



# Subspace Identification of a Distillation Column

P Dolietis, K-E Häggblom, H Toivonen, J Böling

Process Control Laboratory Åbo Akademi University, Åbo (Turku), Finland E-mail: khaggblo@abo.fi

Presented at

15<sup>th</sup> Nordic Process Control Workshop Telemark University College, Porsgrunn, Norway January 29–30, 2009

# **Outline**



- ♦ Background
  - State-space models for MIMO systems
  - Identification by PE methods
- ♦ Basic Idea of Subspace Identification
- Experimental design for MIMO systems
- Application to a pilot-scale distillation column
  - Identification experiments
  - N4SID identification
- ♦ Conclusions

# **Background**



- State-space models
  - convenient for MIMO systems
  - problems with time delays

$$x(t+1) = Ax(t) + Bu(t) + Ke(t)$$
$$y(t) = Cx(t) + Du(t) + e(t)$$

- Identification by PE methods
  - minimize  $V_N(\theta) = \frac{1}{N} \sum_{t=0}^{N-1} \left\| \mathcal{E}(t,\theta) \right\|^2$  with respect to  $\theta$  subject to

$$\hat{x}(t+1,\theta) = [A(\theta) - K(\theta)C]\hat{x}(t,\theta) + B(\theta)u(t) + K(\theta)y(t)$$

$$\varepsilon(t,\theta) = y(t) - C\hat{x}(t,\theta) - D(\theta)u(t)$$

- nonlinear iterative optimization, usually ill-conditioned
- local minima
- choice of model structure is problematic
- ⇒ PE methods have inherent difficulties for MIMO systems (Katayama, 2005).

# **Basic Idea of Subspace Identification**



- ♦ Determine (A, B, C, D) directly from data through algebraic manipulations i.e., no iterative optimization
  - If the state vector  $\tilde{x}(t)$  can be estimated, (A, B, C, D) is obtained by

$$\begin{bmatrix} \hat{A} & \hat{B} \\ \hat{C} & \hat{D} \end{bmatrix} = \begin{bmatrix} \sum_{t=0}^{N-1} \begin{bmatrix} \tilde{x}(t+1) \\ y(t) \end{bmatrix} \begin{bmatrix} \tilde{x}(t+1) \\ y(t) \end{bmatrix} \begin{bmatrix} \tilde{x}(t+1) \\ y(t) \end{bmatrix}^{T} \begin{bmatrix} \sum_{t=0}^{N-1} \begin{bmatrix} \tilde{x}(t) \\ u(t) \end{bmatrix} \begin{bmatrix} \tilde{x}(t) \\ u(t) \end{bmatrix}^{T} \end{bmatrix}^{-1}$$

There are ways of constructing  $\tilde{x}(t)$  from input-output data (*direct N4SID*).

– If the (extended) observability matrix  $\Gamma_r$  is known, (A,C) can be extracted. Since

$$y(t) = C(qI - A)^{-1}Bu(t) + Du(t) + \tilde{e}(t)$$

(B,D) can also be determined.

There are many ways of constructing  $\Gamma_r$  (or some similar matrix) from input-output data (*realization-based N4SID methods*).

 $\Gamma_r = \begin{vmatrix} CA \\ \vdots \\ CA^{r-1} \end{vmatrix}$ 

#### **Basic Idea of Subspace Identification**



One way is as follows (basically according to Ljung, 1999):

$$\mathbf{Y}_{0|-s_{1}} = \begin{bmatrix} y(0) & \cdots & y(N-1) \\ \vdots & \ddots & \vdots \\ y(-s_{1}) & \cdots & y(N-1-s_{1}) \end{bmatrix}, \quad \mathbf{U}_{0|-s_{2}} = \begin{bmatrix} u(0) & \cdots & u(N-1) \\ \vdots & \ddots & \vdots \\ u(-s_{2}) & \cdots & u(N-1-s_{2}) \end{bmatrix}$$

$$\Phi = \begin{bmatrix} \mathbf{Y}_{0|-s_{1}} \\ \mathbf{U}_{0|-s_{2}} \end{bmatrix}, \quad G = \frac{1}{N} \mathbf{Y}_{1|r} \Big[ \mathbf{I} - \mathbf{U}_{1|r}^{\mathrm{T}} (\mathbf{U}_{1|r} \mathbf{U}_{1|r}^{\mathrm{T}})^{-1} \mathbf{U}_{1|r} \Big] \Phi^{\mathrm{T}}$$

$$\hat{G} = W_{1} G W_{2} = U S V^{\mathrm{T}} \approx U_{1} S_{1} V_{1}^{\mathrm{T}}, \quad \hat{\Gamma}_{r} = W_{1}^{-1} U_{1} R$$

 $W_1$ ,  $W_2$  and R are weighting matrices given by the particular method.

- $S_1$  is a matrix of singular values obtained by omitting the insignificant singular values from S (note that data are corrupted by noise). In principle, this is a user choice.
- Is this a problem for identification of ill-conditioned MIMO systems, where small singular values in the gain matrix are very relevant?

# **Design of Identification Experiments**



### **Preliminary analysis**

- It is desirable to make the identification (equally) informative for all relevant "directions"
- Consider a singular value decomposition of the gain matrix, i.e.

$$y = Gu = U\Sigma V^{\mathrm{T}}u = \sum_{i=1}^{n} U_{i}\sigma_{i}V_{i}^{\mathrm{T}}u$$

- the input  $u=u^i=V_i\sigma_i^{-1}$  will produce the output  $y=y^i=U_i$ ,  $\left\|y^i\right\|=1$
- ♦ To properly excite all directions i, i = 1,...,n, we need to apply inputs  $u^i$  that vary (symmetrically) between

$$u_{-}^{i} = -\sigma_{i}^{-1}V_{i}$$
 and  $u_{+}^{i} = +\sigma_{i}^{-1}V_{i}$ 

– it is sufficient to know  $\sigma_i$  (a scalar) approximately;  $V_i$  may have to be more accurately estimated (but not difficult for distillation)

#### **Design of Identification Experiments**



### Some design options

- Excitation of one direction at a time
  - the input u is varied between  $u_{-}^{1}$  and  $u_{+}^{1}$  in one part of the experiment, between  $u_{-}^{2}$  and  $u_{+}^{2}$  in another part, etc.
- ♦ Excitation of all directions simultaneously
  - the input u is given by  $u = \frac{1}{n} \sum_{i=1}^{n} u^{i}$ , where the  $u^{i}$ :s are varied simultaneously in an uncorrelated way
- ♦ *Note 1:* The above principles apply irrespectively of what type of signal is used to move  $u^i$  between  $u_-^i$  and  $u_+^i$  (e.g., PRBS).
- Note 2: Perturbation of the inputs one at a time or simultaneously in uncorrelated ways are generally not optimal designs.

# **Application to Distillation**





#### **N4SID** identification

- How sensitive is it to the experimental design?
- Is the choice of order a problem (in MATLAB's System Identification Toolbox)?
- How to handle time delays?

$$x(k+1) = Ax(k) + B \begin{bmatrix} u_1(k-\theta_1) \\ u_2(k-\theta_2) \end{bmatrix}$$
$$\begin{bmatrix} y_1(k) \\ y_2(k+\theta_3) \end{bmatrix} = Cx(k)$$

Pilot-scale distillation column at Åbo Akademi University

#### **Application to Distillation**



### **Identification experiments**

♦ Step changes of inputs one at a time (SeqStep)



♦ Simultaneous uncorrelated PRBS in inputs (**UncPRBS**)



#### — Identification experiments



◆ Step changes in gain directions (**DirStep**)



◆ Simultaneous PRBS excitation of gain directions (SimDirPRBS)



#### **Application to Distillation**



#### **N4SID Identification**

- Step changes of inputs one at a time (SeqStep)
- Default order (figure)  $\theta_1 = \theta_2 = 6$ ,  $\theta_3 = 12$  n = 3,  $\overline{e}^2 = 6.79 \times 10^{-7}$   $\sigma(A) = 1.00, 0.99, 0.81$  $\sigma(K) = 0.784, 0.002$
- Fix order = 3  $\overline{e}^2 = 5.79 \times 10^{-7}$  !!  $\sigma(A) = 1.00, 0.96, 0.34$  $\sigma(K) = 1.161, 0.028$  !
- Better order = 4 (?)  $\overline{e}^2 = 4.65 \times 10^{-7}$   $\sigma(A) = 1.05, 1.00, 0.99, 0.23$  $\sigma(K) = 5.007, 0.036$



- Better time delays:  $\theta_1 = 12$ ,  $\theta_2 = 15$ ,  $\theta_3 = 9$  (?) n = 4,  $\overline{e}^2 = 3.60 \times 10^{-7}$   $\sigma(A) = 1.05, 1.00, 0.99, 0.28$  (consistent  $\sigma(A)$ !)  $\sigma(K) = 0.467, 0.114$  (inconsistent  $\sigma(K)$ )

#### – N4SID identification



#### Simultaneous uncorrelated PRBS (UncPRBS)

#### Default order (figure)

$$\theta_1 = \theta_2 = 6, \ \theta_3 = 12$$
 $n = 4, \ \overline{e}^2 = 7.78 \times 10^{-8}$ 
 $\sigma(A) = 1.00, 0.99, 0.95, 0.26$ 
 $\sigma(K) = 0.777, 0.001$ 

## - Fix order = 4 $\overline{e}^2 = 8.61 \times 10^{-8}$ ! $\sigma(A) = 1.18, 1.00, 0.99, 0.08$ $\sigma(K) = 0.550, 0.003$



#### - Better order = 5 (?)

$$\overline{e}^2 = 5.22 \times 10^{-8}$$
  $n = 4$ ,  $\overline{e}^2 = 7.49 \times 10^{-8}$   $\sigma(A) = 1.04, 1.00, 0.99, 0.81, 0.63$   $\sigma(A) = 1.00, 0.99, 0.97, 0.23$   $\sigma(K) = 0.770, 0.003$   $\sigma(K) = 0.803, 0.000001$  !!!

- Better time delays: 
$$\theta_1 = 12$$
,  $\theta_2 = 15$ ,  $\theta_3 = 9$  (??)

$$n = 4$$
,  $\overline{e}^2 = 7.49 \times 10^{-8}$ 

$$\sigma(A) = 1.00, 0.99, 0.97, 0.23$$

$$\sigma(K) = 0.803, 0.000001 !!!$$

#### — N4SID identification



### ♦ Simultaneous PRBS in gain directions (SimDirPRBS)

Default order (figure)

$$\theta_1 = \theta_2 = 6, \ \theta_3 = 12$$
 $n = 3, \ \overline{e}^2 = 6.73 \times 10^{-8}$ 
 $\sigma(A) = 1.00, 0.99, 0.92$ 
 $\sigma(K) = 1.387, 0.013$ 

- Fix order = 3  $\overline{e}^2 = 8.44 \times 10^{-8}$  !!  $\sigma(A) = 1.00, 0.99, 0.43$  $\sigma(K) = 1.220, 0.023$
- Better order = 4 (??)  $\overline{e}^2 = 9.92 \times 10^{-8}$  !!  $\sigma(A) = 1.41, 1.00, 0.99, 0.19$  $\sigma(K) = 1.318, 0.019$



- Better time delays:  $\theta_1 = 12$ ,  $\theta_2 = 15$ ,  $\theta_3 = 9$  n = 4,  $\overline{e}^2 = 5.10 \times 10^{-8}$  (n = 4 is default choice!)  $\sigma(A) = 1.01$ , 0.99, 0.98, 0.30  $\sigma(K) = 1.221$ , 0.014 (very consistent  $\sigma(K)$ )

#### – N4SID identification



- Step changes in gain directions (**DirStep**)
- Default order (figure)

$$\theta_1 = \theta_2 = 6, \ \theta_3 = 12$$
 $n = 4, \ \overline{e}^2 = 1.33 \times 10^{-7}$ 
 $\sigma(A) = 1.09, 0.99, 0.98, 0.24$ 
 $\sigma(K) = 1.459, 0.013$ 

- Fix order = 4 $\overline{e}^2 = 1.43 \times 10^{-7}$  !!  $\sigma(A) = 1.44, 0.99, 0.99, 0.03$ !  $\sigma(K) = 1.532, 0.014$
- Better order = 3 (???)  $\overline{e}^2 = 1.21 \times 10^{-7}$  !!  $\sigma(A) = 0.99, 0.99, 0.40$  $\sigma(K) = 1.558, 0.015$



- Better time delays:  $\theta_1 = 12, \theta_2 = 15, \theta_3 = 9$  (?)

$$n = 4$$
,  $\overline{e}^2 = 1.04 \times 10^{-7}$ 

$$\sigma(A) = 1.00, 0.99, 0.98, 0.06$$
 !!

$$\sigma(K) = 1.453, 0.013$$
 (very consistent  $\sigma(K)$ )

# **Conclusions**



- Some observations about the N4SID algorithm:
  - The "loss function" (~variance of the disturbance model) does not always decrease with increasing model order.
  - The default choice of model order does not always seem "right".
  - Fixing the model order to the default order changes the loss function and can dramatically change estimated parameters (maybe different weight matrices are used?).
- Some other observations:
  - Consistent gain estimates require experiments that properly excite the "gain directions".
  - A good choice of time delays is a demanding task.