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Introduction

Optimizing Production

Maximizing net present value (NPV):

max NPV = /tl(x(t),u)dt
d 0

s.t. pm (x(t)) =
I(to) = X9

fx(t), u)

Closed loop optimizer:
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Water Flooding without/with Optimal Control

Without optimal control:

Permeability field with two streaks:

HH
R

With optimal control:




Conservation Equations

Mass conservation of water and oil:

%Cw(Pw’ Sw) = _VNw(Pw’ Sw) + Qw
%CO(PCH So) = _VNO(Poa So) + Qo

@ No flow potential due to gravitation.
@ Homogenous permeability field.

o Capillary pressure neglected.

@ Incompressible rock.

Mass concentrations: Fluxes through the porous medium:

Cw = opuw(Puw)Sw Ny = pu(Puw)tw(Pw, Sw)
Co = po(Py) S, No = po(Po)to(Po, S,)
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Darcy Velocity and Boundary Conditions

out
Pressure driven flow, Darcy’s law:

Uy = —kMVPa a=o,w

Ho

No flow across boundaries:

Reservoir

u, n=0 and u,-n=0

Internal sources/sinks due to wells:
@ Water is injected to maintain pressure and replace the oil.

o Oil and water are produced.



Two-Phase Isothermal Immiscible Flow Conservation Equations

Reduction Of State Variables:

Water saturation (volume fraction):

Sw+ 5 =1
Pressure difference due to capillary pressure:
FPeow = P — Py
Reduction of variables:
Sw=1-85, = S=8,=1-5,
Pow=0 = P=P,=P,
State variables (S, P) = (Sw, Py):



Two-Phase Isothermal Immiscible Flow Constitutive Equations

Density and compressibility
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Relative Permeabilities by The Corey Relations

Relative permeabilitieS' Rel. perm. of water and oil by the Corey relations
. 1 T T T T T T

krw = kerSnw 08

kro = kroO(l - S)nw

Reduced water saturation:

S _ S 03} we or -
S = - Twe 02 4

1- ch - Sor
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Numerical Integration ODE Model

Different Formulation

Partial differential equation (PDE) model:

%Cw(Pw’ Sw) = _VNw(Pw’ Sw) + Qw
%CO(PO7 So) = _VNO(Poa So) + Qo

Different formulation of an ordinary differential equation (ODE) model
after discretizing spatially:

%g(x(t)) = f(tx(t) (to) = o
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Runge-Kutta Methods

Tailored formulation of an s-stage Runge-Kutta method:

T, =t,+ch, 1=1,2,...,s

S
9(Xi) = g(zn) + hnzaz‘jf(Tj,Xj) i=1,2,...,8

j=1
S
9(@ns1) = g(@n) + ha Y bif(T}, X;)
j=1
9(Ent1) = g(@n) + hn Y b (T}, X;)
j=1
eni1 = g(Tni1) — 9(ins1) = hn D dif(Tj, X;) dj =b; —b;

=1
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Fast Integration by ESDIRK

Only s — 1 implicit stages:

010
Co | a1 Y
c3 | asr asz Y

1 b1 b2 b3 Yy
by by b3 o
?)1 ?)2 83 Bs
di dy d3 ds

13/21



Modified Newton Step

The state values X; are obtained by sequential solution of the residual:

R(X;) = g(X;) — havf(1;, X3) — i =0 i=2,3,...,s

i—1
i = g(zn) +hnZaijf(Tj,Xj) 1=2,3,...,8
j=1
The Jacobian of the residual R(X;):
TX) = g (X0) = S206) — by 2 (11, X0)
~ %(wm) - hmV%(tm’xm)
— J(zm) = LU

Only updating the Jacobian by slow convergence or divergence:
LUAX,; = R(X;)
Xi = Xz - AXZ
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Jacobian Structure

1D: 3 Non-zeros: 2D: 5 Non-zeros: 3D: 7 Non-zeros:

Solving the linear equations:
@ Sparse direct solver: LU factorization and back sustitution.
o lterative solver: GMRES.



Adaptive Time Stepping

In most commercial simulators:
@ Simple heuritics implemented e.g. maximum variation of saturations.
ESDIRK, embedded error estimator:

nt1 = g(Tnt1) = 9(Ens1) = hn Zdif(ﬂ7Xi)
i=1

Measures of the error may be controlled adjusting the time step according

to
Ry, c ka/k o ki/k
hn+1 — < ~ hn
hp_1 T+l Tn41

® ¢é,41 Is an error estimate of the conserved quantities g(x,+1).




ESDIRK Performance

ESDIRK23 performance and statistics, 45 x 45 grid blocks:
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Performance by Significant Digits

ESDIRK performance on 1D case, 1000 grid blocks:
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o ESDIRK12 = red, ESDIRK23 = green, ESDIRK34 = blue.
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2D Test Case, 45 x 45 Grid Blocks

Oil saturation after 31 days:

Permeability field with two streaks:

Oil saturation after 62 days:
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Butcher Tableau's of Runge-Kutta Methods

The explicit Runge-Kutta (ERK) method:

010
Co2 | 21 0
c3lasz azx 0

Cs | Gs1 Qg2 Ag3 0
by by b3 bs
bi by by bs
di dy d3 ds

The A-matrix in Runge-Kutta methods:
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Butcher Tableau's of Runge-Kutta Methods

The diagonally implicit Runge-Kutta (DIRK) method:

€1 | an
C2 | 21 Qa22
€3 | a3l az2 as3

Cs | As1  Qs2
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Butcher Tableau's of Runge-Kutta Methods

The singly diagonally implicit Runge-Kutta (SDIRK) method:

C1 |
Co | 21 7Y
C3 |as1r a3z 7y

Cs | As1 Qs2 (g3

s 5|2

QL
»
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Butcher Tableau's of Runge-Kutta Methods

The explicit singly diagonally implicit Runge-Kutta (ESDIRK) method:

010
Co | 21 7Y
C3 |as1r a3z 7y

Cs | Gs1 Q52 (g2 Y
by by b3 bs
by by b3 bs
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Butcher Tableau's of Runge-Kutta Methods

The fully implicit Runge-Kutta (FIRK) method:

C1|ai1 a2 a3 -+ Qils
Co | a1 a2 a23 a2s
C3 | as1 az2 ass a3s

w
«

Cs | Gs1 Qs2 Qs3
by by b3 bs
by by by bs
di dy d3 ds
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Fast Integration by ESDIRK

Only s — 1 implicit stages:

010

C2 | a1 7Y

c3 | as1 asz 7

1 b1 b2 b3 Yy
i b2 bs 7
by by b3 bs
di dy ds ds

ESDIRK
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Fast Integration by ESDIRK

Only s — 1 implicit stages:

010
Co | a1 Y
c3 | asr asz Y

1 b1 by b3

B
by b2 b3 Y
l;l 82 63 Bs
dy dy d3 ds

The first stage is explicit, which implies that:

Xi =z,
Tpt1 = X
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Fast Integration by ESDIRK

Only s — 1 implicit stages:

010
Co | a1 Y
c3 | asr asz Y

1 by by b3

Y
by by b3 Y
l;l 82 63 Bs
dy dy d3 ds

The Butcher tableau is constructed such that:

X1 =w,
Tnt1 = Xs

21/21



Fast Integration by ESDIRK

Only s — 1 implicit stages:
010

Co | a1 7Y
c3 |as az2 7

1 by by b3

N
by b2 b3 0

b by b bs
dy dy d3 ds

The state values X; are obtained by sequential solution of the residual:

R(X;) = 9(Xi) = hov (T3, X)) =90 =0 i =2,3,...,s

i—1
j=1
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