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Abstract: The aim of the work presented in this paper is to evaluate the ability of the causal 
digraph method to detect and isolate faults on a simulated paper machine process. In order to 
represent the causal relations between the variables using discrete state space models, a 
linearity test was performed for the short circulation sub process in the papermaking 
simulator. The corresponding causal digraph model was constructed, identified and used to 
detect and locate the artificial fault in the simulation environment. The studied fault was a 
drop in the fiber acceptance rate of the pressure screen before the deculator.  
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1. INTRODUCTION 

 
Due to the increasing competition in the process 
industries, there has been a strong need to detect, 
locate and estimate faulty states and recover the 
process from these states. By applying fault 
diagnosis, process safety, product quality and 
equipment maintenance could be improved 
remarkably.  
 
Since Iri et al. (1979) introduced the Signed Directed 
Graph (SDG), the simplest causal digraph method, 
into the field of process fault diagnosis, it has made 
remarkable progress and been the most popular 
causal model based method for process fault 
diagnosis. In order to alleviate the problem with 
spurious results, fuzzy logic was used by Shih and 
Lee (1995a, 1995b) to represent both the variables 
and the relations in the causal digraph. However the 
method itself still remained static. Another big 
improvement of the causal digraph was the 
introduction of the piece-wise linear transfer 
functions (QTF) by Leyval et al. (1994). The used 
simplified transfer function provides dynamic 
information. With the introduction of the QTF a new 
reasoning method for diagnosis purposes was based 
on residuals was needed. Recently more quantitative 
models, such as difference-algebraic equations 
(Montmain and Gentail, 2000) have been used in 

causal digraph to further improve the diagnosis 
results. 
 
The aim of this paper is to evaluate the fault 
detection and isolation abilities of the causal digraph 
method on paper machines. In this study, the APROS 
simulator developed by VTT (Technical research 
center of Finland) was used to simulate the 
papermaking process (APROS, 2005) and NNDT 
(Saxén B. and H. Saxén, 1994) was used to identify 
the discrete state space model in the causal digraph 
model. In this paper the causal relations are 
represented by state space models. The fault 
detection and isolation steps were performed using 
the developed MATLAB graphic user interface. 
 
The paper is organized as follows. In the next section 
the basic concepts about FDI, causal digraphs and the 
CUSUM method will be described. Section 3 
describes the short circulation process in paper mills 
and the studied fiber acceptance rate drop fault. In 
section 4, the linearity of the APROS paper machine 
model was proved and the causal digraph model is 
constructed using the MATLAB user interface. The 
fault diagnosis results are shown in section 5 
followed by the conclusions in section 6. 
 
 
 



     

 2. FAULT DETECTION AND ISOLATION (FDI) 
 
In both process industries and the academic world, a 
fault is usually considered as an undesired deviation 
of the system structure and parameters from their 
nominal state. Fault detection and isolation refer to 
detecting the occurrence of a fault in a process and 
locating the faulty components respectively.  Due to 
active research during the last two decades, dozens 
of new FDI methods have been developed. However, 
most of the methods are carried out using a similar 
procedure entailing residual generation, residual 
evaluation and decision-making. In this paper, the 
residuals are generated using a causal digraph model 
and evaluated with the CUSUM method. The final 
decision is made according to the causal digraph 
reasoning rules. 
 
2.1 Causal digraphs 
 
Causal graphs provide a good way to represent 
physical cause-effect relations between different 
process variables that are of interest for fault 
diagnosis. In the causal directed graph models, the 
nodes denote the variables, while the directed edges 
between the nodes represent the causal relations 
between these variables, through which faults can 
propagate.  
 
Different models can be used to explain the cause-
effect relations on the edges depending on the nature 
and level of abstraction of the model, which 
subsequently leads to a variety of different methods 
for backward (diagnosis) and forward (simulation) 
reasoning. The Signed Directed Graph (SDG) 
method, the simplest causal directed graph method, 
uses pure qualitative information, which can give rise 
to ambiguous fault diagnosis. The more recent use of 
QTF and difference equations has introduced more 
quantitative information into the model and 
consequently decreased the amount of spurious 
results.  
 
2.2 Residual generation 
 
Causal digraphs produce two kinds of residuals to be 
used in fault detection and isolation. The global 
residuals (GR) are obtained as the difference 
between the measurement and the global propagation 
value shown below: 

)(ˆ)()( kykyk −=δ           (1) 

where y(k) is the measurement and )(ˆ ky is the global 

propagation value obtained by 

),..)2(ˆ),1(ˆ()(ˆ −−= kUkUfky                  (2) 

where in dynamic cases 
[ ]Tn kukukU )1(ˆ),....1(ˆ)1(ˆ

1 −−=−  is the lagged global 

propagation values from the parent nodes in the 
graph model and n denotes the number of the inputs 
for the variable y. 
 
The local residual can be further subcategorized into 
three types: individual local residual (ILR), multiple 
local residual (MLR) and total local residual (TLR).  
 

The individual local residual can be produced by 
taking the difference between the measurement and 
the local propagation value with only one measured 
input while all the others are propagation value from 
parent nodes.  

),...)2(),1(()()( −−−= kUkUfkymILR mm
          (3) 

where ( ) [ ]Tnmm kukukukU )1(ˆ),...1(),...1(ˆ1 1 −−−=− , 

the )1(ˆ −ku i
is the global propagate value from the 

parent node, and the )1( −ku j
is the measurement for 

the parent nodes. Usually the number of ILRs is the 
same as the number of inputs to the model for 
predicting the variable y. 
 
Similarly the MLR is produced by  

),...)2(),1(()(),( ,, −−−= kUkUfkydmMLR dmdm
(4) 

where 

( ) [ ]Tndmdm kukukukukU )1(ˆ),...1(),.1(),...1(ˆ1 1, −−−−=−
and m, d denote the inputs for variable y with 
measurement value. Generally the MLRs can be 
produced for all possible combinations inputs to the 
model for variable y.  
 
The TLR is produced by 

),...)2(),1(()( −−−= kUkUfkyTLR              (5) 

where ( ) [ ]Tn kukukU )1(),..1(1 1 −−=−  is the lagged 

measurement values for all inputs to the model for 
variable y. 
 
2.3 Residual evaluation 
 
The nature of the residual evaluation in this method 
is a mapping from the residuals to the set {0,1}. In 
the faultless case, the residuals are considered to be a 
zero mean random sequence signal, for which the 
mean value will change when a fault occurs.  
 
For the detection of a jump in the mean of a noisy 
residual, the CUSUM method by Page and Hinckley 
was implemented. For a positive mean jump, the 
following applies. 

2/)()1()( 0 minfaultkkSUMkSUM −−+−= µδ    (6) 
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kn<
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where minfault is a user specified minimum 
detectable jump. When λ>− MinSUMkSUM )( , a 

jump has been detected (Hinckley, D. V., 1971). The 
parameter λ provides some robustness to the fault 
detection but it will also delay the detection. A more 
general procedure can be developed based on the 
simple positive jump case for detecting two-
directional jumps and residual recovery back to the 
normal situation. 
 
minfault and λ are design parameters, usually tuned 
according to the requirement for false alarm and 
missed alarm rates. Theoretically the CUSUM 
method can detect very small jumps in the mean, but 
in practice, minfault is decided by the minimum 
detectable fault and λ is usually set to 10-20 times of 
minfault. 
 



     

With the CUSUM method, the generated residuals 
above are mapped into 0 or 1, which can be used in 
the fault diagnosis reasoning with the rules presented 
in the following section. 
 
2.4 Fault diagnosis reasoning 
 
With the results obtained from the residual 
evaluation, the structural information in the causal 
digraphs can be used to diagnose faults. There are 
two types of rules concerning fault diagnosis: fault 
location rules and fault nature rules.  
 
For a specific node y in the causal digraph, the fault 
location rules can locate the fault on the variables 
even in the presence of multiple alarm variables. The 
reasoning rules for faults location are shown in the 
Table 1.  
 

Table 1 Causal digraph fault location rules 
 

GR TLR ILR(m) MLR(m,d) Location 
0 0 0 0 No fault 
1 0 1 0 Upstream 
1 0 0 0 Upstream 
1 1 1 1 Local 

 
After the locating the fault origin, in most cases the 
nature of the fault can be identified by fault nature 
rules, which are given in the following table.  
 

Table 2 Causal digraph fault nature rules 
 

GR for any 
child node 

TLR for any 
child node 

Fault nature 

1 1 Local fault for 
that child node 

1 0 Parameter fault 
0 1 Sensor fault 

 
 

3. CASE STUDY 
 
This paper provides a case study concerning fault 
detection and isolation on a paper machine simulator. 
The focus is on the short circulation process but 
paper quality variables are considered as well. For 
this study, the Advanced Process Simulator (APROS) 
was used to build the paper machine model. For a 
general description of the APROS simulator, the 
reader is referred to the APROS website (APROS, 
2005). In the remainder of this section, the short 
circulation process is described together with a 
presentation of the studied fault. 
 
3.1 Short circulation process 
 
The short circulation is a crucial part of the 
papermaking process, with several important 
functions. The dilution of the fiber-suspension 
entering the process to a suitable consistency for the 
headbox takes place in the short circulation, in a 
mixing process were low-consistency water from the 
wire-pit is mixed with high-consistency stock. The 
second important task of the short circulation is the 
removal of impurities and air. This task is performed 

in the hydro-cyclones, machine screens and the so-
called deculator. The short circulation also improves 
the economy of the process because the valuable 
fibres and filler materials that pass through the wire 
are recycled. As the intermediate process between 
stock preparation and former, the short circulation 
process is very important for paper quality control, 
since the basic weight, ash consistency and stock jet 
ratio control are performed in the short circulation 
part.  
 
The short circulation process starts after a machine 
chest. Usually the machine chest is followed by a 
thick stock pump and a basic weight valve, which is 
used for basic weight control. The thick stock is 
pumped to the wire pit and mixed with white water 
and filler controlled by the filler valve. The diluted 
stock is pumped by a fan pump via the hydro-
cyclones to the deculator. The deculator has a 
continuous overflow to keep the inlet pressure 
constant for the head box feed pump. The diluted 
stock is then pumped into the hydraulic headbox and 
sprayed onto the wire at a constant speed.  On the 
wire the stock is dehydrated to form a wet web. 
About 98% of the water and 54% of the filler and 
fibre go through the wire and flow to the wire pit as 
white water. The process is presented in Figure 1. 
 

 
Fig. 1. Flow sheet of the short circulation process. 

 
The variables shown in Figure 1 are important for 
building the causal digraph model. Table 3 gives a 
description of the variables. 
 

Table 3 Description of the variables in the short 
circulation 

 
Variables Description Unit 
baval Basis weight valve opening - 
wp_fc Filler consistency in the wire pit % 
wp_fic Fiber consistency in the wire pit % 
fival Filler adding valve opening - 
de_fc Filler consistency in the deculator % 
de_fic Fiber consistency in the deculator % 
feedpump Headbox feed pump rotation % 
totalflow Mass flow into the headbox kg/s 
bw Basis weight of paper g/m2 
ash Ash consistency of paper % 
 
The APROS simulator provides first principle 
models for the necessary components, with which the 
model for the paper machine was constructed and 
parameterized. Figure 2 shows the model used for 
this case study. 



     

 
Fig. 2. APROS model for paper machine 

 
3.2 Faulty case 
 
As a serious fault in the paper making industry, drops 
in the pressure screen fiber acceptance rate can cause 
problems even though the quality control loop could 
compensate the fault effect on the final product 
quality. A low acceptance rate arising from the 
malfunction of pressure screen will make it difficult 
to transfer fibers from the machine chest section to 
the deculator decreasing the efficiency significantly. 
The corresponding artificial fault was simulated in 
the APROS model were the fiber acceptance rate in 
pressure screen dropped from the nominal value 95% 
to 94%. In the faulty case, the value of fiber 
consistency in deculator, headbox and wire pit will 
all increase over the thresholds and cause alarm. The 
need to find the fault origin as well as the nature of 
the fault in these situations is well met by causal 
digraphs. 
 

4. MODEL CONSTRUCTION 
 
4.1 Linearity test 
 
In this paper dynamic models were used to describe 
the relations between the variables of equation 2. 
Before the dynamic modeling the linearity of the 
APROS paper machine model was tested, since the 
detailed mathematic model for it was unknown. 
 
Among all the variables in Table 3, baval, fival and 
feedpump are actuator input signals corresponding 
the input nodes in the causal digraph. By opening the 
control loop for the paper machine and manipulating 
the actuator signal manually, the data of 64 different 
steady states was collected from the simulator.  From 
the knowledge of the process and the collected data, 
the structure of the causal digraph can be defined and 
shown as in figure 3. 
 
The linearity between related variables is tested in 
two ways. For those variables that have only one 
input in the digraph in figure 3, the steady points 
(input vs. output) was plotted and tested. One 

example is given in figure 4 for the fiber consistency 
in the headbox.  
 

 
Fig.3. Causal digraph model 
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Fig.4. Linearity test for fiber consistency in the 

headbox 
 
Another way to test linearity is to build a steady state 
static model for the tested variable with 32 steady 
states data using the least square method, and test the 
model with the remaining 32 steady states. One 
example is shown in figure 5 for the basis weight 
variable.  
 
The test result shows that the APROS paper machine 
model is relatively linear, which gives us a reason to 
use linear state space models when representing 
causal relations according to equation 2.  
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Fig.5. Linearity test for basis weight 

 
4.2 MATLAB graphic user interface 
 
The inputs and outputs variables for state space 
models were selected according to the structure of 
digraph in figure 3. New training data and validation 
data for state space model identification were 
collected from the APROS simulator under fault free 
and open loop conditions. The data was then 
imported to the NNDT software package, which 
besides neural network training also supports 
identification of linear structures such as discrete 
state-space models (Nikus and Bulsari, 1995).  
 
In order to apply the causal digraph method for fault 
diagnosis more easily, a MATLAB graphical user 
interface was developed to have such functionalities 
as: specify the graph, generate the residuals (GR, 
ILR, MLR, TLR), detect the change with CUSUM 
and diagnose the fault according to the reasoning 
rules.  
 
In the interface, nodes and connections between 
nodes can be specified for the digraph structure. A 
from the specifications automatically generated 
digraph is shown in figure 3. 
 

5. RESULTS 
 
The causal digraph for the short circulation was 
constructed using the graphical user interface, and 
the diagnosis was performed for the faulty data 
which was collected during closed loop operation of 
the APROS model. The residuals and alarms were 
generated and the fault origin as well as the fault 
nature were determined and shown in the MATLAB 
graphic user interface automatically. Examples of the 
global residual tests for the mass flow rate through 
the headbox (tf), filler consistency in the deculator 
(de_fc), filler consistency in the headbox (hb_fc) and 
filler consistency in the wire pit (wp_fc) are shown in 
figure 6. The fact that these variables do not cause 
any alarms excludes them from the group of fault 
origin candidates. 
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Fig.6. Global tests for tf, de_fc, hb_fc and wp_fc 

 
The global tests for the paper quality variables: basis 
weight (bw) and ash rate (ash) however fired alarms, 
even though the quality controllers work well and 
keep the measurements of these two variables to 
follow their respective setpoints. The test result for 
variable bw is shown in figure 7, which implies two 
facts. First of all the, production efficiency has 
decreased even though the quality of the paper is 
kept the same. The second fact is that a conflict 
between control and fault diagnosis exists, since the 
purpose of the former is to remove unwanted effects 
of ‘disturbances’ on the final product quality, which 
makes fault detection even harder in cases when only 
a threshold for the variable is utilized.  
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Fig.7. Global test for bw 

 
Similar results can be obtained for the variables 
de_fic, wp_fic and hb_fic, which all have generated 
alarms for their global tests. So in the causal digraph 
model in figure 3, there are 5 variables that have 
alarms for the global tests, which brings forward the 
demand to find the fault origin in these faulty 
variables, to find the fault propagation path and to 
find the nature of the fault. Therefore local residuals 
were generated and inference based on the rules 
stated in section 2 was further performed. The local 
tests for these variables are shown in figure 8 and 
figure 9 respectively.  
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Fig.8. Local test for bw 
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Fig.9. TLR for de_fic, hb_fic and wp_fic 

 
The results in figure 8 imply that the fault is not local 
and has propagated from the upstream variable 
hb_fic, since the TLR (bw) and ILR(hb_fic) remove 
the alarm when the respective measurements from 
the parent nodes were used. A similar test result was 
obtained for variable ash. According to the same 
rule, the TLR test for de_fic in figure 9 shows that 
the fault origin is the fiber consistency in the 
deculator, while other alarmed variables were 
affected by it. 
 
The fault nature rules further tells that this is a 
process parameter fault since it propagates through 
the process globally. The final fault diagnosis is 
presented by the MATLAB graphical user interface 
shown in the following figure. 
  

 
Fig.10.The result of fault diagnosis  

 
 

6. CONCLUSIONS 
 
In this paper, the ability of the causal digraph method 
for fault detection and isolation was tested in a 
simulation environment. The linearity of APROS 
paper machine model was tested and linear discrete 
state space models were used to describe the causal 
relations in the graph. The CUSUM signal-based 
method was applied to evaluate the generated 
residuals. The results shown and discussed prove that 
the causal digraph is a useful fault diagnosis tool.  
 
However like all other methods, causal digraphs also 
have some drawbacks giving us space to improve the 
method. First of all, causal digraph only locates the 
fault on the variable, which will result in some 
ambiguity in the case of multiple inputs for the 
variable. In the case study presented in this paper, the 
fault origin is located as variable de_fic, and 
furthermore the fault is correctly classified as a 
process fault, while the actual fault existing between 
one of the parent variables and de_fic unfortunately 
cannot be identified. Another problem is that when a 
measurement fault is involved in a control loop, the 
nature of the fault cannot be identified correctly by 
the fault nature rules. Finally, the rules developed so 
far for the fault diagnosis only utilize the local 
pattern produced by the causal diagraph, which 
means that only the causal relationship between 
parents and children were used for the consistency 
test, while the reality is that fault can produce a 
pattern for the whole digraph, i.e. one fault can 
produce multiple fault origin variables in the graph.  
 
Besides trying to solve some on the above problems 
we are going to do research on, how to utilize the 
qualitative and quantitative information for fault 
recovery and also fault tolerant control could be 
interesting topic. 
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