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Abstract

Data-driven, kernel-based learning methods have been of increasing interest lately, and have shown great impact in areas such as
machine learning, computer vision and pattern recognition. However, the rapidly increasing amount of available data poses new
challenges that traditional methods struggle with. In this paper we present computationally tractable method for kernel regression
on large data sets. The size of the kernel matrix grows rapidly as the number of data points increases, and computing and storing
it may even become intractable. Hence, we have proposed a criteria based on linear independence between feature vectors for
selecting the relevant input data points for building the kernel matrix. The proposed method do not require storing the full kernel
matrix in memory and will result in a sparse kernel approximation. The proposed method has been applied in a case study for

estimating the recovered waste-heat energy in ships based on engine load data.

Keywords: Kernel methods, sparse optimization, big data

1. Introduction

Kernel methods that use positive-definite kernel functions are
used to map input data into a higher dimensional feature space,
and can hence be used for non-linear modelling. A kernel is
function k£ : X X X — R where X € R”"”. Furthermore, for a
sequence of input vectors {x; }fi \» Where x; € R”", James Mercer
showed that for any symmetric, positive semidefinite kernel ma-
trix K := (k(x,-, X j))jvj—l’ there exist a feature map ¢ : R* — R”

such that
k(xi, xj) = @(xi) "o(x;) (D

(Cristianini and Shawe-Taylor, 2000). Inner products between
feature vectors appear naturally in many problems, and kernel
functions can hence sometimes be introduced to simplify them.
This is often referred to as the "kernel trick’. However, for large
data sets, the kernel matrix will become very large, and there
is a need for methods to reduce the size of the kernel matrix.
Various sparse optimization techniques have frequently been
used to find sparse representations of the kernel matrix (Bishop,
2006). However, for very large data sets, such methods will
start to fail. Hence there is a need for approximative methods
for reducing the kernel size that do not require storing the full
kernel matrix in memory.
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2. Problem formulation

Given a sequence of N input-output pairs of data {(x;, yi)}?i 1>

x; € R", y; € R, and a feature mapping ¢ : R* — R™, we form
the following linear regression model

yi=wlo(x)+b+e, i=1,.,N 2)

where ¢; is assumed to be Gaussian white noise, b is a scalar
bias and w € R™. We formulate the following regularized least
squares problem

. 1 ) 1 5
= — 4 —
minifmize fx) 2)/||e||2 5 lIwll3

subject to ei=yi—-wlo(x)-b, i=1,..,N,

where 7 is a scalar weighting factor. By introducing the La-
grangian function and optimality conditions, the problem can
be reformulated as a system of linear equation

0 17 b* 0
A o o

where b* and A" denote the optimal bias and Lagrange mul-
tipliers respectively and the kernel matrix K;; = k(x;, x;) =
go(x,-)Ttp(xj) for i, j = 1,..., N. This formulation is referred to as
the least squares support vector machine (LS-SVM) (Suykens
et al., 2002). Note that the problem only require computations
of inner products k(x;,x;) = ¢@(x;)T¢(x;), which for a prop-
erly chosen kernel, do not depend on the dimensionality of the
parameter vector w, but only on the number of observed data
points N. Although Equation 3 can be solved explicitly by ma-
trix inversion or by newton iterations, computing the Kernel
matrix is of size N X N may become intractable large number
of data points. Hence, we propose a pre-processing method for
reducing the data set and the size of the kernel matrix.



3. Sparse kernel approximation

Engel et al. (2004) proposed a sequential sparsification pro-
cedure for the kernel recursive least squares problem, which
only admits data points that form feature vectors that are not
approximately linearly dependent (ALD). In other words, given
adictionary Dy_; = {X}ies, , C {xi}fil, where I, C {1, ...,k}is an
index set of included data points at iteration step k. A new data
point x; is appended to the dictionary if the the set of feature
vectors {¢(x;)}ier,_, are approximatively linearly independent of

{¢(xx)}. This gives the following ALD test
Gy = min [la” @(%e-1) = @l < 7, @)

where X = {x : x; € D¢} and 7 > 0 is a pre-determined ac-
curacy parameter chosen close to zero. For n = 0, exact linear
independence would be required. If 6; > 7, the data point x; is
included in the dictionary, i.e. Dy = D1 U {x;}. Expanding
Equation 4 we get

O = muin a"(Fx-1) " @(Fio1)a — 2ap(Zy—1 )p(xk)

+ o(x) () =
min a" Ki_ja — 2ak(Fe_1, xi) + k(xg, xp). 5)

Solving the minimization problem in Equation 5, we get the
following ALD conditions

ar = K k(Giet, i), (6)
O = k(xg, xx) — k(Xr—1, Xp)ax. @)

Although the the ALD criteria were originally presented for
solving kernel regression problems online, we have applied it as
an effective pre-processing strategy for selecting relevant data
points.

4. Case study: Estimation of waste-heat recovery in ships

The presented methods have been applied to a case study
for estimation of waste-heat recovery in ships. Data have been
gathered from a passenger cruise ship, powered by four diesel
engines with a combined nominal power of 48 MW. Engine
temperatures are controlled via a fresh-water cooling system,
from which excess heat can be extracted trough heat exchang-
ers. The purpose of this case study is to identify a model that
describes the relation between engine electrical-load and recov-
ered waste heat based only on measured data. Almost 650 hours
of data were collected as 60 second mean measurements, which
makes a total of N = 39 000 data samples. Standard regression
methods will start to fail for such large amounts of data, and
computing and storing the kernel matrix will exceed the capac-
ity of most computers. Hence, the proposed ALD method was
used to reduce the kernel size.

The data were split into two parts, so that 2/3 of the
data are training the model, and the rest are used for vali-
dation. A Gaussian radial basis kernel function k(x;,x;) =
exp (—le,- - xj||§/20'2) with oo = 0.5 was used. The ALD thresh-
old 7 can be determined by cross-validation, but was here set

arbitrarily to 7 = 1073, A reduced kernel of size 82 x 82 was
obtained after applying the ALD selection criteria. The ALD
steps took less than 5 seconds to perform in Matlab 2014b on
a 3.4 GHz Intel i7-4770 CPU, and solving Equation 3 for the
reduced kernel took less than one second. In Figure 1, the fitted
model output is compared to both training and validation data.
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Figure 1: Estimated waste-heat recovery compared to training data (left) and
validation data (right).

5. Conclusions

A kernel-based, non-linear regression method referred to as
the least squares support vector machine has been presented.
The method applies the ’kernel trick’ to reformulate a regu-
larized linear regression problem in terms of only inner prod-
ucts by introducing a kernel function. Solving the problem
may become intractable for large data sets. Hence, a data re-
duction method based on approximate linear independence be-
tween feature vectors has been presented. The presented meth-
ods show promising results on a case study for estimation of the
recovered waste-heat in ships.
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