functions is enough for simulation
purposes.

It is also of immediate interest to derive the probability
distribution of the states, i.e. probx=1(t), and also to
characterize a group of devices in terms of number of units
in state x = 1 at a given time. These will be addressed in
the future work.

About the physical device modeling, when active, x = 1,
the units included in this category can be considered to
consume a constant amount of power although some loads
can vary slightly, e.g. a radio for different volume settings,
or a computer in idle mode versus while performing
intensive computations. In a simple approximation, the
power consumption p of a unit U will be written as:

p(t) = −cx(t), (2)

where c is a device specific constant.

2.2 Space Heating and Cooling devices

This category contains units that are always in operation
and the ON/OFF power consumption cycle is decided
internally in the service module. Space heating devices op-
erating on electricity, such as heat-pumps, air-conditioning
units used for cooling and refrigerators are examples of
devices with a switched operation based on thermostat
settings.

As example, a simple model for a compressor cooled room
is described below based on Tahersima et al. (2010),
Halvgaard et al. (2012) and Hovgaard et al. (2010). It
can correspond to a storage room that is kept at a lower
temperature than the ambient. The physical system is
composed of the cold room and the refrigeration system,
as shown in Fig. 5. The notation is described in Table 1
below.
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Cold Room Refrigerator
system with
compressor

Ta, Ua,r

Ambient

Tr, Cp,r

Power
consumption

Fig. 5. A cooling system composed of a refrigeration
system and a cold room in an ambient environment.

The physical system is described by the thermodynamic
energy balance equation on the cold room.

Cp,rṪr = Qa,r −Qr,e (3)

The heat transfer between the ambient and the room Qa,r

can be written as:

Qa,r = UAa,r(Ta − Tr) (4)

Table 1. Notation

Ta(t) Ambient temperature, an uncontrollable but
measurable, time varying value

Tr(t) Cold room temperature

Cp,r Heat capacity (at constant pressure) of the
cold room

Qa,r Heat transfer from the ambient to the cold
room

UAa,r Heat tranfer coefficient (thermal resistance)
between the ambient and the cold room

The assumptions here are that the temperature Ta and
the heat transfer coefficient between the ambient and the
room UAa,r are known. Thus it is possible to calculate the
evolution of the temperature in the cold room over time.
By combining the equations, we can write the following
description of the cool room in continuous-time variable
Tr.

Ṫr(t) =
UAa,r

Cp,r

(
Ta(t)− Tr(t)

)
− Qr,e

Cp,r
(5)

The decision logic module is related to the start and stop of
the compressor. The ON/OFF behavior from Fig. 4 applies
also to the cold room, where the events eON and eOFF have
the triggering mechanism{

Tr > Tref+ → eON

Tr < Tref− → eOFF
, (6)

with Tref+ and Tref− temperature thresholds, parameters
of the service module. When activated, the power con-
sumption of the compressor is considered constant.

p(t) = −c x(t) (7)

The only information missing is a relation that describes
the amount of heat absorbed by the refrigerator system
from the cold room Qr,e. This relation depends on the
properties (performance) of the refrigeration cycle, the
compressor state, and a heat transfer constant with the
cold room, but is not expanded at this point.

Additionally, a stochastic term can be added to the dy-
namic description (5) to account for other heat transfer
processes occurring in the cold room, for example doors
opening and small variations in the overall heat capacity of
the room. Such a model, and also results for the aggregated
consumption of a groups of similar devices, are considered
in Malhame and Chong (1985) and Malhame (1990).

2.3 Wind turbines

There are different types of devices that generate electrical
power from wind. In this section we consider the most
common wind turbine design, the horizontal axis machines
with 3 blades, operating independently. Wind-farms mod-
els will be addressed in future work.

Every type of turbine has a static power curve character-
ization. The power curve relates the electrical output of
the turbine to the input wind-speed, as shown in Fig 6.

The power curves are poor predictors for the instantaneous
power output as they do not contain any information on
the dynamics of the turbine subsystems nor references
about the fluctuations of the wind, but they are a good
representation as an average behavior over longer periods
of time. Power curves will be used here as an approximated
model because they have the advantage of being easily
available for different turbine models, and can be used for
all types of turbine designs.

Fig. 6. Power curve for typical Danish 600 kW turbine
with stall control, from www.windpower.org

Fig. 7. Typical power output with steady wind speed
for a pitched controlled turbine, www.wind-power-
program.com

A simple service module for wind turbines is described
next. The wind-turbine generator is OFF for wind-speeds
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under 5m/s, ON and tracking the power curve for wind-
speeds smaller than 23m/s. If the wind-speed exceeds this
value, the turbine is stopped. Besides wind-farms, medium
size CHPs (combined heat and power plants) and solar
panels will be addressed in future work.

3. FUTURE WORK ON SCENARIOS AND
SIMULATION

A scenario will contain multiple units of different types,
e.g. 2000 light units, 100 ground heat pump devices, and
20 wind turbines. It possible to create a scenario using
real data from a geographical region provided sufficient
information is available on the number and characteristics
of the consumers and producers in the area. Observational
data on air temperature, solar irradiation and wind is
available from different weather stations in the world, in-
cluding Denmark. By running software simulations, daily
and monthly aggregated load and generation curves are
produced. The comparison of aggregated curves from the
simulation with those from real data, in terms of main
trends, will serve as model validation for the both unit
models and the aggregation methods.

The purpose of the scenarios is to test different user-level
energy strategies and investigate how the local behaviors
scale up and affect the electric power balance of the
subsytem.

For example, the temperature thresholds of the refriger-
ator thermostat can be changed in response to a power
balance signal, within the limits permissible for the cold
room operation. When the grid subsystem has an excess
of power, the service module of the refrigerator system
can lower the temperature of the cold room by reducing
the threshold values Tref− and Tref+. The compressor will
consume more power, but will do so at an advantageous
time, when the costs are lower and energy can be stored
locally for later use. When there is a deficit of power,
the service module can choose to reduce the use of the
compressor and increase the threshold temperatures. This
simple strategy appears to be ”smart” at user level, but
needs to be validated against an aggregated scenario, as
it can have pitfalls. When more than one devices react
in real-time to the same signal, it is possible that the
system over-reacts and an imbalance of the opposite sign
is created. Also the local effect of the strategy over time
can turn out not to be beneficial. Increasing the threshold
temperature can be too costly over time if more power
needs to be consumed at inappropriate times for recovery.

For wind turbine systems, the service module can run a
delta control (nominal underproduction) which allows for a
band of flexibility. The turbine will produce less in normal
operation, but has the possibility of compensating in power
deficit situation. By analyzing scenarios it will be possible
to evaluate when this trade-off is sufficient to assure the
stability of the subsystem.
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Abstract: Energy-efficiency is one of the big issues of the 21st century. Due to the limited
resources of primary energy carriers and their environmental load, a higher effectiveness for their
use has to be achieved. Even small improvement in models, observers and/or control-strategies
can have a large impact on consumption of energy carriers. The system we are looking at is a
fishing vessel (trawler). The overall aim is therefore, to reduce energy consumption and, at the
same time, preserve or even enhance fish quality.

The vessel is driven by a (diesel-) main engine, which produces electricity. All of the
vessel’s consumers, such as electric propulsion motors, freezing units, processing units, cooling
pumps, ship operation equipment and other facilities are powered by electric energy from the
main engine. Besides the propulsion motors, the freezing units are the biggest energy consumers
on board. The caught fish shall, after having been processed (blooded, headed and gutted), be
frozen as fast as possible. The process, that is used to freeze the fish, is a vapor-compression
refrigeration circle process run with ammonia (NH3). The ammonia flows through the freezer’s
plates, cools them down very strongly (−38 ◦C) and due to direct contact, the fish gets frozen.

The model, that is taken for simulating the temperature distribution throughout the
fish block with thickness L, is the one dimensional heat-equation, a linear partial differential
equation: ρ (T ) · c (T ) · ∂T (t,x)

∂t = λ (T ) · ∂2T (t,x)
∂x2 .

It has to be noticed, that the parameters ρ (T ), c (T ) and λ (T ) change with temperature.
Simplified, the fish can be considered as a thermodynamical alloy of many basic components,
such as water/ice, protein, fat, carbohydrates and ash. The parameters can therefore be
calculated by ρ (T ) =

∑
i ρi (T ) · xi, c (T ) =

∑
i ci (T ) · xi and λ (T ) =

∑
i λi (T ) · xi, where

ρi (T ), ci (T ) and λi (T ) correspond to component i and xi represents the mass fraction of
component i.
Note, that not 100% of the water in the fish gets frozen in the temperature range, we are
looking at. At −30 ◦C only about 90% of the water is frozen. The reason for this is, that, when
freezing, solutes remain in the liquid phase, lowering its freezing point. Just at about −70 ◦C
all the water can be considered as frozen.

A phenomenon, that has to be considered due to the large fraction of water present in
fish (60%–80%), is the latent heat of fusion. This means, that there will occur heat transfer at
the freezing point without lowering the temperature. This can be explained by energy storage
present in the formation of water molecules. This energy has to be removed in order to enable
water molecules to nucleate and ice crystals to form and grow.
Ice crystal growth has a big influence on quality of the product. Dependent on the speed of
freezing, ice crystal sizes differ. Slow freezing results in large ice crystals and fast freezing
in small ice crystals, respectively. Large ice crystals emerge when extracellular freezing
happens prior to intracellular freezing, which disrupts the thermodynamical equilibrium. As a
consequence, fluid is drawn from the inside of a cell to the outside, causing destruction of cell
walls and thus reducing the quality.

In this work, we present a mathematical model for the temperature of fish in vertical
plate freezers. The temperature distribution will be linked to a quality measure. This model
will be useful when designing control strategies for the on-board energy system and, at the
same time, monitoring fish quality.
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Abstract: Integrating large amounts of renewable energy sources like wind and solar power
introduces large fluctuations in the power production. Either this energy must be stored or
consumed right away. Storage solutions are very expensive and not applicable everywhere. So
utilizing all of this green energy as it is produced requires a very flexible and controllable power
consumption. Examples of controllable electric loads are heat pumps in buildings and Electric
Vehicles (EVs) that are expected to play a large role in the future danish energy system. These
units in a smart energy system can potentially offer flexibility on a time scale ranging from
seconds to several days by moving power consumption, exploiting thermal inertia or battery
storage capacity, respectively. Using advanced control algorithms these systems are able to
reduce their own electricity costs by planning ahead and moving consumption to periods with
green and cheap electricity. This situation occurs when there is a lot of excess wind power in
the system which is reflected in the electricity price and in turn creates an incentive to absorb
the energy.
In this paper a decentralized control strategy is investigated where prices indirectly influence the
total power consumption of the smart energy systems connected to the power grid. Compared
to a direct control strategy the complexity of the problem is reduced and decreases both the
computation efforts and the need for communication. However, not only the current price,
but a forecast of the expected future price should also be available in order for the individual
units to plan ahead in the most feasible way. This is necessary since Economic MPCs do not
respond to the absolute cost of electricity, but to variations of the price over the prediction
horizon. Economic MPC is ideal for price responsive units where the model is known very well.
Constraints and disturbance forecasts are straight forward to implement in the controller. MPC
relies on the receding horizon principle, where a new optimal control signal is calculated at each
time step for the prediction horizon. Only the optimal control signal at the current time step is
implemented and consequently closed loop feedback is obtained.
A generic model of an energy component is proposed in this paper, so the same Economic MPC
framework can be used to design controllers for the different units. However, different signals
and forecast, e.g. weather forecasts and usage patterns, are used depending on the unit. The
generic state space will be a discrete time state space model with hard input constraints and
soft output constraints. For the considered energy systems there is usually a strict limit on the
maximum available power, but the output, e.g. a temperature or an EV battery state of charge,
can often be relaxed. The output constraints thus define a band of operation, that can be time
varying, and the controller must keep the output within these limits in the cheapest possible
way.
In this paper the price forecast available by all units is assumed to be known and equal to the
day-ahead elspot price from the Nordic electricity exchange market NordPool. The resulting
electricity cost savings compared to an MPC with no price considerations are around 30-50%
for the chosen units. In future work the price could be replaced by an intrahour price that is
related to the deviation between the planned and the actual consumption. In this way all units
are motivated to stick to the predicted consumption plan.

Keywords: Economic Model Predictive Control, Smart Grid, Heat pump, Electric Vehicle
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Abstract: With the perspective of investigating a suitable control design for autotrophic nitrogen removal, 

this work presents a complete model of the SHARON/Anammox reactor sequence.  The dynamics of the 

reactor were explored pointing out the different scales of the rates in the system: slow microbial 

metabolism against fast chemical reaction and mass transfer. Likewise, the analysis of the dynamics 

contributed to establish qualitatively the requirements for control of the reactors, both for regulation and 

for optimal operation. Work in progress on quantitatively analysing different control structure (pairing of 

controlled variables with manipulated variables) as well as exploring the feasibility of advanced process 

control including model predictive control.  

Keywords: Autotrophic nitrogen removal, model predictive control, multivariable control, plantwide 

control, modelling 



1. INTRODUCTION 

Ammonium is one of the most abundant and important 

pollutants related with the waste water treatment, and should 

be removed before discharge, preventing problems for the 

biological media as eutrophication. As a consequence, ever 

more strict regulations set low nitrogen concentration 

thresholds for discharge. The first widely used process used 

for nitrogen removal consisted on nitrification and 

denitrification processes over nitrate. However, this process 

presents some disadvantage, namely high energetic 

consumption for oxygen supply, high tank volume and the 

need external carbon sources. A number of alternative 

operations for nitrogen removal have been developed in the 

last decades in order to reduce aeration costs, external carbon 

sources and sludge production the energy consumption, the 

footprint and the need of using carbon sources.  

The SHARON process (Single reactor High activity 

Ammonia Removal Over Nitrite, Hellinga et al. 1998) was 

primarily based on the following sequences: i) the partial 

nitrification of the ammonium by aerobic oxidizing bacteria 

(AOB) and ii) the denitrification to nitrogen gas by 

heterotroph bacteria (HB). 

Another option to this second step is the so-called anaerobic 

ammonium oxidation (Anammox, Murder et al.,1995). The 

process achieves a total ammonium conversion using 

equimolar amounts of ammonium and nitrite. This process 

presents some additional advantages, like the lowering of 

gases with greenhouse effect (CO2 and NO2) or the 

elimination of external carbon sources. Its main drawback is 

related to the low growth rate of Anammox bacteria, 

involving the use of sludge retention systems, e.g. 

membranes, granular systems. Besides, in order to achieve a 

high elimination of all the nitrogen sources, it must be 

ensured that the ammonium and nitrite are fed in stable, close 

to equimolar proportions .  

The partial nitrification can be achieved by a previous 

SHARON reactor coupled whit the Anammox process or 

both reactions can be implemented in a single reactor 

(CANON). In this case the SHARON-Anammox process is 

studied. The partial nitrification step: 

   
           

          

And the Anammox process follows the next equation: 

   
     

          

It has been reported that that with constant parameters, in the 

supposed corrects values, the ratio nitrite:ammonium might 

deviate from the ideal ratio and endanger the operation. Some 

strategies were applied in this field in order to optimize the 

nitrogen removal costs (Volcke et al. 2005). These strategies 

are based in different control loops, feedback and cascade, 

that fix set points for the key variables in the process, as pH 

or dissolved oxygen (DO), but always operating with them as 

independent loops. In order to get a better optimization of the 

global process and advanced control strategy is going to be 

applied. MPC (model predictive control) use the models of 

the process and predicts how is going to evolve it, and 

optimize at each time the set points of the individual control 

loops. Another objective is establish a procedure to configure 

and implement a MPC controller in different process, due 

nowadays there is no unification criteria to use them. 

A scheme of the global waste water treatment plant is 

included in Appendix 2. 

2. MODEL DEVELOPMENT 

Both SHARON and Anammox reactor were modeled as 

continuous stirred tank reactors (CSTR). Assuming that the 
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reactor hold-up and all the inflows and outflows have the 

same constant density, the total mass and energy balances 

are: 

3 ,in acid base CH OH out in net out

dV
F F F F F F F

dt
      

    (1) 
( )( )( ) R jw R R out env

in in out out

jP P

HU d H T Td V T
F T F T

dt C V C



 

    
     

  


 

(2) 

Additionally, it has been assumed that the Cp is equal and 

constant for every stream (2).  

The individual mass balances developed are set up for the 

lumped compounds, because every change in a component 

involved in a chemical equilibrium causes changes in all the 

concentrations of all components that take part in the 

equilibrium. The individual mass balance for a component i 

is: 

*

, , ,

( )
( )i

in net i in net out i L i i i i

d V C
F C F C k a C C V r V

dt


         

(3) 

The components considered are: H+, NH4+, NH3, HNO2, 

NO2-, CO2, HCO3-, CO32-, H2PO4-, HPO42-, NO3-, O2, 

N2, ammonia oxidizing bacteria (AOB), nitrite oxidizing 

bacteria (NOB), heterotrophic bacteria (HB), CH3OH and Z 

(charge not involved in biological reactions).  Since some of 

the previous chemical species are in chemical equilibrium, 

the model works with lumped components, namely: 

3 4

2
2 2

2
2 3 3

2
4 2 4

2

TNH NH NH

TNO HNO NO

TIC CO HCO CO

TIP HPO H PO

C C C

C C C

C C C C

C C C





 

 

 

 

  

 
 

 

2.1 Reaction modelling 

Five different biological reactions are included in the 

SHARON model. The nitrification process is divided in two 

different steps: the oxidation of the ammonia to nitrite, 

carrying out by AOB, and the oxidation of the nitrite to 

nitrate, carrying out by NOB. The denitrification of both 

compounds is achieved by heterotrophic bacteria, as the 

oxidation of the methanol. The stoichiometric coefficients are 

showed in the Petersen matrix (tables 1 and 3). In order to 

take account of the microbial growth in the mass balances, 

the biomass composition is fixed as CH1.8O0.5N0.2.  

The volumetric conversion rate for a component i is defined 

as: 
5

1

i ij j

j

r A 


 
  (4)

 

where Aij is the corresponding stoichiometric coefficient of 

the Pedersen matrix, and j is the process rate considered. 

The Pedersen matrix and the expressions of the process rates 

for the two reactors appear in the Appendix A.  

2.2 pH calculation. 

 The microbial activity affects to the pH because exists a 

production and consumption of protons. These pH changes 

must be modeled in order to obtain the correct values during 

the reactor operation. In this case it is used a model based in a 

charge balance. The nonlinear system of equations is solved 

with a multidimensional Newton-Raphson method.   

 

 

2.3 Gas-liquid transport 

Gases are transported between both phases following the 

model showed below: 
*( )i L i i iTR k a C C  

  (5) 

The main gas in the process is the oxygen, and it’ll be also a 

control variable of the process, so is the only modeled gas 

compound. With the Henry law the oxygen equilibrium 

concentration is obtained: 

,*

o

G i

i

i

C
C

m


         (6) 

 

3 2403 2.52 3.56 10im T T      
  (7) 

 

3. SIMULATION RESULTS 

The models were tested using different cases study. For the 

SHARON reactor the conditions established in the 

simulations of A.Galí et al. in 2006 were used. This reactor is 

used to achieve a suitable influent for the Anammox reactor, 

with a ratio NO2-/NH4+ close to 1.  With a hydraulic 

retention time of 1 day a removal efficiency of the 50% is 

achieved. 

 

 
Figure 1: Simulation of KLa step of 5% 

 

The response to-step inputs were also simulated to investigate 

the dynamics of the process. The first step consists in an 

increase of 5% in the kLa value. A higher growth rate is 

observed for AOB bacteria. In 5 days a new steady state is 

achieved. Two phenomena with different rates can be 
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observed. A peak is observed in the oxygen concentration 

because at the beginning of the step, corresponding to the 

higher oxygen mass transfer while the number of  oxygen-

consumming bacteria has not increased yet. As the bacteria 

concentration increases more ammonium is converted in 

nitrite and the concentration of oxygen decreases from the 

initial response.  

With a decrease of 1% in pH the bacteria growth is lower, so 

they are in less concentration, while the oxygen level 

achieves higher values and the less ammonium is removed 

from the reject water. It is needed 11 days to achieve the new 

steady state.  

 
Figure 2: Simulation of pH step of -1%. 

 

 

Figure 3: Simulation of HRTstep of +5%. 

 

Finally, the decrease of 5% of the output flow implies an 

increase of 5% of the hydraulic retention time, which allows 

a higher microbial growth of AOB. In 8 days the new steady 

state is achieved, with a decrease of the dissolved oxygen, 

because there are more bacteria consuming oxygen, but a 

peak is observed. This means that the DO has a faster 

response to flow changes than the bacteria concentration. 

Also a higher ammonium conversion is achieved. 

The Anammox process was tested with the conditions used in 

the experiment of Güven et al. in 2004 in a lab-scale reactor. 
The ratio NO2

-
/NH4

+
 should be higher than 1 for 

stoichiometric reasons. Whit a hydraulic retention time of 5 

days the ammonium removal efficiency is 94% and nitrite 

removal efficiency is higher than 99%. The overall nitrogen 

removal in the process is 90%. 

 

6. CONCLUSIONS AND PERSPECTIVES 

The main variable that links both reactors is the ratio NO2-

/NH4+, which should be close to 1. The inspection of some 

step responses led to a qualitative screening of potential 

manipulated and controlled variables. For instance, pH 

should be controlled protons are produced because in the 

biological reaction driving the process to conditions out of 

the optimum range for the microbial growth. Another key 

parameter is the dissolved oxygen that has to be kept in a 

level that allows the growth of the AOB but prevents the 

growth of NOB or a too large conversion of ammonium. The 

hydraulic retention time play a similar role to oxygen as an 

intermediate value is needed to wash out the NOB but no the 

AOB. Temperature is also important because with low 

values, between 5-20 C, NOB growth faster than AOB. All 

this parameters can be controlled separately with different 
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feedback loops and fixed set points, but also cascaded 

structures can be used to actualize the set points when the 

ratio NO2-/NH4+ changes. Other possibilities are 

multivariable control strategies such as MPC. The 

implementation of an advanced control structure based on the 

modeling results will be investigated during future activities 

in this project. 
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Appendix A. Reaction stoichiometry and expressions 

Appendix B. Waste Water Treatment Plant with a SHARON-

Anammox process. 
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Appendix A. Reaction stoichiometry 

Table1. Gujer matrix of the SHARON process 
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 Table 2: Biological growth rate expressions of the SHARON process. 

 

3 2 2

3 3 2 2 2 2

,

1 max

,

AOB

NH O I HNOAOB

AOBAOB AOB AOB

NH NH O O I HNO HNO

C C K
X

K C K C K C
    

  
 

2 2

2 2 2 2

2 max

HNO ONOB

NOBNOB NOB

HNO HNO O O

C C
X

K C K C
   

 
 

32

2 2 2 3 3 3

,2 2 2
3 max 2 ,

2 , 2

CH OHI OdNO TNO TNO
hetdNO het an

NO TNO I O O TNO NO CH OH CH OH

CKC C
X

K C K C C C C K
    

   
 

3 3 32

3 3 2 2 3 3 3

,3

4 max 3 ,

, 2

NO NO CH OHI OdNO

hetdNO het an

NO NO I O O TNO NO CH OH CH OH

C C CK
X

K C K C C C C K
    

   
 

32

2 2 3 3

5 max ,

CH OHOmet

hethet het ox

O O CH OH CH OH

CC
X

K C C K
   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proceedings of the 17th Nordic Process Control Workshop 
Technical University of Denmark, Kgs Lyngby, Denmark 
January 25-27, 2012

181



 

 

 

 

 

 

 
Table 3: Gujer matrix of the Anammox process. 
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Table 4: Biological growth rate expressions of the Anammox process. 
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Appendix B. Waste Water Treatment Plant with a SHARON-Anammox process: 
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Abstract: We have developed a process model of fungal fed-batch fermentations for enzyme production. In these 

processes, oxygen transfer rate is limiting and controls the substrate feeding rate. The model has been shown to 

describe cultivations of both Aspergillus oryzae and Trichoderma reesei strains in 550L stirred tank pilot plant 

reactors well. For each strain, 8 biological parameters are needed as well as a correlation of viscosity, as 

viscosity has a major influence on oxygen transfer. The parameters were measured averages of at least 9 batches 

for each strain. The model is successfully able to cover a wide range of process conditions (0.3-2 vvm of 

aeration, 0.2-10.0 kW/m
3
 of specific agitation power input, and 0.1-1.3 barg head space pressure). Uncertainty 

and sensitivity analysis have shown that the uncertainty of the model is mainly due to difficulties surrounding 

the estimation of the biological parameters and to a lesser degree the uncertainty of the viscosity and mass 

transfer correlations. Until now, the model has been applied to evaluation of energy efficiency at different 

process conditions and bioreactor designs. Our goal is to expand the model to cover both pilot plant and 

production scale so that the model may assist downscaling operations as well as production optimization and 

production planning. Further developments of the model will enable more advanced applications such as model 

based control and simulated process optimization.  

Keywords: process model, model based control, uncertainty analysis, sensitivity analysis, Aspergillus oryzae, 

Trichoderma reesei, pilot plant bioreactor, oxygen transfer, rheology 
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Abstract: This work explores the control of biodiesel production via an enzymatic catalyst. The process 
involves the transesterification of oils/fats with an alcohol (usually methanol or ethanol), using enzymatic 
catalysts to generate mono-alkyl esters (the basis of biodiesel) and glycerol as by-product. Current 
literature indicates that enzymatic processing of oils and fats to produce biodiesel is technically feasible 
and developments in immobilization technology indicate that enzyme catalysts can become cost effective 
compared to chemical processing. However, with very few exceptions, enzyme technology is not 
currently used in commercial-scale biodiesel production. This is mainly due to non-optimized process 
designs, which do not use the full potential of the catalysts in a cost-efficient way. Furthermore is it 
unclear what process variables need to be monitored and controlled to ensure optimal economics. Critical 
to the project is to develop a control methodology to optimize the productivity of biodiesel production 
(e.g. the dosing of alcohol to minimize catalyst deactivation, minimization of waste and delivering 
consistent product quality meeting specifications).  
For production of biodiesel (BD) via an enzymatic route, batch operation is a straightforward and 
efficient means for producing BD with its main disadvantage being the downtime between batches. For 
large-scale production of biodiesel, continuous operation is an attractive alternative as it enables efficient 
use of manpower and capital assets including equipment and raw materials. Currently our group is 
evaluating various process configurations for continuous BD production in packed bed reactors (PBRs), 
continuous stirred tank reactors (CSTRs) and a combination of the aforementioned reactors in series. 
These configurations will be reviewed to identify the process variables that need to be monitored and 
controlled. 
Keywords:  Biodiesel, Enzymatic, transesterification, Modelling and Simulation, Process control 
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Equation
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AbstractIn this work we present an efficient method for solving an optimal control problem
for a batch reactor, where a temperature dependent exothermic reaction takes place within
a preset duration and within specified temperature bounds. The Hamilton-Jacobi-Bellman
(HJB) equation corresponding to the optimal control problem is nonlinear and has infinite
boundary conditions due to the state constraints (bounds on temperature and concentration),
which makes it troublesome to solve. However, using a logarithmic transformation, the HJB-
equation is transformed into a linear partial differential equation with zero boundary conditions.
Furthermore, the problem can then be solved using variable separation such that the time-
dependent part has an analytical solution and the state dependent part becomes a linear
eigenvalue problem which can readily be solved using standard software.
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Figure 1. Illustration of the batch process.

1. INTRODUCTION

Consider the system illustrated in Figure 1, which is a
batch process where a substance A reacts at a rate

r = k0e
−

E
RT(t) cA(t) (mol/l/s)

where E is the activation energy (J/mol), R is the ideal gas
constant (J/mol/K), T is the temperature (K), k0 is the
reaction rate coefficient (1/s) and cA is the concentration
of A (mol/l). The reaction is exothermic, releasing ∆Hr

Joule per mol A reacted.

The dynamics in the coolant system is ignored for simplic-
ity and therefore we may consider the coolant temperature
Tc (see Figure 1) to be the manipulated variable. The
heat transfer coefficient α is assumed to be a constant
parameter but in reality the transfer depends on local
flows inside the reactor, coolant temperature fluctuations,
flow fluctuations etc. These uncertainties and others, such
as nonuniform reactions, are considered as one random
disturbance that adds to the coolant temperature.

For control purposes we may write the mass and the energy
balances for this system as

V
d

dt
cA(t) =−k0V e

−
E

RT (t) cA(t)

V ρcp

d

dt
T (t) = ∆Hrk0V e

−
E

RT(t) cA(t)

−αc(T (t) − Tc(t) − ∆Tc)

where V is the volume (l), ρ is the density (assumed
unchanged by the reaction), cp is the specific heat capacity
(also assumed unchanged), and ∆Tc is the disturbance.

Selecting cA to be the first state, T to be the second state
and assuming the noise can be described by a Gaussian
white noise with variance σ2, we may write this on the
form

ẋ = f(x) + G(x)(u + w), (1)

where

f(x) =

[
−k0x1e

−
a

x2

k1x1e
−

a
x2 − k2x2

]

and G(x) =

[
0
k2

]

where k1 = ∆Hrk0/(ρcp) and k2 = αc/(ρcpV ).

2. CONTROL PROBLEM

The batch process is operating with a cycle time tf and at
the end the concentration of A should have decreased to
cA,f (with a corresponding produce of B). To maintain a
sufficient rate of reaction the temperature should never go
below Tmin and to avoid problems of overheating it should
never go above Tmax (see Figure 2). The control problem
can the be formulated as an optimization problem

min
u

V (x(t), t)

subject to Eq. (1) and

0 ≤ x1(t) ≤ cA(0)

Tmin ≤ x2(t) ≤ Tmax

(2)
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wh β
T

ere the coefficients n ∈ R are given by the projection
max of the final condition

c
A
(0) (

γ2
)

Z(tf ,x) = exp −
2
(x1 − cA,f)2 (8)

σ
Tmin onto the space spanned by the eigenfunctions φn.
c

A,f
The optimal control policy can then be determined as

0
t σ2
f

u = GT (
Z

∇Z)T

Figure 2. Constraints on the temperature and concentra-
tion trajectories. This is illustrated by an application of the method to

the reactor system described by Lagerberg and Breitholtz
where the cost function is [1997].{∫

tf
}

V (x(t), t) = E u2(τ)dτ + γ(x1 − cA,f)2

t REFERENCES

As can be seen there is no cost associated with the state P. Dorato, T. C. Abdallah, and V. Cerone. Linear
trajectories although the method used would allow any Quadratic Control: An Introduction. Prentice-Hall,
such term on the form l(x(τ)) > 0. 1995. ISBN 1575241560.

The optimal control law can be determined by solving the A. Lagerberg and C. Breitholtz. A study of gain scheduling

corresponding stochastic Hamilton-Jacobi-Bellman (HJB) control applied to an exothermic cstr. Chem. Eng.

equation (Dorato et al. [1995]) Technol., 20:435–444, 1997.
P. Rutquist, C. Breitholtz, and T. Wik. On the infinite

time solution to state-constrained stochastic optimal
∂V γ− =
∂t

− ∇ T ∇ T ∇ control problems. Automatica, 44:1800–1805, 2008.( V )GG ( V ) + ( V )f
4 (3)
σ2

+ tr
[
(∇T∇V )GGT

]

2

with V → ∞ as x → ∂Ω, where the boundary ∂Ω is given
by the state constraints (2).

3. METHOD

The nonlinearity and the infinite boundary conditions
make this partial differential equation difficult to solve.
However, by applying the transformation introduced by
Rutquist et al. [2008] for stationary infinite horizon prob-
lems, i.e.

2σ2

V = − log(Z), (4)
γ

and separation of variables, i.e. Z(t, x) = Γ(t)Φ(x) we
show that the optimal control is given by the solution to

d
λΓ(t) = Γ(t), (5)

dt

which has the analytical solution Γ(t) = ceλt, and

σ2

λΦ = (∇Φ)f − tr
[
(∇T∇Φ)GGT

]
(6)

2
with the boundary condition

Φ(x) = 0, x ∈ ∂Ω

In contrast to the difficult original HJB-equation this is a
linear eigenvalue problem with zero boundary conditions
that can readily be solved with standard software. The
result is a family of solutions (λn, Tn, φn) from which the
transformed cost is determined as a linear combination of
the solutions for different eigenvalues, i.e.

∞

Z(t,x) =
∑

βn exp(−λn(tf t))φ (x) , (7)
n=1

− n
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Extended Abstract: Optimal Input Design
for Parameter Identification in Dynamic
Systems Using Nonlinear Programming ?
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This contribution outlines work in progress on a novel
approach to input design for parameter identification in
dynamic systems. The goal is to find an input that is
small in some sense, while minimizing the variances of
the parameter estimates. The method in its present form
does not aim to find an optimal input for a general
class of systems; rather, the input will be optimal for a
single system with one given set of parameter values. An
objective function, the system equation, the identification
equations, and bounds on the input will together form
a nonlinear programming (NLP) problem, solvable with
standard NLP solvers.

The proposed method will be outlined for linear time-
invariant noise-free systems with constant parameters,
one input, and one output. This class of systems can
be formulated as autoregressive moving average (ARMA)
processes

y(t) + a1y(t− 1) + · · · + any(t− n) =

b0u(t− 1) + · · · + bn−1u(t− n) (1)

where t is discrete time. A more compact notation is

y(t) = ϕ>(t)θ(t) + e(t) (2)

where
θ = [b0 · · · bn−1 a1 · · · an]

>

is a vector of all the parameters and

ϕ(t) = [u(t− 1) · · · u(t− n) −y(t− 1) · · · −y(t− n)]
>

is a regression vector containing past inputs and outputs.

The two goals of minimizing the variances of the parameter
estimates and using an input that is small in some sense
are in general conflicting and must be balanced. A fairly
general formulation of this objective is

min
u(t)

N−1∑
t=0

{
f
(
P (t)

)
+ g
(
u(t)

)}
(3)

where N is the number of input samples used in the
identification experiment. Specific examples include

min
u(t)

N−1∑
t=0

{
w(t) traceP (t) + u2(t)

}
(4)

and

? This work was supported by the Center for Integrated Operations
in the Petroleum Industry, Trondheim, Norway.

min
u(t)

N−1∑
t=0

{
w(t) traceP (t) + (∆u(t))2

}
(5)

In both (4) and (5), w(t) is a possibly time-varying positive
weight used for balancing the two goals. In both objectives
the trace of the covariance matrix is minimized; in (4) this
goal is weighted against keeping the amplitude of the input
small, while in (5) it is weighted against keeping variations
in the input small.

A Kalman filter or a recursive least-squares algorithm is
used as the identification procedure. Then, the problem
outlined above can be cast as the NLP problem

min
u(t)

N−1∑
t=0

{
w(t) traceP (t) + u2(t)

}
(6a)

s.t. y(t) = ϕ>(t)θ (6b)

θ̂(t+ 1) = θ̂(t) +K(t)
(
y(t) − ϕ>(t)θ̂(t)

)
(6c)

K(t) = ϕ(t)
(
ϕ>(t)P (t)ϕ(t)

)−1
(6d)

P (t+ 1) =
(
I −K(t)ϕ>(t)

)
P (t) (6e)

umin ≤ u(t) ≤ umax (6f)

In this formulation, the Kalman filter is represented by

(6c)-(6e) [Åström, 1970], where θ̂ is the estimate of the
parameter vector, K(t) is the Kalman gain, and P (t + 1)
is the covariance matrix of the parameter estimates. In
the case of hard constraints on the input, for instance
due to limitations in the actuators, (6f) can be used to
specify the bounds. When implemented in an NLP as in
(6), the Kalman filter equations are nonlinear, despite the
filter being linear. Hence, (6) is a nonconvex problem so
meaning there can be several local solutions.

The NLP (6) can be solved using standard NLP solvers of
interior-point or SQP type, for instance. The complexity
of the NLP is not significantly influenced by the number of
samples N . However, a large number of unknown system
parameters does make the problem complex since the
vector and matrix variables in the Kalman filter grow in
size.

Despite the fact that the optimal input u∗(t) is impossible
to calculate for a physical system where the parameters
are not known, this ideal input has several applications.
Perhaps the most useful of these is providing a way
of quantifying the quality of a suboptimal identification
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signal. For instance, assume some signal u(t) was used to
identify a set of parameter values; then, the expression

N−1∑
t=1

(
u(t) − u∗(t)

)2
(7)

is a measure of the amount of unnecessary effort put into
the identification experiment. Similarly, if the goal is to
drive traceP (t) to a minimum in the shortest time possi-
ble N∗ while keeping u(t) small, the expression N − N∗

measures the extra time spent on identifying the set of pa-
rameter values, where N is the time it takes for traceP (t)
to reach a minimum when u(t) is used for identification.
In a control setting, an interesting loss measure is reduced
performance in closed-loop operation. Furthermore, analy-
sis of the optimal input can give important insight on how
to design suboptimal but more general inputs.

The method can be extended to state-space formulations
rather than the input-output description used here with-
out any major modifications. The ideas presented here also
apply to systems with process noise or with time-varying
parameters modeled as random walks. The problem for-
mulation can also be modified so that the solution u∗(t)
in some sense is optimal for a range of parameter values.
However, these modifications lead to stochastic or robust
optimization problems which are significantly harder to
solve.

Future work includes evaluating the performance of the
method when applied repeatedly, i.e., at every time instant
and with short horizon N . Parameter convergence will be
prioritized. Applications within adaptive control will also
be investigated, leading to a type of dual control structure
[Fel’dbaum, 1961a,b,c,d] where the goal is to keep the
output small while reducing parameter uncertainties.
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Optimisation of  Oil Production in Two – Phase Flow Reservoir Using 
Simultaneous Method and Interior Point Optimiser. 
Dariusz Lerch, Carsten Völcker, Andrea Capolei, John Bagterp Jørgensen, Erling Halfdan 
Stenby 
 
Natural petroleum reservoirs are characterised by 2-phase flow of oil and water in the porous media (e.g. 
rocks) which they are built of. Conventional methods of extracting oil from those fields, which utilise high 
initial pressure obtained from natural drive, leave more than 70 % of oil in the reservoir. A promising 
decrease of these remained resources can be provided by smart wells applying water injections to sustain 
satisfactory pressure level in the reservoir throughout the whole process of oil production. Basically to 
enhance secondary recovery of the remaining oil after drilling, water is injected at the injection wells of the 
down-hole pipes. This sustains the pressure in the reservoir and drives oil towards production wells. There 
are however, many factors contributing to the poor conventional secondary recovery methods e.g. strong 
surface tension, heterogeneity of the porous rock structure leading to change of permeability with position in 
the reservoir, or high oil viscosity. Therefore it is desired to take into account all these phenomena by 
implementing a realistic simulator of the 2-phase flow reservoir, which imposes the set of constraints on the 
state variables of optimisation problem. Then, thanks to optimal control, it is possible to adjust effectively 
injection valves to control 2 phase immiscible flow in every grid block of the reservoir and navigate oil to the 
production wells so it does not remain in the porous media. The use of such a smart technology known also 
as smart fields, or closed loop optimisation, can be used for optimising the reservoir performance in terms of 
net present value of oil recovery or another economic objective.  
 
In order to solve an optimal control problem we use a direct collocation method where we translate a 
continuous problem into a discrete one by applying explicit and implicit Euler methods. A substantial 
challenge of finding optimal solution in a robust way comes along with handling the scale of the optimal 
control problem due to discretisation in time and space. 
 
Consequently, an Ipopt(Interior Point Optimiser) open source software for large scale nonlinear optimisation 
was applied. Because of its versatile compatibility with programming technologies, a C++ programming 
language in Microsoft Visual Studio integrated development environment was used for modelling the 
optimal control problem. Thanks to object oriented features of the language, it was possible to approach the 
problem in a very modular way by automating the discretisation process and develop interfaces for retrieving 
information from a continuous problem.  
 
When tackling this problem, we reduce approximation error made by discretising of the original problem, by 
increasing the number of simulation steps and therefore it is necessary to solve large instances of the 
reformulation. As a result, it is very suitable to use Ipopt algorithm which implements an interior-point line-
search filter method making it very powerful for solving large problems with up to hundreds of millions of 
constraints and variables. 
 
The paper is a based on  some work done within master project written at Center for Energy 
Resources Engineering, under the supervision of John Bagterp Jørgensen and support of phd 
students Andrea Capolei and Carsten Völcker.  
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Data Analysis and Monitoring of Thickness
Sensor Fouling Using Self-Organizing Maps
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Abstract: This paper presents a case study of utilizing self-organizing maps (SOM) for data
analysis and process monitoring with an application to a board machine process. The SOM is
used to analyse data in order to find the causes for a thickness sensor fouling fault. Furthermore,
it is used for monitoring the state of the process in order to estimate when fouling occurs. The
results show that by means of the data analysis it is possible to identify the variables affecting
the fouling problem. Also, the process state could be estimated with satisfactory accuracy using
the SOM.

Keywords: Process monitoring, self-organizing map, board machine, quality control system,
thickness sensor, fouling

1. INTRODUCTION

Increasing complexity of the modern production processes,
tightening global competition and environmental regula-
tions are posing enormous challenges to the operation of
the production plants. The plants must run safely and
efficiently, without any disturbances. To this end, new
solutions to tackle the abnormal events in the processes
have been searched by means of fault diagnosis and process
monitoring.

According to Isermann (2006), process monitoring is con-
sidered as a countinuous on-line task of determination of
the conditions of the process. Typically, this is achieved
by process history data -based methods (see e.g. Venkata-
subramanian et al. (2003)).

One of these methods is the self-organizing map (SOM).
It was introduced by Kohonen (1982) and it has a wide
variety of applications in different fields (Kangas and Kaski
(1998)), such as visualization or voice and image analysis.
It has also been successfully applied to process monitoring
tasks, such as monitoring of fluidized bed combustion
process (Liukkonen et al. (2011)), Internet-based remote
supervision (Domı́nquez et al. (2007)), fault diagnosis of
ethylene cracking process (Kämpjärvi et al. (2008)) and
monitoring of flash smelting furnace (Jämsä-Jounela et al.
(2003)), for instance.

In this paper, the SOM is utilized in the data analysis and
monitoring of thickness sensor fouling at a board machine.
Thus, the objectives of this case study are (1) to find out
the variables affecting thickness sensor fouling; (2) to study
in which process conditions the fouling occurs; and (3) to
utilize self-organizing maps to monitor the process and to
estimate when fouling occurs.

This paper is organized as follows. In Section 2, the de-
scription of the self-organized maps and its implemen-
tation is given. Section 3 describes the case process and
the thickness sensor fault in question. Testing procedure,
the results of the data analysis and the monitoring tests
are presented in Section 4, followed by the conclusions in
Section 5.

2. DESCRIPTION OF SELF-ORGANIZING MAP AND
ITS IMPLEMENTATION

2.1 Mathematical description of the SOM

A self-organizing map is a type of artificial neural network
that is trained using unsupervised training to produce a
low-dimensional representation of the input space of the
training samples, called a map. SOM produces a similarity
graph of the input data by converting the nonlinear sta-
tistical relationships between high-dimensional data into
simple geometric relationships on a low-dimensional dis-
play, usually a two-dimensional grid of nodes. Therefore,
SOM compresses the data, but preserves the topological
properties. (Kohonen (1998))

A SOM consists of a number of neurons or nodes that are
described with a d-dimensional weight vector (sometimes
referred as a codebook vector)

w = [w1, w2, . . . , wd], (1)

where d denotes the dimension of the input data vectors
(number of variables). The nodes are organized in the map
according to a specific topology. Typically, the SOMs are
presented as two-dimensional sheets, where the nodes are
arranged into a rectangular or hexagonal lattice.
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Fig. 4. Overview of the SOM analysis for the training data: U-matrix, single variables maps and distribution of the
faulty and normal operation samples.

Fig. 5. Unified distance matrix of the training set showing
the frequency of the samples on each map node.

process state was determined if the BMU matches with a
faulty map node. The testing of the SOM was performed
using the data sets of September and December.

The monitoring results of the SOM are presented in
Fig. 6 and 7. In both figures, the upper panel compares
the estimated process state and the fault indicator. The
bottom panels show the errors related to the calculation of
the BMUs. To reduce noise and false alarms, the estimated
state has been filtered using a moving average filter with
a window length of 5 samples.

It can be confirmed from both figures that the SOM gives
a rather good estimate for the actual process condition. In
the September data (Fig. 6), the SOM can detect the faulty
periods at the beginning of the month as well as after t =
1100. However, the process state is falsely estimated to be
faulty after t = 200 and around t = 400. In the December

Fig. 6. Monitoring results using SOM: September data

Fig. 7. Monitoring results using SOM: December data

data (Fig. 7), the process state is estimated satisfactorily
during the first 600 samples except minor fluctuations in
the estimation around t = 100 and t = 200. The non-faulty
period after t = 600 is estimated successfully as well as the
period in the end of the month. Table 3 summarizes the
performance of the SOM by showing the rates of correctly
estimated states, falsely estimated states and uncertain
states.
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The self-organizing map is trained by adapting the weights
of the nodes to match the input data. The training can
be performed in two ways: by a sequential training or a
batch training. Basically, training includes first the search
of the closest map units, called the best-matching units
(BMU), of the data samples and then the update of the
weight vector of the BMU and its neighbouring nodes.
The fundamental difference between the different training
procedures is that in sequential training the weights are
updated after each sample and in batch training the
weights are updated once per epoch. The distance to the
BMU c is determined for a data sample x ∈ Rd as follows

||x−wc|| = min
i
{||x−wi||}, i = 1, . . . ,m, (2)

where || · || is a distance measure, typically Euclidean, and
m is the number of map nodes.

After finding the BMU, the weight vector of the BMU
and the neighbouring nodes are updated according to an
update rule, which typically has the following form

wi(t+ 1) = wi(t) + α(t)hci(t)[x(t)−wi(t)], (3)

where t denotes time, hci(t) is the neighbourhood kernel
around the BMU and α(t) is the learning rate. The
neighbourhood kernel defines the effect of the update on
the neighbouring nodes. The shape of the neighbourhood
kernel and its radius determines the change of the weights
of the nodes to be updated on each training step. Typically,
a Gaussian neighbourhood function

hci(t) = e−d
2
ci/2σ

2
t , (4)

where dci = ||rc − ri|| is the distance between map nodes
in the grid and σt is the neighbourhood radius defining the
width of the function, is used.

In the batch training procedure the BMUs are calculated
first for the whole data set, and then the weights of the
nodes are updated at once. The data set is partitioned
according to the Voronoi regions of the map units. That
is, each input data vector x belongs to the data set of the
map unit which it is closest to. Then the sum of vectors
in each Voronoi set is calculated as follows

si(t) =

nVi∑
j=1

xj (5)

where nVi is the number of samples in the Voronoi set
of the node i. The new values of the weight vectors are
calculated as

wi(t+ 1) =

∑m
j=1 hij(t)sj(t)∑m
j=1 nVj

(t)hij(t)
. (6)

2.2 SOM algorithm implementation

The SOM algorithm implementation (SOM Toolbox,
Vesanto et al. (2000)) used in this case study uses the
batch training algorithm presented in the previous section.
However, in order to reduce the memory consumption, the
best-matching units for each input data sample are calcu-
lated, not at once, but in several batches. Nevertheless, the
BMUs corresponding to each input data sample are found
before any adjustments to the weights are made.

The SOM is trained in two phases. The rough training
phase is performed first where a smaller number of training
epochs and a larger neighbourhood radius are used than
in the following fine-tuning phase.

3. DESCRIPTION OF THE PROCESS AND THE
THICKNESS SENSOR FOULING FAULT

3.1 Board Machine Process

The board making process begins with the preparation of
raw materials in the stock preparation section. Different
types of pulp are refined and blended according to a
specific recipe in order to achieve the desired composition
and properties for the board grade to be produced. The
consistency of the stock is controlled with dilution water.

The blended stock is pumped from the stock preparation
to the short circulation by a pump that controls the basis
weight of the board. In the short circulation, the stock
is first diluted in the wire pit to the correct consistency
for web formation. The diluted stock is then cleaned and
screened before passing to the head box, from where it is
sprayed onto the wire in order to form a solid board web.

The excess water is first drained through the wire and
later by pressing the board web between rolls in the press
section. The remaining water is evaporated off in the
drying section using steam-heated drying cylinders. After
the drying, the board is calendered in two phases in order
to achieve the desired surface properties.

The important quality variables, such as basis weight,
moisture and thickness, are measured after the calender
section with a measurement scanner traversing across the
board web.

3.2 Thickness Sensor Fouling Fault

At the case board machine, thickness sensor fouling is a
difficult problem. In order to maintain the functionality of
the quality control system, the sensor must be cleaned on
a regular basis. Otherwise, the fouling impedes the online
control of the thickness profile and the monitoring of board
thickness in machine direction.

The thickness sensor is located in the measurement scan-
ner. It consists of two plates that are in contact to each side
of the web, see Fig. 1. The board travels between the plates
and the distance between the plates can be measured by
measuring the magnetic resistance caused by the board
thickness. Due to this contacting sensor construction, the
sensor is subject to fouling. The dirt builds up on the
sensor plates and disturbs the measurement.

The thickness measurement will drift significantly when
the fouling occurs. In Fig. 2, the measurement data of

Fig. 1. Cross-sectional diagram of the thickness sensor.
Modified from Anon. (2009).
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Fig. 2. Effect of the thickness sensor fouling. Data of 30
hours showing the evolution of the thickness sensor
reading between two cleanings (at 1 hour and 27
hours).

30 hours are shown during a faulty period. It is clearly
displayed that the measured value increases in time, while
the setpoint of the thickness was kept constant over the
whole period. Between the cleanings of the sensor at 1
hour and 27 hours, the slope of the drift is approximately
1.2 µm/h.

According to the maintenance experts, additional prob-
lems are caused due to the flaking of the dirt. It typically
takes place, when the dirt layer reaches approximately 20
µm. This will cause serious disturbances to the measure-
ment.

To facilitate the mathematical analysis of the thickness
sensor fault, a qualitative representation of the fault was
needed. To this end, a binary variable, called the fault indi-
cator, was developed based on the maintenance data of the
board machine. According to the recorded maintenance
actions on the thickness sensor, the fault indicator was
given value 1 or 0, indicating faulty and normal operation,
respectively.

4. DATA ANALYSIS AND MONITORING RESULTS

4.1 Testing Procedure

In order to reach the objectives of the study, the analyses
were conducted according to the following procedure:

First, a correlation analysis was carried out in order to find
out which variables are affecting the sensor fouling. The
list of correlated variables was augmented with variables
selected based on the process knowledge. Then, the data of
the selected variables were analysed using self-organizing
maps in order to confirm the interactions between the
variables and the sensor fault. Simultaneously, a SOM was
trained for testing purposes.

Finally, the SOM was used to detect the conditions in
which the thickness sensor fouling. A testing data set
containing data from the faulty operation periods was in-
troduced to the SOM. Best-matching units were calculated
for each sample in the test data. The process conditions
in which the fouling occurs were detected, when the faulty
samples of the test data were located similarly than the
faulty samples of the training data.

Table 1. List of variables for the SOM analysis

# Tag Description

1 f Thickness control error (cv-sp)
2 df Filtered derivative of f
3 534TCZ_151 1st calender thermo roll temperature
4 PC0452 Zero-pressure level of the secondary hood
5 TI0451_7 Hood ventilation air temperature 7
6 FC0123 Wet strength size flow (top/bottom)
7 FC0126 Starch flow (top/bottom)
8 FC0202 Neutral size flow (top)
9 FC0206 Retention starch flow (top)
10 FC0242 Retention agent flow (top)

4.2 Variable selection

Variable selection is the most critical task in the analysis.
The list of variables was formed based on a correlation
analysis and on further process and engineering knowledge.

By means of the correlation analysis, an indication that the
temperature of the web (affected by calendar temperature,
etc.) or the temperature around the measurement scanner
had an effect on the fouling. Also, certain chemicals used in
the board production seemed to correlate with the fault. In
the data analysis using SOM, these variables were further
studied in order to confirm the results of the correlation
analysis.

The list of variables for the SOM analysis consisted of
thickness control error and its filtered derivative, tem-
perature of the 1st calendar, zero-pressure level of the
secondary hood, hood ventilation air temperature and
some flows related to the chemicals used in the board
production, see Table 1.

4.3 Data Preparation

When using SOM for the analyses, there are two data
sets needed: training data and testing data. Total of four
months of data was divided into two, such that October
and November data were to be used as the training data
and the tests were to be run with September and December
data sets. The sampling interval used in the SOM analysis
was 5 minutes. The training data set contained 8 variables
and 3775 samples (approx. 314 hours), see Fig. 3. The
testing data sets contained 1370 and 1210 samples for
September and December data sets, respectively.

The data was prepared by removing the non-production
data, i.e. shut-downs and web breaks, removing the out-
liers and by normalizing the data. The non-production
data was removed by excluding data segments, when the
production rate has zero value. Outliers were removed
manually by observing the data and replacing the di-
verging values with an average of its neighbours. Finally,
the data was normalized to reduce the effect of different
magnitudes of the measurement signals.

The data samples were also labelled in order to separate
the faulty operation from the normal operation. The
labels for each sample were determined based on the
fault indicator variable. Samples falling into faulty periods
(fault indicator = 1) were labelled with ’f’ and the samples
representing normal operation were labelled with ’n’.
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Fig. 3. Training and analysis data for the SOM

4.4 SOM training parameters

SOM analysis was performed using an algorithm imple-
mented for this purpose. The parameters used in the
training of the SOM models are listed in Table 2. The
map size m was determined according to suggestions given
in literature (Vesanto et al. (2000)). Also, the number of
training epochs and neighbourhood function radii were
based on default values in literature (Vesanto et al. (2000))
and calculated according to the data and map size. Map
size was calculated as follows

m = ceil(5
√
n), (7)

where n is the number of samples in the training data.
The map dimensions are then calculated using eigenvalue
decomposition of the training data matrix. The ratio of
height mh and width mw of the map is determined as
a ratio of largest and second largest eigenvalue. For the
SOM used in this analysis the map was found to consist
of m = 77 nodes organized in an 11-by-7 rectangular grid.

The SOM was initialized by using linear initialization in
which the map weight vectors are given initial values that
lay in the subspace spanned by the two largest eigenvectors
of the input data. The training length is determined for
training phases, rough training and finetuning, based on
the size of the map and size of the data. A suggestion given
in (Vesanto et al. (2000)) first defines a ratio of number of
map units m and length of the data n:

ξ = m/n. (8)

Then the used training length 20 · ξ from which 4 · ξ is for
rough training and 16 · ξ for finetuning. In this case, the
data length was large (n = 3775) compared to the number
of map units (m = 77) resulting in ξ < 1. Therefore, the
used training lengths were 1 epoch for rough training and
1 epoch for finetuning.

Neighbourhood function used by the algorithm is a Gaus-
sian kernel function, see (4). Its radius was defined for
both training phases separately. Typically, a larger neigh-
bourhood radius is used in the rough training than in
the finetuning phase. For the rough training phase the
neighbourhood radius is determined as follows:

σt = max(1,max([mh mw])/8). (9)

For the case study, the rough training radius was de-
termined using (9) resulting σtr = 1.375 and for the
finetuning phase radius σtf = 1 was used.

Table 2. Parameters of the SOM training

Parameter Description Value

m Map size 77
my ,mx Map dimensions [11, 7]

Initialization Linear
Training algorithm Batch
Number of training epochs, rough training 1
Number of training epochs, finetuning 1

hci Neighbourhood kernel function Gaussian
σtr Neighbourhood radius, rough training 1.375
σtf Neighbourhood radius, finetuning 1

4.5 Training data analysis

The SOM analysis was performed on the training data
set comprising October and November data. In Fig. 4 are
presented the results of the training data analysis.

The first panel (top left) of the figure shows the unified
distance matrix (later U-matrix), which describes the
clustering of the data. Dark colours denote a short distance
between the map nodes, thus representing closely clustered
data samples. On the contrary, light colours denote long
distance.

By studying the plot of data labels and their distribution
on the map (see the bottom left panel of Fig. 4), it is
noticed that most of the faulty samples are distributed
below the diagonal of the map. The distribution of the
samples is illustrated more in detail in Fig. 5, where the U-
matrix is presented with the frequency of each sample class
(’f’ or ’n’) on each node of the map. The figure confirms
the foregoing analysis of the distribution of faulty samples
mostly on the bottom right part of the map.

For the monitoring purposes the nodes belonging to the
faulty clusters located in the bottom right part of the U-
matrix were labelled as faulty nodes, i.e., when the process
is operating in those conditions, there is a risk of fouling
of the thickness sensor.

By studying the single variable maps presented in Fig. 4,
the effect of the temperature, especially the hood ventila-
tion air temperature (TI0451_7), is obvious; the light areas
indicating high values are concentrated in the same part
of the SOM than the faulty observations in the U-matrix
(Fig. 5). Calender temperature (534TCZ_151) has not such
clear distribution of high and low values, but it is notable
that when the fault is occurring, the temperature of the
calendar is high. There are hardly any faulty observations
located to areas where the temperature is low. From the
chemicals, the neutral size seems to have the most explicit
effect on the fouling, which occurs when the neutral size
is used the most.

4.6 Monitoring of sensor fouling

The objective of the monitoring tests was to find out
whether it is possible to use the trained SOM to detect
when the process is operating in such conditions that
fouling of the thickness sensor might occur. The tests
were carried out by introducing the SOM a new data set
containing normal operation data as well as faulty data
and the best-matching units for each data sample were
found out. The calculated BMUs were compared to map
nodes labelled as faulty in the training phase. A faulty
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Table 3. Results of the monitoring tests using
SOM

Sep Dec

Rate of correct process states 78.0% 72.9%
Rate of false process states 11.9% 9.7%
Rate of uncertain process states 10.1% 17.4%

Based on the monitoring tests, the SOM is able to estimate
the state of the process correctly in over 70% of time. The
rate of falsely estimated states is rather low, approximately
10% on average. The perceived errors may result from the
fault indicator, which has been developed based on the
dates of the fault reports and therefore it might not be
exactly aligned with actual fouling.

5. CONCLUSION

In this study, self-organizing maps were used to analyse
the causes of a persistent thickness sensor fault at the case
board machine. SOM was also tested for monitoring the
process conditions in which fouling occurs.

Based on the preceding analyses, the main causes leading
to the fouling of the thickness sensor are the temperature
in the surroundings of the measurement frame and the
temperature of the web, and the chemicals used in the
board production, particularly, the neutral size.

Both factors seem reasonable in terms of the process
operation. Neutral size is used in the process to improve
the hydrophobicity of the board. It is a resin based size,
which activates in high temperatures (drying section) and
creates a hydrophobic layer on the fibres. Therefore it is
possible that the size and high temperature is forming
sticky substance that attach to the thickness sensor plates
and disturb the measurement. Process experts at the plant
say that neutral size also causes problems for instance in
pipes by blocking them.

By utilizing SOM the process conditions in which the
fouling occurs could be detected with reasonable accuracy.
Therefore, an indicator, which informs the operators that
the process is under condition where it is likely to have
problems with the thickness measurements, can be de-
veloped. Then, the operators can take counteractions by
schedling maintenance or by changing the operating point
if possible.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme

(FP7/2007–2013) under grant agreement no. 257580. The
research consortium is acknowledged for the support. In
particular, the authors wish to thank Stora Enso Oyj and
Efora Oy for providing the data and the expert knowledge
for the analyses.

REFERENCES

Anon. (2009). Knowpap 11.0 — learning environment for
papermaking and automation.

Domı́nquez, M., Fuertes, J., Reguera, P., Dı́az, I., and
Cuadrado, A. (2007). Internet-based remote supervi-
sion of industrial processes using self-organizing maps.
Engineering Applications of Artificial Intelligence, 20,
757–765.

Isermann, R. (2006). Fault-Diagnosis Systems: An In-
troduction from Fault Detection to Fault Tolerance.
Springer.
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Y. (2011). Modeling of fluidized bed combustion process
and NOx emissions using self-organizing maps: An appli-
cation to the diagnosis of process states. Environmental
Modelling and Software, 26, 605–614.

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N.,
and Yin, K. (2003). A review of process fault detection
and diagnosis, part iii: Process history based methods.
Computers and Chemical Engineering, 27, 327–346.

Vesanto, J., Himberg, J., Alhoniemi, E., and Parhankan-
gas, J. (2000). Som toolbox for matlab 5. Technical
Report A57.

Proceedings of the 17th Nordic Process Control Workshop 
Technical University of Denmark, Kgs Lyngby, Denmark 
January 25-27, 2012

197



Production Optimization for Two-Phase Flow in
an Oil Reservoir

Carsten Völcker, John Bagterp Jørgensen, Per Grove Thomsen

Department of Informatics and Mathematical Modeling
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Erling H. Stenby

Department of Chemical and Biochemical Engineering
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Keywords : Reservoir simulation/management, Runge-Kutta, ESDIRK, opti-
mal control, nonlinear model predictive control, adjoint sensitivity.

Petroleum reservoirs are subsurface formations of porous rocks with hydrocar-
bons trapped in the pores. Initially, the reservoir pressure may be sufficiently
large to push the fluids to the production facilities. However, as the fluids
are produced the pressure declines and production reduces over time. When
the natural pressure becomes insufficient, the pressure must be maintained ar-
tificially by injection of water. Conventional technologies for recovery leaves
more than 50% of the oil in the reservoir. Wells with adjustable downhole flow
control devices coupled with modern control technology offer the potential to in-
crease the oil recovery significantly. In optimal control of smart wells, downhole
sensor equipment and remotely controlled valves are used in combination with
large-scale subsurface flow models and gradient based optimization methods in
a Nonlinear Model Predictive Control framework to increase the production and
economic value of an oil reservoir. Wether the objective is to maximize recovery
or some financial measure like Net Present Value, the increased production is
achieved by manipulation of the well rates and bottom-hole pressures of the in-
jection and production wells. The optimal water injection rates and production
well bottom-hole pressures are computed by solution of a large-scale constrained
optimal control problem.

The objective is to maximize production by manipulating the well rates and
bottom hole pressures of injection and production wells. Optimal control set-
tings of injection and production wells are computed by solution of a large scale
constrained optimal control problem. We describe a gradient based method to
compute the optimal control strategy of the water flooding process. An ex-
plicit singly diagonally implicit Runge-Kutta (ESDIRK) method with adaptive
stepsize control is used for computationally efficient solution of the model. The
gradients are computed by the adjoint method. The adjoint equations associ-
ated with the ESDIRK method are solved by integrating backwards in time.
The necessary information for the adjoint computation is calculated and stored
during the forward solution of the model. The backward adjoint computation
then only requires the assembly of this information to compute the gradients.
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I. I NTRODUCTION

In the chemical process industry, disturbances in utilities
such as steam and cooling water often cause large losses.
Earlier studies have been performed on the synthesis of
utilities to satisfy the demand, for example in [1] and [2].
The present study focuses on how disturbances in utilities
affect production. Since utilities often are used plant-wide,
disturbances in the supply of utilities may affect large parts of
a site, either directly or indirectly because of the connections
of production areas via the product flow. A general method
for handling disturbances in utilities has recently been pro-
posed in [3]. The method is called the utility disturbance
management (UDM) method. In the present study, this
framework is applied to an industrial site at Perstorp. The
objectives are to obtain an indication of which utilities that
cause the greatest revenue losses at the site, and to suggest
strategies for reducing these losses. To complete all steps of
the UDM method, a model of the production site is needed.
Chemical plants are often complex, and thus difficult and
time-consuming to model in detail. Here, a simple modeling
approach is used, in which production areas at a site are
modeled as either ’on’ or ’off’, i.e. either producing at
maximum production rate or not at all. Buffer tanks between
areas are also included. If a production area has to be shut
down due to a utility disturbance, buffer tanks will allow
production to continue for a certain period in downstream
areas, before it is necessary to shut down these areas as well.
This coarse model will not capture all the variability, but has
shown to be useful in providing indications of the effects of
disturbances in utilities on production.

II. T HE UDM METHOD

The UDM method, introduced in [3], aims to reduce the
economic effects of disturbances in utilities. The method
consists of four steps:

1) Get information on site-structure and utilities
2) Compute utility and area availabilities
3) Estimate revenue loss due to disturbances in utilities
4) Reduce revenue loss due to future disturbances in

utilities
Each of the steps have a number of sub-steps, which are
defined in [3]. In the case study at Perstorp, the method
is applied using an on/off production modeling approach
including buffer tanks between production areas. A case
study has previously been performed at the same production
site using on/off production modeling without including
buffer tanks. The results from this study are presented in [4].

III. M AIN RESULTS OF CASE STUDY

The site that is studied is a site owned by Perstorp that
produces specialty chemicals, and is located in Stenungsund,
Sweden. The site consists of 10 production areas, producing
products 1-10. Internal buffer tanks exist for products 1-5. A
flowchart ot the product flow at the site is shown in Figure 1.

Fig. 1. Product flow at site Stenungsund.

The site is modeled by on/off production including buffer
tanks. This gives ordering of utilities according to an estimate
of the revenue loss they cause, which could be of great help
for proactive disturbance management, i.e. when trying to
reduce the number of disturbances in the future. At site Ste-
nungsund, use of the UDM method showed that the cooling
water utility seems to cause the greatest loss of all utilities
at the site. In addition to this, two strategies for decreasing
the revenue loss due to utilities are obtained. The first is
suggestions on how buffer tank levels should be chosen to
minimize the effects of disturbances in utilities (proactive
disturbance management), and the second is suggestions on
how to control the production at the occurrence of a utility
disturbance (reactive disturbance management). Below, these
two strategies are discussed.

A. Choice of buffer tank levels

Good choices of stationary buffer tank levels can ensure
that the site can run even at a failure in one or more areas.
In this case study, it has been chosen to only consider down-
stream effects of a disturbance upstream of a buffer tank.
Thus, only lower constraints on the buffer tank levels will
be imposed, and there will be a trade-off between handling
as many failures as possible and minimizing inventory at the
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site. This work does not focus on computing the costs of the
inventories to achieve the optimal trade-off between utility
disturbance management and cost of inventory. Optimal
choice of inventory is discussed in e.g. [5] and [6].

Choosing the buffer tank levels to handle the longest dis-
turbance durations for utilities will often give unneccesarily
high buffer tank levels at normal operation, since distur-
bances of such long durations often are very uncommon. A
suggestion is to choose the levels so that a certain percentage
of all disturbances in utilities are handled. In Figure 2, the
levels that correspond to handling 90 % of all disturbances in
utilities at site Stenungsund are given, based on measurement
data from Aug 1, 2007 to July 1, 2010. As a comparison, the
average buffer tank levels over the considered time period are
shown in the figure. It can be seen that the average buffer

Fig. 2. Buffer tank levels at site Stenungsund.

tank levels over the selected time period are well above the
levels required to handle 90 % of all disturbances in utilities.
However, the buffer levels are not chosen only to handle
disturbances in utilities, but to handle all disturbances at the
site and to provide inventory of products to be sold to the
market. This must be taken into account to evaluate if the
buffer tank levels are appropriately chosen. The constraints
from disturbances in utilities give one piece that has to be
taken into account when choosing desired buffer tank levels.

If upstream disturbances also are taken into account,
disturbances that affect a downstream area of a buffer tank,
but not all upstream areas, will impose high-level constraints
on some buffer tanks.

B. Control of the product flow

At the occurrence of a disturbance, a decision must be
taken on how to control the product flow if the area that suf-
fers a failure has more than one downstream area. Guidelines
for how to control the product flow at a utility disturbance
that affect an area, but not all its downstream areas, are
obtained when using on/off production modeling includ-
ing buffer tanks. Given the estimated disturbance duration,
suggestions for the time that each downstream area should
be run during the failure are obtained. The prioritization
order of areas in the guidelines are determined from the
profitability of the downstream areas. The suggestion is to let
the operators at the site estimate the disturbance duration at
the occurrence of a disturbance, and use this to compute the

guidelines. The guidelines can be recomputed if the estimate
of the disturbance time changes. Over time, contribution
margins for different products could change, which makes
it necessary to change the prioritization order of areas.

IV. CONCLUSIONS AND FUTURE WORK

The case study at Perstorp presented in this paper gives
ordering of utilities at the site according to an estimate of
the loss of revenue they cause, using an on/off modeling
approach with buffer tanks between areas. This list can be
used to determine on which utilities improvement efforts
should be focused. The case study also resulted in sugges-
tions on how to choose the buffer tank levels and how to
control the production at utility disturbances. It should be
noted that only disturbances in utilities have been considered.
This is only one piece of the entire picture, where also
market conditions, cost of inventories and other disturbances
must be taken into account. This case study shows which
constraints disturbances in utilities place on buffer tank levels
and product flow control.

The on/off production modeling approach including buffer
tanks should give more accurate estimates of the losses
that are caused by utilities at a site than the on/off model
without buffer tanks. However, areas are still modeled as on
or off, and thus the site model does not adequately reflect
the actual production. To catch more of the variability, the
site should be modeled using a continuous production model.
Continuous production modeling of a site is currently being
investigated, and will also be applied to the Perstorp site
in Stenungsund. With continuous production, more elaborate
reactive disturbance management strategies may be obtained,
that gives real-time advise to operators on how to control the
product flow at the occurrence of a disturbance.
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Abstract 
Conventional distillation remains the most widely used separation technique, but it is an 

energy intensive process. The energy consumption as well as capital costs can be greatly 

reduced by using direct material coupling. This leads to complex arrangements and 

difficult to operate systems like Kaibel column (Kaibel 1987) and Petlyuk arrangements 

(Petlyuk 1965). Three product divided wall column have been in use in industries and 

numerous applications have been reported. However, no works have been reported on 

separation of four product separations using such arrangements, which may offer further 

energy savings.  

We have demonstrated the stabilizing operation of four-product divided wall column 

done on an experimental set up. We validate a decentralized four-point temperature 

inferential regulatory control (Strandberg 2006) structure experimentally. We test this 

control structure for steady state operation and subject it to several disturbances like feed 

rate change and test the individual temperature loops for setpoint changes. We also 

highlight some problems we faced in operating our system. Another challenge in the 

acceptability of divided wall applications is setting an optimal split of vapor between the 

two sides of the diving wall during operation. The vapor split is traditionally set by the 

natural pressure drop in the column. We provide a solution to this using a very simple 

vapor split valve to control a temperature in prefractionator and demonstrate the 

feasibility of active vapor split operation.  
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Abstract: We consider batch process optimization and robust implementation of optimal

control policies. The dynamic optimization of such processes is in most cases model based,

and therefore subject to uncertainties. This may lead to sub-optimal control trajectories with

significant economical losses. Our goal is the development of simple rules which guarantee near-

optimal operation under all conditions using feedback. Here, ’under all conditions’ means for

the defined disturbances, plant changes and implementation errors.

For processes whose economics are defined by the steady-state behaviour the concept of self-

optimizing control was developed by Skogestad (2000). Self-optimizing control focus on selecting

a set of controlled variables c that, when kept at constant setpoints, indirectly result in optimal

economic operation in spite of disturbances. Diverse systematic methods are available to find

the right variables to control for steady-state problems. Skogestad and Postlethwaite (2005)

proposed the Maximum Gain Rule to select individual measurements. Alstad and Skogestad

(2007) presented the Null Space method to select optimal linear combinations of measurements

to be controlled. The Null Space method is very simple and yet gives zero economical loss if

enough measurements are available and there is no noise.

In this paper we extended the Null Space method to optimal control of batch processes. The main

idea is to compute a linear time-varying combination of measurements that should be controlled

to zero by feedback. By doing so, the nominal control trajectories are optimally updated in case

disturbances occur. The proposed method was tested in a semi-batch reactor case study and the

performance compared with that of the neighbouring-extremal controller given in Gros et al.

(2009). We found that both controllers give near-optimal performance for various disturbances.

However, our approach is much simpler and intuitive and, most importantly, does not require

complete state information.
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Abstract: In 2011, the world population passed 7 billions inhabitants. While this number
witnesses the success of humankind on earth, it also rises among other things questions about
food supply. Declining live stock in the wild, rising price of energy combined with climatic
change give a new economic potential for alternative sources of protein production.
Single cell protein (SCP) is protein produced by growth of micro organisms. Among these micro
organisms, Methylococcus Capsulatus is particular interesting as it can grow on either methane
or methanol and contains 70% protein. The U-Loop reactor is particular useful for production of
SCP by M. Capsulatus as it has good gas-liquid mass transfer capabilities and also the capability
to remove the significant amount of heat developed by the reaction.
In this paper we describe an implementation of a model to simulate SCP production in the
U-Loop reactor. We report simulation results. In addition we design and compare different
regulatory control systems for regulation of SCP production in the U-Loop reactor. The
purpose of the regulatory control systems is to keep the process at a steady state and to
reject disturbances. We design and implement such control systems based upon PID and MPC
technology. In particular, we design these control systems such that they can be used as the
regulatory layer in a process control hierarchy and enable resilient transition from one operating
point to another. The optimal operating points are determined by the real-time optimization
(RTO) part of the control system.

Keywords: Single Cell Protein, Simulation, Control, Optimization, PID, MPC, Real-Time
Optimization
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Abstract: Selective catalytic reduction (SCR) of NOx is a widely applied diesel engine exhaust 

gas aftertreatment technology. For advanced SCR process control, like model predictive control, 

full state information of the process is required. The ammonia coverage ratio inside the catalyst is 

difficult to measure. Therefore we design an ordinary Kalman filter as well as an extended 

Kalman filter to estimate the ammonia coverage. The filters are built over a first principle model 

with four states. Among the four states, NO, NO2 and NH3 concentration are measured by the 

sensors, while the ammonia coverage ratio is left to be unknown. The performance of the filters is 

shown by simulation with the World Harmonized transient cycle. In particular, during transient 

operations the extended Kalman filter performs significantly better than the ordinary Kalman 

filter. Since such operation regimes are always present for SCR in engine applications, we 

recommend to estimating the ammonia coverage using the extended Kalman filter. 

Keywords: Kalman filter, Extended Kalman filter, Selective catalytic reduction 
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Abstract: A continuous flow pilot anaerobic digestion (AD) reactor of 220 L, located at Foss dairy farm 

in Skien, Norway, a is fed filtered cow manure as substrate for production of energy-rich biogas which 

contains mainly methane. The liquid effluent from the reactor is used as feed to a nitrification reactor to 

produce high quality fertilizer. The AD reactor study is presented here. 

It is desirable to have a computer-based state estimator for the AD reactor for several reasons: (1) To 

have a methane gas flow estimate which is less noisy than what is obtained from raw measurements. (2) 

To have a methane gas flow estimate in situations where biogas concentration sensors and/or biogas flow 

sensors have an outage. (3) To have estimates of non-measured state variables for the purpose of 

monitoring and control. The most important state in this respect is the (total) concentration of volatile 

fatty acids (VFA). High VFA concentrations are inhibitory to methane generating microbes 

(“methanogens”). 

In this study a number of state estimators are applied to simulated data and measured data from the 

physical reactor. The estimators are ordinary and augmented Extended Kalman Filters and ditto 

Unscented Kalman Filters, and a ballistic (open-loop) estimator. All estimators are based on a modified 

version of a first principles model of the reactor with four state variables originally developed by D. T. 

Hill (1983). The model has been adapted to the AD reactor using a data set from online sensors and lab 

analysis. The estimators are compared with respect to accuracy of the means of the estimates, noise 

suppression in the estimates, robustness against model errors, estimator tuning, and implementation 

issues. 

Keywords: State estimation; Kalman Filter; Unscented Kalman Filter; Noise; Anaerobic Digestion 

Reactor. 
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Abstract: In response to growing concerns related to environmental issues, limited resources
and security of supply, the energy industry is changing. One of the most significant developments
has been the penetration of renewable energy sources. In Denmark, the share of wind power
generation is expected to cover more than 50% of the total consumption by 2050.
Energy systems based on significant amounts of renewable energy sources are subject to
uncertainties. To accommodate the need for model predictive control (MPC) of such systems,
the effect of the stochastic effects on the constraints must be accounted for. In conventional
MPC, the stochastic effects on the constraints is handled by constraint back-off and the MPC
problem can still be solved by solution of either a linear program or a quadratic program.
Treating the constraints as probabilistic constraints provides a more systematic approach to
handle the stochastic effects on constraints. In this formulation, the MPC may be represented
by a chance constrained mathematical program. The chance constraints allow a direct tradeoff
between a certain (low) frequency of violating the constraints and a performance function (e.g.
an economic loss function). This is convenient for energy systems, since some constraints are
very important to satisfy with a high probability, whereas violation of others are less prone to
have a large economic penalty.
In MPC applications the control action is obtained by solving an optimization problem at each
sampling instant. To make the controller applicable in real-time efficient and reliable algorithms
are required. If the uncertainty is assumed to be Gaussian, the optimization problems associated
with chance constrained (linear) MPC can be expressed as second order cone programming
(SOCP) problems. In this paper, we show that tailored interior point algorithms are well
suited to handle this type of problems. Namely, by utilizing structure-exploiting methods, we
implement a special-purpose solver for control of smart energy systems. The solver is compared
against general-purpose implementations. As a case study, we consider a system consisting of
fuel-fired thermal power plants, wind farms and electric vehicles.
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Abstract:  

Investigation of integrated processes involves challenges at both design and control levels, these can 

mainly be associated with different dynamic behaviors of the individual units plus their interaction. 

Therefore, the design and operation of the integrated system constitutes a key issue. In order to 

understand the controlled operation of the integrated process, it is convenient to use a model based 

approach supported by experimental evidence.  

Recently, an integrated bioreactor and electrically driven membrane separation process (Reverse Electro-

Enhanced Dialysis - REED) has been proposed as a method for intensification of lactic acid fermentation 

(Rype, 2003). This fermentation has been studied extensively driven by an increasing number of 

applications of the potential fermentation products. The main limitation of lactic acid bioproduction is 

that lactic acid bacteria normally are impaired by product inhibition at a certain lactate concentration 

level. Hence, productivity can be enhanced by the in situ lactate removal from the cultivation broth 

during pH controlled fermentation. This can be done by means of ion exchange membranes and electrical 

potential gradients. The novelty of the integrated process lies on the innovative REED technology, where 

lactate ions are exchanged by hydroxide ions. This allows the lactate removal and simultaneously 

facilitates the pH control in the fermenter. Long operation time is achieved by reversing periodically the 

polarity of the imposed electrical field to significantly reduce the influence of membrane fouling.  

Previously, the REED and fermentation processes have been modeled and investigated separately (Prado-

Rubio et al., 2011a; Boonmee, 2003). Additionally, a simple quasi-sequential strategy for integrated 

process design and control structure development has been proposed (Prado-Rubio et al., 2011b). The 

main purpose of this first attempt of process integration was to predict the productivity improvements and 

to reveal to which extend the REED module can facilitate the pH control in the fermenter. There, the 

membrane and reactor unit interactions are exploited to substantially increase the lactate productivity and 

substrate utilization compared to a conventional fermentation with a crude control of pH. Nevertheless, 

the proposed pH control structure is unable to tightly control the pH in the fermenter, which may result in 

a loss of productivity. The purpose of this contribution is to discuss the controllability of the integrated 

system, focused on the role of the REED module within the process. Interestingly, there are potential 

solutions either from process and control structure design such as: i. Account for the productivity 

enhancement earlier in the integrated process design, ii. Use multiple REED units activated sequentially 

or iii. Try to avoid the controllers fighting by a more appropriate control structure design. Hopefully 

merging those ideas, an improved strategy for the integrated process design and control development can 

be proposed. 
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Abstract: We discuss Model Predictive Control (MPC) based on ARX models and a simple
lower order disturbance model. The advantage of this MPC formulation is that it has few
tuning parameters and is based on an ARX prediction model that can readily be identified
using standard technologies from system identification. When applied to MIMO systems we call
this controller a MIMO-ARX based MPC.
We use an industrial Semi-Autogenous Grinding (SAG) mill to illustrate the performance of
this controller. SAG mills are the primary units in a grinding chain and also the most power
consuming units. Therefore, improved control of SAG mills has the potential to significantly
improve efficiency and reduce the specific energy consumption for mineral processes. Grinding
circuits involving SAG mills are multivariate processes. Commissioning of a control system based
on a classical single-loop controllers with logic is time consuming, while MPC has the potential
to both improve the control performance and the commissioning time and expertise required.
The simulation results demonstrate that the MPC based on a MIMO-ARX model is able to
provide nice control performance measured by its ability to track an output reference and
reject unknown disturbances. Furthermore, the method used to design the controller represents
a systematic method that can be automatized for wide-spread deployment in industrial
environments.

Keywords: Model Predictive Control, ARX Model, SAG Mill, Mineral Processes, Industrial
Process Control
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