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Abstract

Early detection of process disturbances and prediction of malfunctions in process equipment improve the safety of the process, minimize
the time and resources needed for maintenance, and increase the uniform quality of the products. The objective of online-monitoring is to
trace the state of the process and the condition of process equipment in real-time, and to detect faults as early as possible.

In this article the different properties of the online-monitoring methods applied in the process industries are first reviewed. A description
of the systematic development of the online-monitoring system for an industrial dearomatization process, specifically for flash point and
distillation curve analysers, is then presented. Finally, the results of offline and online tests of the monitoring system using real industrial data
from the Fortum Naantali Refinery in Finland, are described and discussed. The developed online-monitoring application was successful in
real-time process monitoring and it fulfilled the industrial requirements.PACS: 07.05.Mh; 07.05.Tp; 83.85.Ns
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction based methods. The quantitative models use mathematical
functional relationships, whereas qualitative models apply
According to several studies, inadequate managing of ab-qualitative functions that focus on different units in a process
normal situations causes annual losses of US$ 20 billion for in order to capture the relationships between input and output
the petrochemical industry in the USA. This, together with ofthe system\{enkatasubramanian, Rengaswamy, Yin, etal.,
many other similar estimates, has led to extension of the field 2003.
of diagnostic methods during the last decade. Since then, The process history-based approach, which is especially
hundreds of successful applications of different monitoring suitable for process monitoring purposes, requires a large
methods have been reportégtinox & Sandoz, 2002 amount of data in order to capture and model the features
According to Venkatasubramanian, Rengaswamy, Yin, of the process. The history-based models can be subdivided
and Kavuri (2003) diagnostic methods can be divided into qualitative and quantitative models. The basis of qual-
into three categories: quantitative model-based, qualitative itative models consists of rule-based and trend modelling
model-based and process history-based methods, as showmethodologies, whereas the quantitative methods are di-
in Fig. L vided into statistical and non-statistical, neural networks-
A fundamental understanding of the functionality of the based pattern recognition model¥e(katasubramanian,
studied processis necessary for model developmentin modelRengaswamy, Kavuri, & Yin, 2003
Common features of the statistical methods used are their
- _ ability to reduce correlations between variables, compress
"+ Corresponding author. Tel.: +358 9 451 3859; fax: +358 9 451 3854. data, and reduce the dimensionality of the data. These charac-
E-mail addressediina.komulainen@hut.fi (T. Komulainen), . o . . :
mauri.sourander@fortum.com (M. Sourander). teristics enable efficient extraction of the relevantinformation
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Diagnostic Methods catalyst deactivation, aging and contamination of equipment
| and drifting of the process and measurements. The methods
Quamiaﬁve Process Hii'tory Based ou alitiﬁw include_up<_jating of mean and or variange, _computation and
Model-Based Model-Based determination of the optimal amount of principal components
or latent variables, and updating of the Hotelliffgand SPE

indices. The methods can be applied blockwise or after every

Qualitative Quantitative
| new measurement. The use of a time window or forgetting
I 1 factor is recommended.
Statistical Neural Li, Yue, Valle-Cervantes, and Qin (200@ported an ap-
Networks plication of recursive PCA to the rapid thermal annealing
PCA /PLS Statistical of semiconductors. Contamination and cleaning of sensors
Classifiers cause drifting in the measurements, which has resulted in

the static monitoring methods giving false alarms. Moni-

toring is important in this batch process, because failures
at the beginning of the batch lead to off-specification prod-

and analysis of the data. The most important statistical mon-uct quality. The RPCA application alarmed only when real

itoring methods are based on principal component analysisfailures occurred, and the number of false alarms was re-
(Jackson, 198(and partial least squares regressiGeifach, duced significantly compared to the application of statistic

Kowalski, & Wold, 1979. PCA.

The idea of principal component analysis (PCA) is to Dayal and MacGregor (199@pplied recursive PLS with a
make a compact, orthogonal representation of the mul- constant and variable forgetting factor to a mineral flotation
tivariable data with linear combinations of the original process. The aim was to predict the future process output
variables. The downside of the method is its inability to variables. Compared to the recursive least squares method,
model non-linearities but, because the method is effective in the best results were obtained with an RPLS with a changing
its simplicity, the variations of this method are widely used forgetting factor.
for monitoring and diagnostic purposes. Multi-scale principal component analysis (MSPCA) is

The partial least squares (PLS) method, or projectionto la- a combination of PCA and wavelet analysis. The idea of
tent structures, is an extension of PCA. PLS regression formsMSPCA is to remove autocorrelations of every variable with
a linear relationship between the input data maXremd the wavelet analysis, and to eliminate cross-correlations between
output data matrixy. The relationship is found, for exam- variables with PCA Misra, Yue, Qin, & Ling, 2002 The
ple, between process variables and product quality variables method is suitable for processes with autocorrelated measure-
The method has the ability to analyse data with many, noisy, ments and time-varying characteristiddisra et al. (2002)
collinear and incomplete variables in bothandY (Wold, reported on the application of MSPCA to a turbular gas
Sjostiom, & Eriksson, 2001 phase reactor system. A moving time window approach was

Dynamic methods of PCA and PLS consider the dynamic applied. The slow drifting of the process was visible from
nature of the monitored process and analyse both cross-the approximation matrix. The monitoring system gave early
correlation and autocorrelation. The dynamic characteristic warnings of the process faults and identified the causes of
is achieved by introducing time-lagged variables into the malfunctions.
data matrices in a similar manner as in time series analysis. Non-linear principal component analysis (NLPCA) is a
The dynamic methods are especially suitable for continu- combination of neural network and PCA. The idea is that
ous processes with long time delays and varying throughputsthe network fits a non-linear model to the data, and PCA

Fig. 1. Categories of the diagnostic methods.

on process variable&(, Storer, & Georgakis, 199%Vold, removes the cross-correlations. The first NLPCA, proposed
Sjostiom, & Eriksson, 2001 by Kramer (1991) consisted of a five-layer auto-associative
Chen, McAvoy, and Pivoso (199®yoposed a multivari-  neural network. The second and fourth layers consisted of

ate statistical controller based on dynamic PCA. The method non-linear nodes and the third layer of the bottle-neck nodes
was tested successfully with a binary distillation column. representing the principal components. The first and last lay-
The DPCA model constructed from tray temperature mea- ers were composed of linear input and output nodes. Deter-
surements represented the procé&ssnulainen (2003de- mining the number of nodes in each layer is the drawback of
veloped an online-monitoring system for a dearomatization this methodDong and McAvoy (1996proposed an NLPCA
process in Fortum’s Naantali Refinery, Finland. The moni- method, which integrates principal curve algorithm and neu-
toring system was based on dynamic PLS methods, extendedal networks. The idea of this method is to fit curves instead
with computed variables. of lines to the data with the help of a three-layer feedforward
Recursive methods for PLS have been proposeddyal network. The network consists of one linear input layer, one

and MacGregor (1997gndHelland, Bernsten, Borgen, and  sigmoidal non-linear layer, and one linear output layer. The
Martens (1992)The recursive methods are especially suit- principal curves are first extracted. The network is then taught
able for time-dependent processes with slow changes liketo map the original data to the principal curves, and another
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neural network is then taught to map the principal curves back ARTnet, and hybrids of ART maps and fuzzy logic in Fuzz-
to the original set of variables. yARTMAP (Wienke et al., 1996 Rallo, Ferre-Gig, Arenas,
Shao, Jia, Martin, and Morris (1998pplied NLPCA to and Giralt (2002)eported the application of FuzzyARTMAP
monitor a spray dryer. The noise was removed with wavelet to a polymerisation process. FuzzyARTMAP was applied to
analysis and the NLPCA method was used for the wavelet co-develop a virtual sensor system, which predicted the prop-
efficients. The combination of wavelet analysis and NLPCA- erties of low density polyethylene on the basis of process
IT-net structure of 10-18-3-12-10 gave considerably better variables.
results in fault detection and identification than the linear
PCA.
Non-linear PLS utilizing neural networks (NNPLS) has 2. Description of the dearomatization process
been proposed bQin and McAvoy (1992) Berglund and
Wold (1997) have reported non-linear PLS called implicit Dearomaization processes are widely used in the
non-linear latent variable regression (INLR). petroleum oil refining industry. The purpose of the dearom-
Neural network architectures can be divided into three atization process is to remove aromatic compounds from the
categories, feedforward, feedback and self-organizing net-feedstock by hydrogenating them in a continuous process.
works. According toKohonen (2001)neural networks are  The process consists of two trickle-bed reactors with packed
the most applicable to classification and regression problems beds of catalyst, a distillation column, several heat exchang-
which do not need perfect precision. The availability of large ers and separation drums and other unit operations. The pro-
amounts of data is especially important. cess is presented Fig. 2
The self-organizing map, introduced by Kohonen, is an  The seven different types of feedstock used in the pro-
unsupervised neural network that classifies data on the basigess are petroleum oil cuts with clearly differing properties.
of the similarities of the weight vectors of the neurons. The A change of feed type is made, on the average, once every
neural network consists of a grid of neurons, in which the 4 days. The cold, liquid feedstock fed to the unit is heated
neighbouring neurons are competing for weight coefficients. in heat exchangers EA1 and EA2, and then fed to reactor
The accuracy of the map is influenced by the size and shapeDC1 together with hydrogen and recycle liquid. Exothermic
of the map, and the size of the neighbourhood of the neu- saturation reactions in the first reactor remove most of the
rons. These parameters have to be determined before teacharomatic compounds. After dearomatization in reactor DC1,
ing the map Alhoniemi, Hollmén, Simula, & Vesanto, 1999  the reaction productis cooled in heat exchanger EA1 and then
Kohonen, 2001 The states of the neighbouring neurons are fed to gas separation drum FA1. Gaseous and liquid reaction
usually similar. To increase the accuracy of the classifica- products are separated in the drum. Part of the liquid is cir-
tion, the use of a linear vector quantization (LVQ) algorithm culated back to reactor DC1. The rest of the liquid, together
is recommended<ohonen, 200l SOM has been compared  with separated gas and fresh hydrogen, are fed to the second
to non-linear PCA, because it adapts to the structure of thereactor DC2, where the aromatics level of the product drops
data, and the weight of the neurons tend to set the densest reto near zero. After the second reactor, the reaction product
gions of the data and form an approximation of a curve fitted is cooled in heat exchangers EA2 and EA3 and fed to the
to the data. second gas separation drum FA2. Gas separated from the lig-
An application of SOM for monitoring the Outokumpu uid mainly consists of unreacted hydrogen, which is recycled
Harjavalta flash smelter was described Jyms-Jounela, back to the first reactor, and the rest of the gas is removed.
Vermasvuori, Enén, and Haavisto (2003 he system de-  The separated liquid is heated in heat exchangers EA3 and
tected equipment malfunctions and monitored process state£A4 and then fed to distillation column DAL.
using SOM in conjunction with heuristic ruleKamppgrvi, The overhead of the column is cooled in a cooler and then
Sourander, andaingi-Jounela (2004dleveloped an online-  fed to separation drum FA3, where the gaseous part is re-
monitoring system which used a combination of PCA, SOM
and RBFN to detect and identify faults. The system was suc- avrocm
cessfully tested online at the Borealis ethylene plant in Por- |
voo, Finland. HIDROGEN
A neural net based on adaptive resonance theory differs
fundamentally from a self-organizing map in the fact that the
size and shape of the map are not determined beforehand
but they are formed in the teaching phase. The only param-
eters needed are the vigilance parameter, which determine:
whether a new input vector is close enough to an existing neu- @
ron, and the step size, which determines the degree of chanc: i Eal A
of the weights of the winning neuron. One problem is the pos- FEED
sible incoherence of the map. The ART map has many modifi-
cations, including combinations of ART maps, like ART3 and Fig. 2. The dearomatization process.
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moved and the liquid is divided into reflux and distillate. The
distillate consists of the lightest compounds of the reaction
product.

The column reboil is generated in heat exchanger EA5.
The non-aromatic product is drawn off as the bottom product
and cooled in heat exchanger EA4. The quality of the cooled
product is measured online by flash point and distillation

curve analysers. Laboratory measurements of the product are

performed twice a day.

The dearomatization process has no noticeable effect on

the heaviest part of the distillation curve of the feedstock, but
the properties of the lightest cuts are strongly affected by the
distillation.

3. Objective of the online process monitoring

The objective of this study was to develop an online-
monitoring system for an industrial dearomatization process.

First, the monitoring target was specified. The process his-
torian, where the process faults and disturbances in the pro

cess were documented, provided a precise insight into the
problem. The process historian of one year was examined in.

order to select the most frequently occurring disturbances.

One of the most common disturbances in the dearoma-

tization process historian was a fault in the analysers. The
occurrence of faults and the possibility of identifying related

phenomena with process analysis methods, made the moni

toring of process analyser faults the most important task of
the study.

The aim of the monitoring was to detect whether the anal-
ysers were working correctly and to provide a reliable pre-

diction of the analyser measurements also at the time when
faults occurred. Prediction was needed in order to compen-

sate for the temporary unavailability of measurements from
the flash point analyser, which was used for half of the time
for another process.

The monitoring methods used were the process history-
based, quantitative methods falling within the categories of
statistical or neural network methods.

4. Systematic approach for development of the
online-monitoring system

Due to the complex nature and non-linearity of the process

and product properties, a nine-stage systematic approach wa,

introduced for the development of the online-monitoring sys-

tem. First, the direct process variables that affected the flash

point and distillation curve of the product were determined,
and the selected variables were then time-lagged. Next, com

puted variables capable of capturing the characteristics of the
dearomatization process were created on the basis of the time

lagged, direct process variables. The combination of direct
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Determination of direct process variables affecting

the flash point and distillation curve
¥

‘ Time-lagging of the selected process variables ‘

‘ Creation of computed variables ‘

Combining the direct process variables and computed
variables

¥
‘ Selection of a suitable monitoring method

‘ Testing different models and selecting the best one

‘ Offline test with the best model

‘ Construction and testing of online-monitoring system

|
|
|
|
|

‘ Analysis of the results

Fig. 3. The development stages of the online-monitoring system.

selected. After the combination of variables had been cre-
ated, the most suitable method for monitoring proved to be
dynamic PLS. Different models for monitoring were devel-

oped and tested. The offline test was performed with the most
suitable models. When the results of the offline tests were sat-
isfactory, an online-monitoring system was developed and
tested. Finally, the results of the online test were analysed.
The sequential development stages, showkign 3, are de-
scribed and discussed in more detail in the following.

4.1. Determination of direct process variables affecting

the flash point and distillation curve

Plant data from the dearomatization unit of the Naantali
Refinery consisted of about 100 different measurements of
temperature, pressure, flows, levels, and set points of the con-
trol valves. The measurements were collated in a real-time
process historian. The most important measurements were
used with a sampling interval of 1 min in this study.

The bottom product of the distillation column is measured
online with the flash point and distillation curve analysers.
The distillation curve analyser gives values for the initial, 5%,
10%, 50%, 90%, 95% and end point of the distillation curve
every 40 min. The flash point analyser makes a measurement
every second minute. As the dearomatization process has a
noticeable effect only on the flash point and the initial, 5%
and 10% points of the distillation curve, the other four points
of the distillation curve were excluded from the study. The
amount of distillate strongly affects the flash point and the
front end points of the distillation curve, because these val-
ues reflect the amount of light compounds remaining in the
bottom product.

The process variables affecting the analyser variables were
selected on the basis of correlation analysis and process
knowledge.

" The selected variables were the following:

process variables and computed variables with the stronges® 10 temperature measurements from reactors DC1 and

influence on the flash point and distillation curve, was then

DC2.
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10 temperature measurements from overhead (2), reflux,e Flow ratios were determined for distillate and bottom prod-

bottom product (2), feed of distillation column (2), upper,
middle and lower part of the distillation column.
10 flow measurements including the flow of the feedstock,

uct, distillate and reflux, distillate and feed of the column,
bottom product and feed of the column, and reflux and feed
of the column.

hydrogen, circulated reaction product and hydrogen to the e Variables describing enthalpy were represented by simple

first reactor, hydrogen and reaction product to the second
reactor, reaction product and reflux to the distillation col-

products of the flow rate and temperature. Instead of direct
enthalpies, the enthalpy ratios, i.e. one enthalpy variable

umn, distillate and bottom product from the distillation
column.

e Pressure at the top of the column and its set point.

e Three level measurements from the bottom of the distilla-
tion column (measurement and set point) and separation
drum FA3.

e Two computed variables, temperature difference and en-
thalpy from the reboiler of the column.

divided by another, were used.

e The enthalpy ratios for the distillation column were com-
puted between: distillate and feed, reflux and feed, bottom
product and feed, distillate and bottom product, and reflux
and bottom product.

e The process measurement describing the enthalpy of the
reboiler, divided by the flow of the feed to the column, was
also calculated/created.

A total of 35 direct process measurements and two com-
puted variables of the reboiler were selected.

A total of 23 computed variables were created.

4.4. Combination of the direct process variables and the

4.2. Time-lagging of the selected process variables computed variables

The time lags in the dearomatization process are long,
approximately 2 h from the first temperature measurement to

theTa?aII)t/§ erslof thg bo;tom dptroduct. d lag. betw lations between the variables and the analyser variables.
otal time 1ags, 1.€. dead ime and process 'ag, bEWeen — | e previously described computed variables were

the temperature measurements were estimated using & CroSg;sey iy the combination. Especially temperature measure-

correlation function. The maximum value of the Cross- o of the distillation column, pressure of the overhead

fr? rrelation functlct)nTvr\:as sfelected for the total t;me Iat% fofr and the computed variables of the second reactor had high
e measurement. The reference measurement was the 'rséorrelations with the analyser variables.

temperature measurement of the process unit. The total time The final combination contained 21 direct, time-lagged,

lags for flow, pressure and level measurements were esti- rocess measurements and 23 computed variables, which
mated on the basis of the nearest temperature measureme

L . A ) vere constructed from the time-lagged process measure-
The sampling interval was 1 min, resulting in total time lags ments.
of full minutes.
The data were time-lagged according to the estimated total
time lags.

The combination of direct process measurements and
computed variables was formed on the basis of the corre-

4.5, Selecting the most suitable monitoring method

The following requirements were specified for the
methods. The method should be able to handle several dozen

Computational variables were created in order to capture Variables and the output of the method should give accurate
the basic characteristics of the dearomatization process. ThePredictions of the analyser values. The method should be
characteristics of the distillation especially were investigated, aPle to distinguish between process transitions at feedstock
because distillation has a strong effect on the flash point andchanges, and the process and analyser faults. The method
the initial point of the distillation curve. The computed vari- Should also be able to distinguish between malfunctions of
ables were constructed from 36 time-lagged process meathe analysers and process faults as early as possible, and to
surements as follows: give the operator an alarm. Only the methods described in the

literature survey were considered. A method that could be
e The heat generated in the first and second reactors, and th%pp“ed online and based on process history was preferred_
heat divided by the flow of the fresh feedstock to the first The need for precise prediction ruled out neural nets. The
reactor. clear relationship between process and computed variables,
o Temperature differences in the reactors were computed be-and the quality variables of the product, led to the use of
tween the highest and the lowest measurement. Temperap| S-based methods.

ture differences in the distillation column were Computed meg to the dynamic nature of the process, dynamic par-

between the temperatures of: the middle of the column andtia| least squares regression (DPLS) was selected. DPLS ful-

the feed, bottom of the column and feed, bottom product fijlled all the requirements, and the relationship between the

and the bottom of the column, top of the columnand reflux, process variables and the analyser variables made the struc-
bottom product and the overhead of the column. ture of the method very simple.

4.3. Creation of the computed variables
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Fig. 5. The RMSEC values for flash point, initial 5% and 10% points of the
Fig. 4. A schematic picture of the utilization of the DPLS method to detect (jstillation curve with different numbers of latent variables.

process disturbances and analyser faults.

4.7. Offline test

Fi A;Iol\é\;fklartthof dtihre [t)PIr‘S metr;?d usredn:sr:llui\t/rarte?ig _ The data set for the offline test contained process data for
g. 4 FIrs, he CIrect process measurements Were ime- o, v 4551 with a resolution of 1 min. The data included
lagged and the computed variables were created. The direct . .
rocess variables and the comouted variables formed the .n_several changes in the feed type and faults in the analysers.

put bIoclzlar:d time-lagaed anallouser e:/ss; s the output bIc’LkMost of the data were collected from normal situations.
gf the PLS re ressior? gThe re(}dlictions ofy the anal F;;er vari- The values of the process and computed variables were
ables were mgade usin thepin Ut block. The resiﬁuals be monitored with the Hotellingr? index. If the HotellingT?

) 9 P ' o value of the current measurements was over the Hotelling
tween the predicted and the real analyser values indicated, . . e
whether the analysers were functioning correctly. A possible limit, the process state was classified incorrectly and the

. 7 redictions of the analysers were not reliable.

process fault was detected with the Hotelllfgtatistics, cal- P y

culated as the sum of normalized squared scores of the inpu Ifthe process state was normal, i.e. the Hotellgalue
block q P RNas below the Hotelling? limit, the predictions of the anal-

yser measurements were computed and the residuals between
the real and predicted value were also computed. The moni-
toring limits for the analyser residuals were defined as halfthe
mean variance of the training data set. If the absolute value
- , of the residual was below the limit, then the analyser was in
select the proper training data. The models were first Con-yq horma| state. If the limit was crossed, an alarm was given
structed using the training datg of one feed type. As ex- g e analyser measurement was classified as faulty.
pected, the models did not describe the other feed types. Next, 1,0 process faults and analyser faults were marked on the

the training data were constructed using the data for severaly,qis ofthe process historian, and the results of the monitoring
feed types. The more feed types the training data Coma'”ed'method and the real faults were compared

the better were the results. Equal amounts of data from all The results of the offline test are presentedable 1
the feed types were used, totalling 57h. The data included ), itoring the flash point gave the best results; 97% of the
only normal processing situations with some changes in thefaults were detected correctly and 99% of the normal states

feedrate. _ were classified properly. Monitoring the initial point of the
An appropriate number of latent variables of the DPLS yiqiiation curve was slightly more complicated because the

model was selected for the offline test with the help of the ;5\ e was occasionally lagging changes in the feedstock.
cumulative variance percent table and the root mean square

of the calibration (RMSEC) curve. The lower the value of
RMSEC, the better the model fits the training data. The RM- 122€1

. . Cumulative variance percentages captured by the PLS model
SEC value was approximately the same for latent variable

4.6. Testing different models

The first task in the model development phase was to

number 5 and larger ones, as showiFig. 5. Latent variables CVP input block (%) CVP output block (%)
The satisfactory values of the cumulative variance percent 1 36.81 87.71

(above 80%), shown ifiable 1, also support this conclusion. sg';;j gg'g

With five latent variables the variance percent for the input 4 84.42 08.94

block was 90.2% and for the output block 99.6%, reflect- s 90.15 99.56

ing the expected level of random noise and mismatch in the 6 95.99 99.73

process data. 7 97.03 99.80




T. Komulainen et al. / Computers and Chemical Engineering 28 (2004) 2611-2619

Table 2
Results of the offline test
Flash Initial 5% 10%
point point point point
Faults 5666 937 694 723
Detected correctly (%) 97 67 71 66
Detected incorrectly (%) 3 33 29 34
Normal states 21625 26354 26597 26568
Detected correctly (%) 99 98 96 96
Detected incorrectly (%) 1 2 4 4
Hotelling T2 value for the input-block
15 ‘ T ‘ T T
10
E
.>"‘u
5, .
OM“-'—\J\; ‘H'./\—“"”“"\M’M‘ﬁ ,‘JA'\_.—-T—-'J\,’/‘ - JL‘—-"'--—-
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Sample

Fig. 6. HotellingT? values for the input block. The limit is marked with a
straight line.

The high sensitivity of the initial point of the distillation curve
was detected when the measurement of the initial point of
the distillation curve was inconsistent with the other analyser
measurements.

Overall, the results of the offline test were encouraging;

96-99% of the normal states of the analysers and 67—97% of

the fault states were classified correctly as showrainle 2

4.8. Online test

An online-monitoring system was developed on the basis

of the DPLS model created in the offline test phase. The sys-

tem was tested online for a time period of 144 h. During this

period the type of feedstock changed twice and a disturbance,

also hit the process once.

The process disturbance at around 7000 min caused a vio
lation of the HotellingT? limit, as shown irFig. 6. A correct
alarm was given for the process disturbance.

The condition of the analysers was monitored with the
residual plots. The residuals, presentedrigs. 7-10 re-

Residual
30 T . . .
20¢
2 10° | 1
; OM\\‘- A b / N N
b A %m‘
-10r s |/ 1
1
20 . . \ .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Sample

Fig. 7. Residual of the flash point. Limits are marked with straight lines.
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Fig. 8. Residual ofthe initial point of the distillation curve. Limits are marked
with straight lines.
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Fig. 9. Residual of the 5% point of the distillation curve. Limits are marked
with straight lines.

mained inside the residual limits throughout the experi-
ment, except for two cases. The first alarm occurred around
6500 min and the second around 7000 min. The second case
was due to a process disturbance and the alarm was given
correspondingly.

The first violation of the residual limits was caused by
the lag in the analyser results after the change of feedstock
type, and an analyser alarm was given accordingly. The mon-
itoring of the initial point of distillation curve resulted in the
residual merely riding the monitoring limits between 2500
and 4500 min. Alarms were not given because the riding was
followed and the values remained inside the tolerance limit
of one unit.

The results of the online test are summarizedable 3
Monitoring the flash point gave the best results, and all the
faults were detected correctly. The initial point of the dis-
tillation curve classified 93% of the faults and 94% of the
normal situations correctly. In total, 94-100% of the nor-
mal states of the analysers and 93-100% of the faulty states
were detected correctly. The monitoring system classified the

Residual
30
20! il
z 10+ 1
= rk‘;.. Jr - A )m
> 0 ™ .M 'dl [ LAV
' W, oy Y e {
N 10 ,ﬂw_‘ QT ll‘
220 i . L A . . . L |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Sample

Fig. 10. Residual of the 10% point of the distillation curve. Limits are marked
with straight lines.
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Table 3 5. Conclusions
Results of the online test

Flash Initial 5% 10% The objective of this study was to develop an online-

point point point point monitoring system for the dearomatization unit of the Naan-
Faults 72 73 73 74 tali Refinery. A systematic nine-stage procedure was used to
Beieczeg FO"eCt')il(%g/ 108 9: 108 10(? progress from the problem to the online-monitoring appli-

etected incorrectly (%) ‘ cation. The current states of the flash point and distillation
Normal Ztates Y0 8412 8411 8411 8410  curve analysers were monitored and, during malfunctions,
Detected correctly (% 100 el 997 999 ; ; : ; ;
Detected incorrectly (%) 0 5 03 o1 their values were predicted using the dynamic partial least
squares method.
Table 4 The results of the offline test were encouraging; 96—99%
able 970,
Cumulative variance percentages captured by the PLS model of the normal Stat_e_s of the analysers and 67-97% of the fault
- - states were classified correctly.
Latent variables CVP input block (%) CVP output block (%) An online-monitoring system was developed and tested
; g;-gi g?-zg for a time period of 144 h. The monitoring system classified
' ' the two feed type changes correctly as normal states, and gave

3 79.88 97.85
4 84.41 9959 analarmforan abnorr_nal process state du_ring the di_sturbance.
5 89.78 99.74 The developed online-monitoring application fulfilled the
6 93.99 99.77 industrial requirements and it was successful in real-time pro-
7 96.34 99.80 cess monitoring of the dearomatization process.

In the future the online-monitoring system will be modi-
feed type changes correctly as normal states, and gave afied to use a non-linear DPLS algorithm to more accurately

alarm for an abnormal process state during the disturbancemodel the non-linearities of processes. A recursive DPLS al-
(Tables 3 and ¥ gorithm will also be tested.

4.9. Role of the computed variables

o o . o Acknowledgements
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