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Abstract: The aim of the work presented in this paper is to assess the ability of support vector 
machines (SVM) for detecting measurement faults. Two different support vector machine 
approaches for detecting faults are tested and compared to neural networks. The first method 
is based on a SVM regression model together with an analysis of the residuals whereas the 
second method is based on a SVM classifier. The methods were applied to a rigorous first 
principles based dynamic simulator of a dearomatization process.  Copyright © 2006 IFAC 
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1. INTRODUCTION 

 
Handling of abnormal situations, such as equipment 
failures and process disturbances, has received 
increasing attention from industry and academia 
alike. Due to abnormal situations the petrochemical 
industries alone lose an estimated 20 billion dollars 
annually (Venkatasubramanian et al., 2002). The 
potential benefits, even from modest improvements 
in abnormal situation handling, are hence enormous. 
One important group of abnormal situations in 
process industries are faults in on-line product 
analyzers. Since these analyzers are increasingly 
used for closed-loop control it is imperative to detect 
faults occurring in them as quickly as possible. 
 
Recent developments in kernel methods have made 
available efficient tools for non-linear classification 
and regression. One of these powerful techniques is 
the support vector machines method (Vapnik, 1998).  
 
The aim of this paper is to assess the ability of 
support vector machines for detecting measurement 
faults. The paper is organized as follows. In the next 
section the basic support vector method is discussed 
and the discussion is followed by a description of 
two approaches for fault detection using SVMs. 

Section 3 introduces the studied process while the 
data processing, model building and validation steps 
are presented in section 4. The fault detection results 
are given in section 5. A comparison of the results to 
those of standard feedforward sigmoidal neural 
networks is made in section 6 and finally the 
conclusions are drawn and summarized in section 7.  
 

 2. SUPPORT VECTOR MACHINES 
 
The support vector machines (SVM) were created by 
Vladimir Vapnik in the 1990s and can be used for 
solving classification and regression tasks. They are 
based on the principle of structural risk minimization, 
which enhances model robustness by ensuring that 
the model complexity is not too high as measured by 
the so called VC-dimension (Vapnik, 1998). For 
comparison, neural networks and other traditional 
black box techniques normally minimize the 
empirical risk which basically is the average 
quadratic error over a number of samples, the 
training set. Within the SVM framework, radial basis 
networks, single hidden layer sigmoidal neural 
networks as well as other kinds of models can be set 
up, depending on the chosen kernel. A nice property 
of the SVM is that it yields a unique optimal solution 
of the resulting optimization problem.  



 

     

 
When solving the classification problems, a decision 
surface of the form 
 

( ) 0=+ bxwTφ          (1) 
 

is sought. The basis function ( )xφ  maps the inputs to 
a high dimensional feature space. Minimizing the  
so- called structural risk leads to the inclusion of the 
parameter vector w in the cost function  
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which is minimized with respect to w and b, subject 
to the constraints 
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where xi represents an input vector in the data set and 
yi (= ±1) the corresponding scalar output. The ξi:s are 
slack variables representing misclassifications. In 
practice the solution of the SVM optimization 
problem is solved by introducing a dual problem that 
arises after the inclusion of Lagrange multipliers. 
The dual formulation gives rise to a quadratic 
programming optimization problem that has a unique 
solution. This yields for the classification case the 
decision function 
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where the αi are the Lagrange multipliers of the dual 
problem and l is the  number of support vectors. The 
support vectors are data vectors selected from the 
training set to form the basis of the model. When 
solving the dual problem it turns out that the basis 
function ( )ixφ  is only present as an inner product in 
the solution. Hence only the kernel function K(xi, x) 
needs to be known and the basis functions ( )ixφ  are 
not used explicitly (the “kernel trick”). Several 
kernels have been proposed and the following are 
just examples sampled from the plethora. 
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The gaussian kernel (equation 5a) gives rise to a 
radial basis network. With a sigmoidal kernel 
(equation 5b) perceptron networks much like 
feedforward neural networks with one hidden layer 
can be designed within the SVM framework. Also 
polynomial and linear kernels (5c) can be used. 
 
Regression problems have the primal cost function 
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that is minimized with respect to w, b and ξ, subject 
to the constraints 
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The inclusion of ε in the above constraints facilitates 
the so-called ε-insensitive cost function. This means 
that the absolute value of the residuals have to 
exceed ε before they are included in the cost 
function. 
 
For the regression case the input-output mapping 
becomes: 
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were the αi and αi

* represent the Lagrange multipliers 
in the dual problem. 
 
The training of the SVMs can be performed with e.g. 
the LIBSVM software (Chang and Lin, 2001), which 
uses a numerically powerful decomposition method 
much like the method by (Platt, 1998). The 
decomposition method for the SVMs makes it 
possible to use large data sets with thousands of data 
points. 
 
There are however some parameters in the SVMs 
that need to be determined outside of the main 
optimization. Specifically they are the width 
parameter of the gaussian γ, the weighting factor 
between model complexity and performance, C and 
for the regression case also ε, i.e. the threshold value 
for the residuals to contribute to the cost function (cf. 
equations (7a-b)). The best values for these 
parameters can be determined by performing a grid 
search on test data. The optimization time required 
for SVMs is typically an order of magnitude shorter 
than that of neural networks trained with the efficient 
Levenberg-Marquardt method. The SVMs however 
tend to give rather large models with the number of 
support vectors sometimes as high as one half of the 
number of patterns.  
 
2.1. Support Vector Machines for Fault detection 
 
Not many results of using SVMs for fault detection 
have been reported as of yet. Pöyhönen et al., (2005) 
reported a study related to the fault detection of 
electrical motors. In the article sets of classifier 
SVMs are used together to classify abnormal 
situations into several faults types. In (Kulkarni et al., 
2005) prior knowledge is incorporated into a 
classifier SVM model used for fault detection of the 
Tennessee Eastman benchmark process. The 
inclusion of process expertise made it possible to use 



 

     

less complex models for the task. A liquid-liquid 
extraction process was monitored in (Jemwa and 
Aldrich, 2005) using a kernel ridge-regression 
technique similar to support vector machines. 
Ribeiro (2005) has reported good results using multi-
class SVMs for fault detection in a plastic injection 
moulding process with the SVMs generally 
outperforming radial basis function networks 
designed for the same purpose. In (Wang et al., 
2006) some promising kernel based methods for fault 
detection are outlined and applied on the Tennessee 
Eastman process and a dearomatisation process.  
 
The two main categories of SVMs (classification and 
regression) can both be used for fault detection using 
different approaches. The regression approach is 
based on analytical redundancy and hence we want 
to model a possibly faulty signal (y) using other 
process variables (x) 
 

( )xfy =ˆ             (9) 
 

The above model should preferably be trained on 
fault-free data. The difference between the 
measurement and the estimate gives the residual.  
 
 yy ˆ−=ε           (10) 
 
By evaluating this residual conclusion can be drawn 
about the state of the modelled signal. The simplest 
test for residual is its comparison to a predetermined 
threshold value. If the residual exceeds this limit a 
fault has been detected. Also other residual 
evaluation methods, such as e.g. the CUSUM test 
(Hinkley, 1971) can be used, but in the present study 
the former method was applied. 
 
In the classification approach the idea is to model the 
fault state δ (δ = 1 = fault, δ = 0 = no fault) based on 
the process variables as well as the analyzer 
measurement itself. 
 
 ( )yxg ,=δ           (11) 
 
In the case of a fault classifier, the training data 
obviously should include faulty data in addition to 
the healthy data and thus the fault state of the data 
has to be known.  
 

3. CASE STUDY 
 

This case study deals with the fault detection of on-
line analyzers in a simulated dearomatization 
process. Vermasvuori et al. (2005) studied a number 
of fault detection methods for this specific process. 
The purpose of the present case study is to 
investigate the use of support vector machines for the 
fault detection task. The study has been limited to 
bottoms product boiling point analyzer (0% 
evaporated) while the previous study by 
Vermasvuori et al. included in total four analyzers. 
Dearomatisation processes are widely used in the oil 
refining industry.  

In these processes, aromatic compounds in the 
feedstock are removed by hydrogenation. The 
process consists of two tricklebed reactors with 
packed beds of catalyst, a distillation column, a 
filling plate stripper, several heat exchangers and 
separation drums, and other unit operations. The 
process diagram of the LARPO process is presented 
in Fig. 1. 
The cold, liquid feedstock fed to the unit is heated 
with streams from the two reactors in heat 
exchangers EA1 and EA2, and then fed to reactor 
DC1 together with hydrogen and recycle liquid. 
Exothermic saturation reactions in the first reactor 
remove most of the aromatic compounds when the 
catalyst is new, while most of the reactions occur in 
the second reactor when the catalyst is older and has 
been partly deactivated. After dearomatisation in 
reactor DC1, the reaction product is cooled in heat 
exchanger EA1 and then fed to gas separation drum 
FA1 where the gaseous and liquid reaction products 
are separated. Part of the liquid is circulated back to 
reactor DC1. The rest of the liquid, together with 
separated gas and fresh hydrogen, are fed to the 
second reactor DC2, where the aromatics level of the 
product drops to near zero. After the second reactor, 
the reaction product is cooled in heat exchangers 
EA2 and EA3 and fed to the second gas separation 
drum FA2. Gas separated from the liquid mainly 
consists of unreacted hydrogen, which is recycled 
back to the first reactor, and the rest of the gas is 
removed. The separated liquid is heated with by-
product and product streams in heat exchangers EA4 
and EA5. Part of the liquid is further heated in heat 
exchanger EA6 in order to achieve the final 
temperature before the stream is fed to distillation 
column DA1. The overhead of the column is cooled 
in a cooler and then fed to separation drum FA3, 
where the gaseous part is removed and the liquid is 
divided into reflux and distillate. The distillate 
consists of the lightest compounds of the reaction 
product. Heat exchanger EA6 produces heat for 
reboiling the bottom stream. From the upper part of 
the column DA1, a side stream is conducted to a 
stripper, which is heated with heat exchanger EA7. A 
by-product stream is drawn off from the bottom of 
the stripper. The nonaromatic main product is drawn 
off as the bottom product of the distillation column 
DA1 and cooled in heat exchanger EA5.  
The quality of the cooled product is measured online 
by flash point and distillation curve analyzers. 
Laboratory measurements of the product are 
performed twice a day, and these results are 
compared to the analyzer output. This way of 
detecting analyzer faults is tedious and can in the 
worst of cases lead to delays in the detection of 
possible faults of many hours. If the fault could be 
detected earlier the necessary maintenance actions 
could be made sooner and the quality of the end 
product could be kept within the production limits, 
thus improving the plants economical performance.  
The analyzer faults are usually caused by one of the 
following problems; water contamination of the 
analyzed sample, carbonisation of the flask of the 
distillation analyzer, or fouling of the gas 



 

     

chromatograph. The first fault type causes the 
analyzer result to drop abruptly and the others cause 
the output to drift slowly away from the correct 
value. These fault types were simulated by adding 
biases and linear trends to the simulated analyzer 
output. The data, covering a period of almost 64 
hours, used in this study, was created with the 
PROSimulator software developed by Neste Jacobs 
Oy. Every hour the values of 1−3 variables were 
manipulated in order to create variance in the data. 
These manipulations initiated changes to process 
measurements similar to changes in real process data 
caused by normal operation actions. The feed type 
was not changed during the simulation. 

 
Fig. 1 The dearomatization process 
 

4 DATA PROCESSING AND MODELING 
 

4.1 Selecting the input variables 
 
For any type of modelling a good choice of input 
variables is a crucial step. If the number of possible 
input variables is limited to only a few the input 
variable choice can be done in conjunction with the 
modelling stage, simply based on the performance of 
different models with different sets of inputs. If the 
total number of available variables is large the usual 
approach for selecting inputs is based on correlation 
analysis. This method was used in the present study. 
The correlation analysis was performed only on fault 
free data in order to get as reliable information as 
possible. To avoid selecting several variables 
describing the same phenomena a simple test was 
made. In order for a candidate variable to be selected 
two conditions had to be fulfilled: 
 

1) The correlation between the input variable 
in question and the analyzer had to be at 
least X% 

2) The input variable in question was allowed 
to correlate at most Y% with any of the 
previously selected variables 

 
In this study X was 50% and Y was 85%. After the 
selection of input variables was done, the best delays 
for these variables were sought by creating high 
order ARX models with varying time delay for each 
of the input-output combinations. The time-delay 
that gave the best fit of the data was chosen. Using 
this scheme 8 input variables were obtained. The 

variables along with the obtained correlations and 
delays are given in Table 1. 
 

Table 1. Selected variables and their correlations 
with the dependent variable 
Variable delay correlation 

Temperature  on tray 38 in 
distillation column 1 6 0.87 

Temperature on level 5 in 
the side stripper  26 0.83 

Reflux flow  from column 
2 to column 1 0 -0.76 

Vapour distillate  
flow from column 1 3 -0.69 

Liquid distillate  
flow from column 1 0 0.61 

Temperature of feed to 
column 1 14 0.62 

Controller output  for 
column feed heating  0 -0.55 

Controller output for 
stripper to column heating  39 -0.55 

 
The third column of the table contains the correlation 
coefficient between the analyzer measurement and 
the variable in question. 
 
4.2 Selecting training and testing data 
 
It was crucial to select the training and test data in an 
efficient way in order for the models to perform well. 
The training data should be selected to cover as much 
as possible of the available data for the model to be 
able to generalize the behaviour of the process well. 
This is a general requirement for empirical models 
but it is accentuated for support vector machines 
using radial basis function kernels, owing to their 
local nature.  
 
As the system in question is of high dimension, a 
large amount of data is needed. The data selection 
was performed by taking random sequences of 
numbers in the range of the total number of data 
points. According to these points the data is divided 
into alternating pieces of training and testing data 
sequences. Using this technique the data was divided 
into 50 shorter sequences as illustrated in Fig. 2.  
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Fig. 2. The principle for dividing the data into  

training and testing sets 
 



 

     

5. RESULTS 
 
The two outlined fault detection methods were tested 
and evaluated on the data above.  

 
With the regression approach it was possible to make 
a quite accurate model (95.9% correlation between 
model output and measurement on the training data) 
of the fault free behaviour of the analyzer. The 
results are also good on the fault-free test data 
(92.7%, correlation). A correlation figure is not given 
for test data containing also faulty sequences because 
the models are not trained to simulate the faults. As 
outlined in section 2.1 a residual analysis is needed 
for the detection of the analyzer faults. When the 
estimate and measurement differ by more than a 
preset limit the analyzer is assumed to be faulty. A 
limit of 2.0 °C turned out to be optimal, resulting in 
only 8 cases of misclassification responding to a 
classification accuracy of 97.5%. Each of the cases 
were missed alarms. The results with the regression 
approach are illustrated in Fig. 3 and 4.  
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Fig. 3. Regression results on fault free test data 

 
Table 2 illustrates the dependence of the model 
parameters on the performance of the fault detection. 
Inside the quite narrow region illustrated in the table 
the results are not heavily dependent on the 
parameters with the exception of the fourth line (γ 
increased to 0.1), for which the results on test data 
deteriorated substantially when deviating from the 
optimal value.  
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Fig. 4 Classification of fault state by means of model 

residual (test data) 
 
 

 
 

Table 2. Optimization of SVMs open parameters 
ε γ C ρtrain ρtest 
0.05 0.05 10 0.961 0.916 

0.025 0.05 10 0.961 0.916 
0.1 0.05 10 0.961 0.902 

0.05 0.1 10 0.970 0.848 
0.05 0.025 10 0.953 0.926 
0.05 0.04 10 0.958 0.922 
0.05 0.03 10 0.955 0.925 
0.05 0.035 10 0.956 0.924 
0.05 0.03 1 0.933 0.903 
0.05 0.03 20 0.958 0.927 
0.05 0.03 30 0.961 0.924 
0.05 0.03 25 0.960 0.926 
0.05 0.03 15 0.957 0.924 
0.05 0.03 18 0.958 0.925 
0.05 0.03 21 0.959 0.927 
0.05 0.03 19 0.958 0.926 

 
The classification approach gave an accuracy of 
99.7% on the training data and 95.3% on the test 
data. In terms of alarms it meant that there were 19 
missed alarms but no false alarms. Comparing with 
the results of the regression case, the classification 
approach has more than double the amount of missed 
alarms. The results are illustrated in Figure 5.  
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Fig. 5. Classifier results on test data 
 
Evaluating the best model of (Vermasvuori et al., 
2005) (a PLS model with 5 latent variables) on the 
data set in the present study gives 12% lower RMS 
on the test data. That model, however, uses 26 input 
variables compared to 8 for the best SVM model. 
Since a model using many input variables is more 
susceptible to errors in on-line use it might be better 
to use a model with fewer inputs at the cost of lower 
accuracy.   

 
6. COMPARING THE PROPOSED METHOD TO 

NEURAL NETWORKS 
 

It is interesting to compare the performance of the 
support vector machines with standard MLP neural 
networks. In order to perform this test, neural 



 

     

networks of different sizes were trained using the 
NNDT software (Saxén and Saxén, 1995), which 
uses the efficient Levenberg-Marquardt method. The 
results of these neural network models were 
compared to the best support vector machine. The 
comparison was done only for the regression case, 
even though a similar test could have been performed 
for the classification case. The following table 
summarizes the results from the comparison. 
 

Table 3 Results with neural networks 
Nhid RMStr RMSte 

0 (linear) 0.2035 0.2795 
1 0.188 0.2569 
2 0.1431 0.333 
3 0.1109 0.2995 

SVMopt 0.1523 0.2336 
 
From the study we can conclude the following: On 
training data the best SVM has a performance 
roughly on the level of a neural network with 2 
hidden nodes, but the SVM clearly outperforms the 
same network on test data, indicating a better 
generalization ability of the SVM. Furthermore a 
model with only one hidden neuron gives the lowest 
error on the test data of all the NN models tested. 
The optimal SVM outperforms this network with an 
RMS that is approximately 10% lower. Another 
observation to be made is that the improvement 
achieved by using non-linear methods vs. linear 
methods is not so big (16% on the RMS).  
 

7. CONCLUSIONS 
 
In this paper the use of support vector machines for 
detecting analyzer faults is discussed. Two different 
approaches were introduced and evaluated. It was 
concluded that special care has to be taken when 
choosing the training and test data sets for the kernel 
methods to perform well, probably owing to the local 
nature of such models. For the studied case the 
regression approach was clearly better than the 
classification approach. A comparison to results 
using traditional MLP neural networks indicated a 
slight superiority in favour of the proposed method. 
The SVM models could, if identified on real 
industrial data, readily be implemented for on-line 
detection of analyzer faults, provided that the 
identification results on real data are adequate. The 
PLS model structure in (Vermasvuori et al., 2005) 
gave a slightly lower RMS than the best support 
vector machine, but with the aid of more input 
variables. A deeper quantitative analysis of 
differences between the methods evaluated in 
(Vermasvuori et al., 2005) and SVMs is a topic for 
future research. 
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