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An online application of dynamic PLS to a dearomatization process
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Abstract

Early detection of process disturbances and prediction of malfunctions in process equipment improve the safety of the process, minimize
the time and resources needed for maintenance, and increase the uniform quality of the products. The objective of online-monitoring is to
trace the state of the process and the condition of process equipment in real-time, and to detect faults as early as possible.

In this article the different properties of the online-monitoring methods applied in the process industries are first reviewed. A description
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f the systematic development of the online-monitoring system for an industrial dearomatization process, specifically for flash
istillation curve analysers, is then presented. Finally, the results of offline and online tests of the monitoring system using real ind

rom the Fortum Naantali Refinery in Finland, are described and discussed. The developed online-monitoring application was su
eal-time process monitoring and it fulfilled the industrial requirements.PACS: 07.05.Mh; 07.05.Tp; 83.85.Ns
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. Introduction

According to several studies, inadequate managing of ab-
ormal situations causes annual losses of US$ 20 billion for

he petrochemical industry in the USA. This, together with
any other similar estimates, has led to extension of the field
f diagnostic methods during the last decade. Since then,
undreds of successful applications of different monitoring
ethods have been reported (Lennox & Sandoz, 2002).
According to Venkatasubramanian, Rengaswamy, Yin,

nd Kavuri (2003), diagnostic methods can be divided
nto three categories: quantitative model-based, qualitative

odel-based and process history-based methods, as shown
n Fig. 1.

A fundamental understanding of the functionality of the
tudied process is necessary for model development in model-
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based methods. The quantitative models use mathem
functional relationships, whereas qualitative models a
qualitative functions that focus on different units in a proc
in order to capture the relationships between input and o
of the system (Venkatasubramanian, Rengaswamy, Yin, e
2003).

The process history-based approach, which is espe
suitable for process monitoring purposes, requires a
amount of data in order to capture and model the fea
of the process. The history-based models can be subdi
into qualitative and quantitative models. The basis of q
itative models consists of rule-based and trend mode
methodologies, whereas the quantitative methods ar
vided into statistical and non-statistical, neural netwo
based pattern recognition models (Venkatasubramania
Rengaswamy, Kavuri, & Yin, 2003).

Common features of the statistical methods used are
ability to reduce correlations between variables, comp
data, and reduce the dimensionality of the data. These ch
teristics enable efficient extraction of the relevant informa
098-1354/$ – see front matter © 2004 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2004.07.014
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Fig. 1. Categories of the diagnostic methods.

and analysis of the data. The most important statistical mon-
itoring methods are based on principal component analysis
(Jackson, 1980) and partial least squares regression (Gerlach,
Kowalski, & Wold, 1979).

The idea of principal component analysis (PCA) is to
make a compact, orthogonal representation of the mul-
tivariable data with linear combinations of the original
variables. The downside of the method is its inability to
model non-linearities but, because the method is effective in
its simplicity, the variations of this method are widely used
for monitoring and diagnostic purposes.

The partial least squares (PLS) method, or projection to la-
tent structures, is an extension of PCA. PLS regression forms
a linear relationship between the input data matrixX and the
output data matrixY. The relationship is found, for exam-
ple, between process variables and product quality variables.
The method has the ability to analyse data with many, noisy,
collinear and incomplete variables in bothX andY (Wold,
Sjöstr̈om, & Eriksson, 2001).

Dynamic methods of PCA and PLS consider the dynamic
nature of the monitored process and analyse both cross-
correlation and autocorrelation. The dynamic characteristic
is achieved by introducing time-lagged variables into the
data matrices in a similar manner as in time series analysis.
The dynamic methods are especially suitable for continu-
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catalyst deactivation, aging and contamination of equipment
and drifting of the process and measurements. The methods
include updating of mean and or variance, computation and
determination of the optimal amount of principal components
or latent variables, and updating of the HotellingT2 and SPE
indices. The methods can be applied blockwise or after every
new measurement. The use of a time window or forgetting
factor is recommended.

Li, Yue, Valle-Cervantes, and Qin (2000)reported an ap-
plication of recursive PCA to the rapid thermal annealing
of semiconductors. Contamination and cleaning of sensors
cause drifting in the measurements, which has resulted in
the static monitoring methods giving false alarms. Moni-
toring is important in this batch process, because failures
at the beginning of the batch lead to off-specification prod-
uct quality. The RPCA application alarmed only when real
failures occurred, and the number of false alarms was re-
duced significantly compared to the application of statistic
PCA.

Dayal and MacGregor (1997)applied recursive PLS with a
constant and variable forgetting factor to a mineral flotation
process. The aim was to predict the future process output
variables. Compared to the recursive least squares method,
the best results were obtained with an RPLS with a changing
forgetting factor.
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us processes with long time delays and varying through
n process variables (Ku, Storer, & Georgakis, 1995; Wold,
jöstr̈om, & Eriksson, 2001).
Chen, McAvoy, and Pivoso (1998)proposed a multivar

te statistical controller based on dynamic PCA. The me
as tested successfully with a binary distillation colu
he DPCA model constructed from tray temperature m
urements represented the process.Komulainen (2003)de-
eloped an online-monitoring system for a dearomatiza
rocess in Fortum’s Naantali Refinery, Finland. The m

oring system was based on dynamic PLS methods, exte
ith computed variables.
Recursive methods for PLS have been proposed byDayal

nd MacGregor (1997)andHelland, Bernsten, Borgen, a
artens (1992). The recursive methods are especially s
ble for time-dependent processes with slow changes
Multi-scale principal component analysis (MSPCA)
combination of PCA and wavelet analysis. The ide
SPCA is to remove autocorrelations of every variable w
avelet analysis, and to eliminate cross-correlations bet
ariables with PCA (Misra, Yue, Qin, & Ling, 2002). The
ethod is suitable for processes with autocorrelated mea
ents and time-varying characteristics.Misra et al. (2002

eported on the application of MSPCA to a turbular
hase reactor system. A moving time window approach
pplied. The slow drifting of the process was visible fr

he approximation matrix. The monitoring system gave e
arnings of the process faults and identified the caus
alfunctions.
Non-linear principal component analysis (NLPCA) i

ombination of neural network and PCA. The idea is
he network fits a non-linear model to the data, and P
emoves the cross-correlations. The first NLPCA, prop
y Kramer (1991), consisted of a five-layer auto-associa
eural network. The second and fourth layers consiste
on-linear nodes and the third layer of the bottle-neck n
epresenting the principal components. The first and las
rs were composed of linear input and output nodes. D
ining the number of nodes in each layer is the drawba

his method.Dong and McAvoy (1996)proposed an NLPC
ethod, which integrates principal curve algorithm and

al networks. The idea of this method is to fit curves ins
f lines to the data with the help of a three-layer feedforw
etwork. The network consists of one linear input layer,
igmoidal non-linear layer, and one linear output layer.
rincipal curves are first extracted. The network is then ta

o map the original data to the principal curves, and ano



T. Komulainen et al. / Computers and Chemical Engineering 28 (2004) 2611–2619 2613

neural network is then taught to map the principal curves back
to the original set of variables.

Shao, Jia, Martin, and Morris (1999)applied NLPCA to
monitor a spray dryer. The noise was removed with wavelet
analysis and the NLPCA method was used for the wavelet co-
efficients. The combination of wavelet analysis and NLPCA-
IT-net structure of 10-18-3-12-10 gave considerably better
results in fault detection and identification than the linear
PCA.

Non-linear PLS utilizing neural networks (NNPLS) has
been proposed byQin and McAvoy (1992). Berglund and
Wold (1997)have reported non-linear PLS called implicit
non-linear latent variable regression (INLR).

Neural network architectures can be divided into three
categories, feedforward, feedback and self-organizing net-
works. According toKohonen (2001), neural networks are
the most applicable to classification and regression problems,
which do not need perfect precision. The availability of large
amounts of data is especially important.

The self-organizing map, introduced by Kohonen, is an
unsupervised neural network that classifies data on the basis
of the similarities of the weight vectors of the neurons. The
neural network consists of a grid of neurons, in which the
neighbouring neurons are competing for weight coefficients.
The accuracy of the map is influenced by the size and shape
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ARTnet, and hybrids of ART maps and fuzzy logic in Fuzz-
yARTMAP (Wienke et al., 1996). Rallo, Ferre-Gińe, Arenas,
and Giralt (2002)reported the application of FuzzyARTMAP
to a polymerisation process. FuzzyARTMAP was applied to
develop a virtual sensor system, which predicted the prop-
erties of low density polyethylene on the basis of process
variables.

2. Description of the dearomatization process

Dearomaization processes are widely used in the
petroleum oil refining industry. The purpose of the dearom-
atization process is to remove aromatic compounds from the
feedstock by hydrogenating them in a continuous process.
The process consists of two trickle-bed reactors with packed
beds of catalyst, a distillation column, several heat exchang-
ers and separation drums and other unit operations. The pro-
cess is presented inFig. 2.

The seven different types of feedstock used in the pro-
cess are petroleum oil cuts with clearly differing properties.
A change of feed type is made, on the average, once every
4 days. The cold, liquid feedstock fed to the unit is heated
in heat exchangers EA1 and EA2, and then fed to reactor
DC1 together with hydrogen and recycle liquid. Exothermic
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f the map, and the size of the neighbourhood of the
ons. These parameters have to be determined before
ng the map (Alhoniemi, Hollmén, Simula, & Vesanto, 199;
ohonen, 2001). The states of the neighbouring neurons
sually similar. To increase the accuracy of the classi

ion, the use of a linear vector quantization (LVQ) algorit
s recommended (Kohonen, 2001). SOM has been compar
o non-linear PCA, because it adapts to the structure o
ata, and the weight of the neurons tend to set the dens
ions of the data and form an approximation of a curve fi

o the data.
An application of SOM for monitoring the Outokum

arjavalta flash smelter was described byJäms̈a-Jounela
ermasvuori, End́en, and Haavisto (2003). The system de

ected equipment malfunctions and monitored process s
sing SOM in conjunction with heuristic rules.Kämpj̈arvi,
ourander, and Jäms̈a-Jounela (2004)developed an online
onitoring system which used a combination of PCA, S
nd RBFN to detect and identify faults. The system was
essfully tested online at the Borealis ethylene plant in
oo, Finland.

A neural net based on adaptive resonance theory d
undamentally from a self-organizing map in the fact tha
ize and shape of the map are not determined before
ut they are formed in the teaching phase. The only pa
ters needed are the vigilance parameter, which deter
hether a new input vector is close enough to an existing

on, and the step size, which determines the degree of c
f the weights of the winning neuron. One problem is the
ible incoherence of the map. The ART map has many mo
ations, including combinations of ART maps, like ART3 a
-

-

,

saturation reactions in the first reactor remove most of
aromatic compounds. After dearomatization in reactor D
the reaction product is cooled in heat exchanger EA1 and
fed to gas separation drum FA1. Gaseous and liquid rea
products are separated in the drum. Part of the liquid is
culated back to reactor DC1. The rest of the liquid, toge
with separated gas and fresh hydrogen, are fed to the se
reactor DC2, where the aromatics level of the product d
to near zero. After the second reactor, the reaction pro
is cooled in heat exchangers EA2 and EA3 and fed to
second gas separation drum FA2. Gas separated from th
uid mainly consists of unreacted hydrogen, which is recy
back to the first reactor, and the rest of the gas is remo
The separated liquid is heated in heat exchangers EA3
EA4 and then fed to distillation column DA1.

The overhead of the column is cooled in a cooler and
fed to separation drum FA3, where the gaseous part i

Fig. 2. The dearomatization process.
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moved and the liquid is divided into reflux and distillate. The
distillate consists of the lightest compounds of the reaction
product.

The column reboil is generated in heat exchanger EA5.
The non-aromatic product is drawn off as the bottom product
and cooled in heat exchanger EA4. The quality of the cooled
product is measured online by flash point and distillation
curve analysers. Laboratory measurements of the product are
performed twice a day.

The dearomatization process has no noticeable effect on
the heaviest part of the distillation curve of the feedstock, but
the properties of the lightest cuts are strongly affected by the
distillation.

3. Objective of the online process monitoring

The objective of this study was to develop an online-
monitoring system for an industrial dearomatization process.

First, the monitoring target was specified. The process his-
torian, where the process faults and disturbances in the pro-
cess were documented, provided a precise insight into the
problem. The process historian of one year was examined in
order to select the most frequently occurring disturbances.

One of the most common disturbances in the dearoma-
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Fig. 3. The development stages of the online-monitoring system.

selected. After the combination of variables had been cre-
ated, the most suitable method for monitoring proved to be
dynamic PLS. Different models for monitoring were devel-
oped and tested. The offline test was performed with the most
suitable models. When the results of the offline tests were sat-
isfactory, an online-monitoring system was developed and
tested. Finally, the results of the online test were analysed.
The sequential development stages, shown inFig. 3, are de-
scribed and discussed in more detail in the following.

4.1. Determination of direct process variables affecting
the flash point and distillation curve

Plant data from the dearomatization unit of the Naantali
Refinery consisted of about 100 different measurements of
temperature, pressure, flows, levels, and set points of the con-
trol valves. The measurements were collated in a real-time
process historian. The most important measurements were
used with a sampling interval of 1 min in this study.

The bottom product of the distillation column is measured
online with the flash point and distillation curve analysers.
The distillation curve analyser gives values for the initial, 5%,
10%, 50%, 90%, 95% and end point of the distillation curve
every 40 min. The flash point analyser makes a measurement
every second minute. As the dearomatization process has a
n 5%
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ization process historian was a fault in the analysers.
ccurrence of faults and the possibility of identifying rela
henomena with process analysis methods, made the

oring of process analyser faults the most important tas
he study.

The aim of the monitoring was to detect whether the a
sers were working correctly and to provide a reliable
iction of the analyser measurements also at the time

aults occurred. Prediction was needed in order to com
ate for the temporary unavailability of measurements
he flash point analyser, which was used for half of the
or another process.

The monitoring methods used were the process his
ased, quantitative methods falling within the categorie
tatistical or neural network methods.

. Systematic approach for development of the
nline-monitoring system

Due to the complex nature and non-linearity of the pro
nd product properties, a nine-stage systematic approac

ntroduced for the development of the online-monitoring
em. First, the direct process variables that affected the
oint and distillation curve of the product were determin
nd the selected variables were then time-lagged. Next,
uted variables capable of capturing the characteristics
earomatization process were created on the basis of the

agged, direct process variables. The combination of d
rocess variables and computed variables with the stro

nfluence on the flash point and distillation curve, was
oticeable effect only on the flash point and the initial,
nd 10% points of the distillation curve, the other four po
f the distillation curve were excluded from the study.
mount of distillate strongly affects the flash point and

ront end points of the distillation curve, because these
es reflect the amount of light compounds remaining in
ottom product.

The process variables affecting the analyser variables
elected on the basis of correlation analysis and pro
nowledge.

The selected variables were the following:

10 temperature measurements from reactors DC1
DC2.
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• 10 temperature measurements from overhead (2), reflux,
bottom product (2), feed of distillation column (2), upper,
middle and lower part of the distillation column.

• 10 flow measurements including the flow of the feedstock,
hydrogen, circulated reaction product and hydrogen to the
first reactor, hydrogen and reaction product to the second
reactor, reaction product and reflux to the distillation col-
umn, distillate and bottom product from the distillation
column.

• Pressure at the top of the column and its set point.
• Three level measurements from the bottom of the distilla-

tion column (measurement and set point) and separation
drum FA3.

• Two computed variables, temperature difference and en-
thalpy from the reboiler of the column.

A total of 35 direct process measurements and two com-
puted variables of the reboiler were selected.

4.2. Time-lagging of the selected process variables

The time lags in the dearomatization process are long,
approximately 2 h from the first temperature measurement to
the analysers of the bottom product.

Total time lags, i.e. dead time and process lag, between
the temperature measurements were estimated using a cross-
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• Flow ratios were determined for distillate and bottom prod-
uct, distillate and reflux, distillate and feed of the column,
bottom product and feed of the column, and reflux and feed
of the column.

• Variables describing enthalpy were represented by simple
products of the flow rate and temperature. Instead of direct
enthalpies, the enthalpy ratios, i.e. one enthalpy variable
divided by another, were used.

• The enthalpy ratios for the distillation column were com-
puted between: distillate and feed, reflux and feed, bottom
product and feed, distillate and bottom product, and reflux
and bottom product.

• The process measurement describing the enthalpy of the
reboiler, divided by the flow of the feed to the column, was
also calculated/created.

A total of 23 computed variables were created.

4.4. Combination of the direct process variables and the
computed variables

The combination of direct process measurements and
computed variables was formed on the basis of the corre-
lations between the variables and the analyser variables.

All the previously described computed variables were
used in the combination. Especially temperature measure-
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orrelation function. The maximum value of the cro
orrelation function was selected for the total time lag
he measurement. The reference measurement was th
emperature measurement of the process unit. The tota
ags for flow, pressure and level measurements were

ated on the basis of the nearest temperature measure
he sampling interval was 1 min, resulting in total time l
f full minutes.

The data were time-lagged according to the estimated
ime lags.

.3. Creation of the computed variables

Computational variables were created in order to cap
he basic characteristics of the dearomatization process
haracteristics of the distillation especially were investiga
ecause distillation has a strong effect on the flash poin

he initial point of the distillation curve. The computed va
bles were constructed from 36 time-lagged process
urements as follows:

The heat generated in the first and second reactors, a
heat divided by the flow of the fresh feedstock to the
reactor.
Temperature differences in the reactors were compute
tween the highest and the lowest measurement. Tem
ture differences in the distillation column were compu
between the temperatures of: the middle of the column
the feed, bottom of the column and feed, bottom pro
and the bottom of the column, top of the column and re
bottom product and the overhead of the column.
t

t.

ents of the distillation column, pressure of the overh
nd the computed variables of the second reactor had
orrelations with the analyser variables.

The final combination contained 21 direct, time-lagg
rocess measurements and 23 computed variables,
ere constructed from the time-lagged process mea
ents.

.5. Selecting the most suitable monitoring method

The following requirements were specified for
ethods. The method should be able to handle several

ariables and the output of the method should give acc
redictions of the analyser values. The method shou
ble to distinguish between process transitions at feed
hanges, and the process and analyser faults. The m
hould also be able to distinguish between malfunction
he analysers and process faults as early as possible,
ive the operator an alarm. Only the methods described

iterature survey were considered. A method that coul
pplied online and based on process history was prefer

The need for precise prediction ruled out neural nets.
lear relationship between process and computed varia
nd the quality variables of the product, led to the us
LS-based methods.
Owing to the dynamic nature of the process, dynamic

ial least squares regression (DPLS) was selected. DPL
lled all the requirements, and the relationship between
rocess variables and the analyser variables made the

ure of the method very simple.
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Fig. 4. A schematic picture of the utilization of the DPLS method to detect
process disturbances and analyser faults.

A flowchart of the DPLS method used is illustrated in
Fig. 4. First, the direct process measurements were time-
lagged and the computed variables were created. The direct
process variables and the computed variables formed the in-
put block and time-lagged analyser assays the output block
of the PLS regression. The predictions of the analyser vari-
ables were made using the input block. The residuals be-
tween the predicted and the real analyser values indicated
whether the analysers were functioning correctly. A possible
process fault was detected with the HotellingT2 statistics, cal-
culated as the sum of normalized squared scores of the input
block.

4.6. Testing different models

The first task in the model development phase was to
select the proper training data. The models were first con-
structed using the training data of one feed type. As ex-
pected, the models did not describe the other feed types. Next,
the training data were constructed using the data for several
feed types. The more feed types the training data contained,
the better were the results. Equal amounts of data from all
the feed types were used, totalling 57 h. The data included
only normal processing situations with some changes in the
feed rate.

LS
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( n.
W put
b ect-
i n the
p

Fig. 5. The RMSEC values for flash point, initial 5% and 10% points of the
distillation curve with different numbers of latent variables.

4.7. Offline test

The data set for the offline test contained process data for
about 455 h with a resolution of 1 min. The data included
several changes in the feed type and faults in the analysers.
Most of the data were collected from normal situations.

The values of the process and computed variables were
monitored with the HotellingT2 index. If the HotellingT2

value of the current measurements was over the Hotelling
T2 limit, the process state was classified incorrectly and the
predictions of the analysers were not reliable.

If the process state was normal, i.e. the HotellingT2 value
was below the HotellingT2 limit, the predictions of the anal-
yser measurements were computed and the residuals between
the real and predicted value were also computed. The moni-
toring limits for the analyser residuals were defined as half the
mean variance of the training data set. If the absolute value
of the residual was below the limit, then the analyser was in
the normal state. If the limit was crossed, an alarm was given
and the analyser measurement was classified as faulty.

The process faults and analyser faults were marked on the
basis of the process historian, and the results of the monitoring
method and the real faults were compared.

The results of the offline test are presented inTable 1.
Monitoring the flash point gave the best results; 97% of the
f tates
w he
d the
a tock.

T
C

L %)

1
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4
5
6
7

An appropriate number of latent variables of the DP
odel was selected for the offline test with the help of

umulative variance percent table and the root mean s
f the calibration (RMSEC) curve. The lower the value
MSEC, the better the model fits the training data. The
EC value was approximately the same for latent var
umber 5 and larger ones, as shown inFig. 5.

The satisfactory values of the cumulative variance pe
above 80%), shown inTable 1, also support this conclusio

ith five latent variables the variance percent for the in
lock was 90.2% and for the output block 99.6%, refl

ng the expected level of random noise and mismatch i
rocess data.
aults were detected correctly and 99% of the normal s
ere classified properly. Monitoring the initial point of t
istillation curve was slightly more complicated because
nalyser was occasionally lagging changes in the feeds

able 1
umulative variance percentages captured by the PLS model

atent variables CVP input block (%) CVP output block (

36.81 87.71
66.76 96.72
75.81 98.12
84.42 98.94
90.15 99.56
95.99 99.73
97.03 99.80
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Table 2
Results of the offline test

Flash
point

Initial
point

5%
point

10%
point

Faults 5666 937 694 723
Detected correctly (%) 97 67 71 66
Detected incorrectly (%) 3 33 29 34

Normal states 21625 26354 26597 26568
Detected correctly (%) 99 98 96 96
Detected incorrectly (%) 1 2 4 4

Fig. 6. HotellingT2 values for the input block. The limit is marked with a
straight line.

The high sensitivity of the initial point of the distillation curve
was detected when the measurement of the initial point of
the distillation curve was inconsistent with the other analyser
measurements.

Overall, the results of the offline test were encouraging;
96–99% of the normal states of the analysers and 67–97% of
the fault states were classified correctly as shown inTable 2.

4.8. Online test

An online-monitoring system was developed on the basis
of the DPLS model created in the offline test phase. The sys-
tem was tested online for a time period of 144 h. During this
period the type of feedstock changed twice and a disturbance
also hit the process once.

The process disturbance at around 7000 min caused a vio-
lation of the HotellingT2 limit, as shown inFig. 6. A correct
alarm was given for the process disturbance.

The condition of the analysers was monitored with the
residual plots. The residuals, presented inFigs. 7–10, re-

es.

Fig. 8. Residual of the initial point of the distillation curve. Limits are marked
with straight lines.

Fig. 9. Residual of the 5% point of the distillation curve. Limits are marked
with straight lines.

mained inside the residual limits throughout the experi-
ment, except for two cases. The first alarm occurred around
6500 min and the second around 7000 min. The second case
was due to a process disturbance and the alarm was given
correspondingly.

The first violation of the residual limits was caused by
the lag in the analyser results after the change of feedstock
type, and an analyser alarm was given accordingly. The mon-
itoring of the initial point of distillation curve resulted in the
residual merely riding the monitoring limits between 2500
and 4500 min. Alarms were not given because the riding was
followed and the values remained inside the tolerance limit
of one unit.

The results of the online test are summarized inTable 3.
Monitoring the flash point gave the best results, and all the
faults were detected correctly. The initial point of the dis-
tillation curve classified 93% of the faults and 94% of the
normal situations correctly. In total, 94–100% of the nor-
mal states of the analysers and 93–100% of the faulty states
were detected correctly. The monitoring system classified the

F rked
w
Fig. 7. Residual of the flash point. Limits are marked with straight lin
ig. 10. Residual of the 10% point of the distillation curve. Limits are ma
ith straight lines.
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Table 3
Results of the online test

Flash
point

Initial
point

5%
point

10%
point

Faults 72 73 73 74
Detected correctly (%) 100 93.1 100 100
Detected incorrectly (%) 0 6.9 0 0

Normal states 8412 8411 8411 8410
Detected correctly (%) 100 94.3 99.7 99.9
Detected incorrectly (%) 0 5.7 0.3 0.1

Table 4
Cumulative variance percentages captured by the PLS model

Latent variables CVP input block (%) CVP output block (%)

1 41.09 92.78
2 52.94 97.17
3 79.88 97.85
4 84.41 99.59
5 89.78 99.74
6 93.99 99.77
7 96.34 99.80

feed type changes correctly as normal states, and gave an
alarm for an abnormal process state during the disturbance
(Tables 3 and 4).

4.9. Role of the computed variables

To justify the utilization of computed variables in this ap-
plication, DPLS models with and without computed variables
were compared. First, a DPLS model was created using the
37 time-lagged direct process variables. Cumulative variance
percents for the DPLS model without computed variables
were similar with the cumulative variance percents for the
DPLS model with computed variables, as shown inTable 4.
The DPLS model without computed variables included five
latent variables.

The performance of DPLS with and without computed
variables was tested with the online data set. The nor-
mal states were detected correctly considerably more often
with computed variables than without computed variables as
shown inTable 5. DPLS with computed variables classified
94–100% of the normal states correctly where as the DPLS
without computed variables classified only 1–88% of the nor-
mal states correctly. Therefore utilization of the computed
variables was justified in this application.

T
N

W

W

5. Conclusions

The objective of this study was to develop an online-
monitoring system for the dearomatization unit of the Naan-
tali Refinery. A systematic nine-stage procedure was used to
progress from the problem to the online-monitoring appli-
cation. The current states of the flash point and distillation
curve analysers were monitored and, during malfunctions,
their values were predicted using the dynamic partial least
squares method.

The results of the offline test were encouraging; 96–99%
of the normal states of the analysers and 67–97% of the fault
states were classified correctly.

An online-monitoring system was developed and tested
for a time period of 144 h. The monitoring system classified
the two feed type changes correctly as normal states, and gave
an alarm for an abnormal process state during the disturbance.

The developed online-monitoring application fulfilled the
industrial requirements and it was successful in real-time pro-
cess monitoring of the dearomatization process.

In the future the online-monitoring system will be modi-
fied to use a non-linear DPLS algorithm to more accurately
model the non-linearities of processes. A recursive DPLS al-
gorithm will also be tested.
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able 5
ormal process states detected with and without computed variables

Flash
point

Initial
point

5%
point

10%
point

ith CVs
Correctly (%) 100 94.3 99.7 99.9
Incorrectly (%) 0 5.7 0.3 0.1

ithout CVs
Correctly (%) 88.1 35.3 1.1 10.8
Incorrectly (%) 11.9 64.7 98.9 89.2
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