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bstract

This paper presents a systematic approach based on robust statistical techniques for development of a data-driven soft sensor, which is an
mportant component of the process analytical technology (PAT) and is essential for effective quality control. The data quality is obviously of
ssential significance for a data-driven soft sensor. Therefore, preprocessing procedures for process measurements are described in detail. First, a
emplate is defined based on one or more key process variables to handle missing data related to severe operation interruptions. Second, a univariate,
ollowed by a multivariate principal component analysis (PCA) approach, is used to detect outlying observations. Then, robust regression techniques
re employed to derive an inferential model. A dynamic partial least squares (DPLS) model is implemented to address the issue of auto-correlation
n process data and thus to provide smoother estimation than using a static regression model. The proposed methodology is illustrated through

pplications to a cement kiln system for estimation of variables related to product quality, i.e., free lime, and to emission quality, i.e., nitrogen
xides (NOx) emission. The case studies reveal the effectiveness of the systematic framework in deriving data-driven soft sensors that provide
easonably reliable one-step-ahead predictions.

2006 Elsevier Ltd. All rights reserved.
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. Introduction

Soft sensors have been reported to supplement online instru-
ent measurements for process monitoring and control. Both
odel-based and data-driven soft sensors have been developed.

f a first principle model (FPM) describes the process suffi-
iently accurately, a model-based soft sensor can be derived
Prasad, Schley, Russo, & Wayne Bequette, 2002). However,
soft sensor based on detailed FPM is computationally inten-

ive for real-time applications. Modern measurement techniques
nable a large amount of operating data to be collected, stored
nd analyzed, thereby rendering data-driven soft sensor devel-
pment a viable alternative. Application of standard multivariate
tatistical approaches to operating data may lead to model degra-
ation due to contaminating outlying observations. Therefore,

he objective of this paper is to present a systematic framework
or the development of data-driven soft sensors based on robust
tatistical techniques.

∗ Corresponding author. Fax: +45 45932906.
E-mail address: sbj@kt.dtu.dk (S.B. Jørgensen).
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A data-driven soft sensor is an inferential model developed
rom process observations. Early work on soft sensor develop-
ent assumed that a process model was available. Joseph and
rosilow (1978) report an inferential model developed using
Kalman filter. In case the process mechanisms are not well

nderstood, empirical models, such as neural network (Qin &
cAvoy, 1992; Radhakrishnan & Mohamed, 2000) and mul-

ivariate statistical methods, are used to derive a regression
odel (Kresta, Marlin, & MacGregor, 1994; Park & Han, 2000).
ultiple linear regression (MLR) suffers from numerical prob-

ems as well as degraded models when a data set is strongly
ollinear. Principal component regression (PCR), partial least
quares (PLS) and canonical variate analysis (CVA) solve this
ssue by projecting the original process variables onto a low
umber of orthogonal latent variables (LVs).

An inferential sensor provides valuable real-time informa-
ion that is necessary for effective quality control. Therefore,
oft sensors have been widely applied for the estimation of

uality measurements that are normally determined through
nfrequent sampling, and often with off-line analysis, such as
he product composition of a distillation column (Zamprogna,
arolo, & Seborg, 2005) and particle size distributions in a

mailto:sbj@kt.dtu.dk
dx.doi.org/10.1016/j.compchemeng.2006.05.030
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rinding circuit (Casali et al., 1998). Soft sensor development
n batch/fed-batch processes has been review extensively in
ochain and Perrier (1997) and James, Legge, and Budman

2000). The 1990 Clean Air Act requires continuous emission
onitoring devices equipped for NOx, SO2 and CO2 for certain

arge sources, such as industrial boilers and furnaces (Dong,
cAvoy, & Chang, 1995; Qin, Yue, & Dunia, 1997). Although

ostly online analyzers have been installed at many plants, the
mission measurement from a sensor may become unavailable
ue to instrument failure, maintenance or repair. Consequently,
pplications of multivariate soft sensors to emission monitor-
ng have been increasingly reported (Dong et al., 1995; Qin et
l., 1997). Recently, the Food and Drug Administration (FDA)
ntroduces process analytical technology (PAT) into the pharma-
eutical industry to ensure high and consistent product quality.
n essential component of PAT is the real-time information of
roduct properties. Soft sensors derived with multivariate sta-
istical approaches can be powerful tools for pharmaceutical
ndustry to facilitate process understanding, to monitor pro-
ess operation and quality, to detect abnormal situations and
o improve process reliability (Hinz, 2006; Kourti, 2006).

Online process measurements are often contaminated with
ata points that deviate significantly from the true values due
o instrument failure or changes of operating conditions. Since
utlying observations may deteriorate the regression model,
obust statistical approaches have been developed to provide
eliable results in the presence of abnormal observations. This
aper presents a systematic approach using robust multivariate
echniques to build a soft sensor from available process mea-
urements. The application examples are the estimation of free
ime and NOx emission for cement kilns.

The paper is organized as follows. First, a generic proce-
ure is presented. Data preprocessing in Section 2 includes
oth univariate and multivariate approaches for detecting out-
ying observations. Robustified PCR and PLS approaches are
escribed in Section 3. Section 4 contains illustrative applica-
ions on development of free lime and NOx soft sensors for
ement kilns, followed by conclusions in Section 5.

. Data preprocessing

Outliers are commonly defined as observations that are
ot consistent with the majority of the data (Chiang, Pell, &
easholtz, 2003; Pearson, 2002a), including missing data points
r blocks, and observations that deviate significantly from nor-
al values. A data-driven soft sensor derived with PCR or PLS

eteriorates in the presence of abnormal observations, resulting
n model misspecification. Therefore, outlier detection consti-
utes an essential prerequisite step for design of a data-driven
oft sensor.

Although missing data with regular patterns are not com-
on in data from well-designed experiments, they often exist

n operating data. For example, in the cement kiln system near

ero drive current data simply correspond to a stop of cement
iln operation. During such a period, other kiln measurements
bviously will not be reliable or meaningful. Therefore, a heuris-
ic approach has been implemented in the proposed procedure to

2
f

n
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etect and handle missing data related to severe operating inter-
uptions. Specifically, a template is defined by using the kiln
rive measurement to identify missing observations. In case a
mall block (i.e., less than 2 h) of data is missing, interpolated
alues based on neighbouring observations will be inserted. If
arger segments of missing data are detected, these blocks will
e marked and not used to build a soft sensor.

Missing data do not always show a systematic pattern. A
issing segment might exist in only one of the process mea-

urements. In this case, such blocks can be replaced by using
odel-based interpolation methods that fill the missing gap
ith a model derived from the data set (Gupta & Lam, 1996;
elson, Taylor, & MacGregor, 1996). Missing data are one type
f outliers. The second type denotes abnormal operating condi-
ions. For example, the malfunction of process equipment might
ause a change in process measurements that may affect sev-
ral successive samples. For detection of these outlying process
bservations, both univariate and multivariate approaches have
een developed.

The 3σ edit rule is a popular univariate approach to detect
utliers (Ratcliff, 1993),

x(i) − x̄| > t · σ (1)

here x̄ is the mean of the data sequence and t = 3 is the threshold.
his method labels outliers when data points are three or more
tandard deviations from the mean.

Unfortunately, this procedure often fails in practice because
he presence of outliers tends to inflate the variance estimation,
ausing too few outliers to be detected. The Hampel identifier
Davies & Gather, 1981) replaces the outlier-sensitive mean and
tandard deviation estimates with the outlier-resistant median
nd median absolute deviation from the median (MAD). The
AD scale estimate is defined as:

AD = 1.4826 median{|xi − x∗|} (2)

here x* is the median of the data sequence. The factor 1.4826
s chosen such that the expected MAD is equal to the standard
eviation σ for normally distributed data.

Fig. 1 shows 300 samples of SO2 measurement from a cement
lant during otherwise steady operating conditions. Due to harsh
perating conditions, especially the flying dust within the kiln
ystem that may block the measurement probe, the data seg-
ent of the gas analyzer measurement contains many outlying

bservations. It should first be noted that the mean value of the
equence is biased significantly from the nominal value, while
he median value is close. In addition, outliers inflate the stan-
ard deviation such that most of the outlying observations are
reated as normal data. With the threshold of xMed ± 3 · xMAD,
he Hampel identifier identifies most outliers successfully.

A moving window Hample filter can be implemented with
wo tuning parameters: the threshold, t, and the width of the time
indow, K. The following choices are recommended (Pearson,

002b): 2 ≤ t ≤ 5, 3 ≤ K ≤ 5, implying that 7–11 points are used
or calculating the median and MAD of moving data window.

Since process measurements from chemical processes are
ot independent, detecting outliers using univariate diagnos-
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Fig. 1. Comparison between the standard 3σ edit rule and the Hampel identifier
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n SO2 data from a cement kiln. is shown with (– · –, red) and median with
– – –, black). (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of the article.)

ics is not sufficient, but may result in masking and swamping.
asking refers to the case that outliers are incorrectly iden-

ified as normal samples, while swamping is the case when
ormal samples are classified to be outliers. Three hundred sam-
les of a kiln fuel flow rate measurement are shown in Fig. 2,
hich contain a short period of reduced fuel flow rate due to
echanic problems. A Hampel identifier is able to detect uni-

ariate outliers. Although the fuel measurements (marked by a
ircle) are within the bounds of Hampel identifier, the dynam-
cs of transition effect of the kiln operation lasts longer than
he period of low fuel supply. Therefore, the observations up
o the sample 150 belong to an abnormal operation period.
uch outliers can be effectively detected using a multivariate
egression model representing the nominal operation condition,
hich is derived with the proposed approach in the following
aragraphs.

Principal component analysis (PCA) is a multivariate analy-
is method that projects the data matrix to a lower dimensional

pace spanned by the loading vectors. The loading vectors cor-
esponding to the k largest eigenvalues are retained to optimally
apture the variations of the data and to minimize the effect of
andom noise. The fitness between data and the model can be

ig. 2. Kiln fuel flow rate measurement with multivariate outliers that cannot
e detected with a univariate approach.
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alculated using the residual matrix and Q statistics that mea-
ures the distance of a sample from the space of the PCA model
Jackson & Mudholkar, 1979). Hotelling’s T2 statistics indi-
ates how far the estimated sample by the PCA model is from
he multivariate mean of the data; thus, this statistics provides
n indication of variability within the normal subspace (Wise,
991).

The combined Q and T2 tests are used to detect remaining
bnormal observations. Given the significance level for the Q
nd T2 statistics, measurements with Q or T2 values over the
hreshold are classified as outliers. In the proposed procedure,
he significance level, α, has the same value in the two tests;
owever, finding a trade-off between accepting large modelled
isturbances and rejecting large unmodelled behaviours for out-
ier detection clearly needs further investigation.

. Robust statistics

Scaling is an important step in PCA. Since numerically large
alues are associated with numerically large variance, appro-
riate scaling methods are introduced such that all variables
ill have approximately equal weights in the PCA model. In

he absence of a prior knowledge about relative importance of
rocess variables, autoscaling (mean-centering following by a
ivision with the standard deviation) is commonly used. Since
oth mean and standard deviation are inflated by outlying obser-
ations, autoscaling is not suitable for handling data which are
specially noisy. The proposed procedure applies robust scaling
pproach before performing PCA (Chiang et al., 2003). This
rocedure replaces mean by median and the standard deviation
y MAD.

There are two types of approaches for rendering PCA
obust. The first detects and removes outliers using a univari-
te approach, then carries out a classic PCA on the new data set;
he second is multivariate and is based on robust estimation of the
ovariance matrix. The proposed procedure uses the ellipsoidal
ultivariate trimming (MVT) approach (Devlin, Gnanadesikan,
Kettenring, 1981). This trimming method iteratively detects

ad data based on the squared Mahalanobis distance:

2
i = (xi − x∗

i )T
S∗−1(xi − x∗

i ) (3)

here x* is the current robust estimation of the location and
* is the robust estimation of the covariance matrix. Since the
ata set has been preprocessed with a Hampel identifier, 95%
f data with smallest Mahalanobis distance are retained in the
ext iteration. Devlin et al. (1981) suggest that the iteration pro-
eeds until the average absolute change in Fisher z transforms of
he elements of the correlation matrix between two successive
terations is less than a predefined threshold, or the maximum
umber of iteration is reached. In this study, the iterative trim-
ing procedure stops as late as the 10th iteration such that at

east 60% of the data is retained for the estimation of the covari-

nce matrix. Chiang et al. (2003) suggest the closest distance to
enter (CDC) approach where 50% observations with the small-
st deviation from the center of the data are used to calculate the
ean value. The CDC method is integrated in the initialization
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level is commonly used for Q and T2 tests. The lower the signif-
icance level, the higher the chance to reject outlying points. For
the robust PCR model with six PCs, the significance level varies
from 100 to 90%. As shown in Fig. 5, downweighing outlying
22 B. Lin et al. / Computers and Che

tep such that the initial covariance matrix is not disrupted by
utlying observations.

Principal component regression derives an inferential model
ith score vectors and the dependent variable. During the regres-

ion step, zero weights are assigned to outlying observations
dentified by the PCA model; a weight value of 1 is assigned to
ormal data. PLS is another multivariate statistical approach for
elating input and dependent data matrices. The input data are
rojected onto a k-dimensional hyper-plane such that the coordi-
ates are good predictors of dependent variables. The outlying
easurements identified with the PCA model are also down-
eighted before PLS analysis.
In summary, the systematic procedure of applying robust sta-

istical techniques for soft sensor development consists of the
ollowing steps:

. Handle missing data using a template defined with key pro-
cess measurements.

. Detect outliers with a univariate approach (Hampel identifier)
followed by a multivariate approach (robust PCA) using Q
and T2 tests.

. Derive regression model with weighted PLS.

. Validate the soft sensor on independent process data.

The proposed procedure has been applied to many data sets
ollected from several cement kilns. Results from a few of the
ases are given next.

. Case studies

The rotary kiln is the most operationally complex and energy
onsuming equipment in the cement industry. The product qual-
ty of a cement kiln is indicated by the amount of free lime (CaO)
n clinker. The direct off-line measurement is at most available
ith a time delay of about an hour. The measurement is also
ery sensitive to operating perturbations within the kiln system,
hich result in uncertain indication of the average quality. One

ndicator of the load on environmental quality is measured by
he nitrogen oxides (NOx) emission. These oxides are formed in
he cement kiln systems due to the high temperature in the burn-
ng zone. Traditional continuous emission monitoring is carried
hrough analytical sensors, which are expensive and difficult
o maintain (McAvoy, 2002). It is therefore desirable to develop
oft sensors that are able to accurately predict NOx and free lime
n real time. A soft sensor based on FPM is difficult to derive
ue to exothermic and endothermic reactions taking place in both
olid and gas phases, as well as the large number of components
nvolved. The proposed systematic procedure is employed to
erive data-driven soft sensors in the sequel.

.1. Case 1: free lime soft sensor

The operating data from a cement kiln log system are used to

erive a soft sensor of free lime in the clinker. There are totally
9 process measurements available, including kiln drive current,
iln feed, fuel flow rates to calciner and kiln, plus several tem-
erature measurements within the kiln system. Thirteen process
Fig. 3. PRESS of PCR model for CaO during validation period.

ariables are selected as inputs based on process knowledge, as
ell as considering the reliability of process measurements. The

tandard measurements are logged every 10 min, whereas the
aboratory analysis of free lime content of the clinker is logged
pproximately every 2 h. A data block of 12,500 samples for
ach of the standard measurements is selected in this study:
500 samples for modelling and 6000 samples for validation.

One-step-ahead prediction residual sum of squared errors
PRESS) between the model and process measurement eval-
ated on validation data is used to select the number of principal
omponents (PCs):

RESS =
NV∑

i=1

(ŷ(i) − ym(i))2 (4)

here NV is the total number of samples during the validation
eriod. It is calculated only when a new laboratory measurement
s available.

The PRESS of regression models derived with PCR and PLS
re shown in Figs. 3 and 4, respectively. The PCR model with six
Cs has the minimum PRESS (39.5). A second model is devel-
ped with a standard PCR approach that uses the autoscaled data
nd does not downweigh outlying observations. The PCR model
ith seven PCs achieves the minimum PRESS of 43.6, which

s about 10% larger than that of a robustified PCR model. The
LS analysis shows a minimum of PRESS (42.7) for two latent
ariables, because PLS finds LVs that describe a large amount
f variation in X and are correlated with dependent variables, Y,
hile the PCs in PCR approach are selected only on basis of the

mount of variation that they explain in X.
Given the PCA decomposition, weights of 0 are assigned

o abnormal points to downweigh these observations before a
egression model is derived. Ninety-five percent significance
Fig. 4. PRESS of PLS model for CaO during validation period.



B. Lin et al. / Computers and Chemical Engineering 31 (2007) 419–425 423

Fig. 5. PRESS of PCR model with six PCs for CaO with significance level
varying from 100 to 90%.
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ig. 6. Validation of robust PCR model (PRESS = 38.3) for CaO with six PCs
(*) laboratory measurements; (solid line) PCR).

bservations is able to improve the predictability of the soft sen-
or. With the choice of an optimal significance level 97.5% for
PCR model, a minimum PRESS of 38.3 is obtained, which is

bout 12% less than that of a standard PCR model (43.6). The
RESS of a PLS model is reduced to 41.7 by downweighing

he outlying observations detected with the PCR model, around
0% less than a standard PLS model (PRESS = 45.0).

Out of 6500 data points in the modelling block, 1289 samples
re detected as outliers and downweighted in the PLS regres-
ion analysis. It should be noted that the number of outliers
etected with the proposed approach depends on several fac-
ors. The quality of process measurements determines partially
he number of outlying observations. Parameters of the robust
CA algorithm are the second factor. Since the covariance is
stimated through an MVT procedure, the PCA model and out-
iers detected with it, are affected by the number of iterations
nd the ratio of measurements kept during the trimming proce-
ure. Thirdly, the choice of the significance level is also influ-
ntial, since it determines the threshold to detect multivariate

utliers.

Comparisons of the PCR and PLS models with labora-
ory measurements during the validation period are shown in
igs. 6 and 7, respectively, where only 1000 samples during the

ig. 7. Validation of robust PLS model (PRESS = 41.7) for CaO with two LVs
(*) laboratory measurements; (solid line) PLS).

t
t

F
4

ig. 8. PRESS of CaO soft sensor with a DPLS model (order from 0 to 6)
valuated on validation data with 6000 samples.

alidation period are shown. The PLS model is able to capture
ore relevant information than the PCR model with a smaller

umber of LVs. Although the robust PCR approach has a smaller
RESS than that of the PLS model, it is obtained at the cost of
sing four more principal components and thereby introducing
higher noise level in the regression model.

The fundamental assumption of the PLS approach is that the
ata matrix is not correlated in time. However, operating data
ommonly exhibit auto-correlation due to process dynamics.
he PLS approach only constructs a linear static model from

he data matrix, thereby it cannot reveal the dynamic relations
etween process variables. A dynamic PLS (DPLS) model is
btained by augmenting the original data block with time-lagged
ariables. The PRESS of the CaO soft sensor using a DPLS
odel with orders varying from 0 to 6 is shown in Fig. 8. DPLS
ith a model of order 4 achieves a minimum PRESS of 38.0. As

hown in Fig. 9, the CaO soft sensor with a fourth order DPLS
odel is visibly smoother than a static PLS model (see Fig. 7).

ncluding time-lagged terms initially recovers additional infor-
ation and leads to a smoother prediction. However, including

urther time-lagged terms introduces additional noise into the
odel.
Although deviations are observed when fast dynamics occur

n the process, the CaO soft sensor developed with a system-
tic robust statistical approach captures the slow changes and
he trend of laboratory measurements reasonably well, which
re important for process operation and control. This type of
ehaviour has been demonstrated on several cement kilns.

.2. Case 2: NOx soft sensor
The operating data from a cement kiln log system are used
o derive a NOx soft sensor. There are 43 process measurements
hat are sampled once per minute. A data block of 20,000 sam-

ig. 9. Validation of CaO soft sensor (PRESS = 38.0) with a DPLS with of order
((*) laboratory measurements; (solid line) DPLS).
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Fig. 10. PRESS of PCR model of NOx soft sensor during validation period.
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Fig. 13. PRESS of robust PLS model for NOx during validation period.

Fig. 14. Validation of robust PLS model (PRESS = 8.40 × 107) with two LVs
for NOx ((*) online measurements; (solid line) PLS).
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ig. 11. PRESS of PCR model with seven PCs for NOx with significance level
arying from 100 to 90%.

les is selected: the last 10,000 samples for modelling and the
rst 10,000 samples for validation.

Fig. 10 shows the relation of PRESS versus the number of
C for a PCR soft sensor. Although PCR model with one PC has

he numerically smallest PRESS, the model hardly captures pro-
ess dynamics. The PCR model of seven PCs with the PRESS
f 8.58 × 107 is employed to determine optimal Q and T2 tests
ignificance levels. As shown in Fig. 11, the minimum PRESS
s obtained with an optimal significance level 95.5%, which
etect 4155 outliers out of the 10,000 samples for modelling.
t is observed that the optimal Q and T2 tests significance lev-
ls achieve the trade-off between rejecting outlying points and
ssential process dynamics. In addition, optimal Q and T2 tests
ignificance levels also depend on the quality of the modelling
ata block.

The PRESS value of the NOx soft sensor developed by
he standard PLS procedure (see Fig. 12) is 9.89 × 107. The
erformance is slightly improved by incorporating the univari-
te outlier detection procedure (PRESS = 9.48 × 107). Fig. 13

hows the relationship between the number of LVs and the
RESS of the NOx soft sensor from a PLS model following the
PCA outlier detection. The minimum PRESS of 8.40 × 107 is
btained with three LVs, which is around 15% less than that of

ig. 12. Validation of a standard PLS model (PRESS = 9.89 × 107) for NOx
ith one LV ((*) online measurements; (solid line) PLS).
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ig. 15. Validation of NOx soft sensor (PRESS = 8.39 × 107) with a 10th order
PLS of two LVs ((*) online measurements; (solid line) DPLS).

he NOx soft sensor with a standard PLS model. As shown in
ig. 14, the performance of the NOx soft sensor is significantly

mproved by the univariate and multivariate outlier detection
teps.

A dynamic PLS NOx soft sensor is also developed. The
tudy reveals that the PRESS curve levels off after introduc-
ng two time-lagged input blocks. As shown in Fig. 15, the 10th
rder DPLS soft sensor of two LVs (PRESS = 8.39 × 107) pro-
ides much smoother prediction than a static NOx soft sensor.
ompared to the PCR model with seven PCs, the PLS model
emonstrates the advantage of obtaining a similar PRESS with
much lower number of LVs.

. Conclusions

This paper presents a systematic approach to build data-
riven soft sensors. Due to the low signal-to-noise ratio in oper-
ting data, data preprocessing is demonstrated to be an essential
tep in the framework. Robust statistical techniques are inte-
rated to effectively extract process information in the presence

f outlying observations. The proposed methodology is applied
o predict free lime and NOx emission of cement kiln processes.

Both soft sensors are able to provide reasonably accurate
rediction, providing complementary information to online gas
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nalyzers and laboratory measurements. Smooth estimation is
btained with a dynamic model by introducing an appropriate
umber of time-lagged terms. More importantly, the real-time
stimation of free lime shows potential to be used for quality
ontrol of the product.

The case studies demonstrate the effectiveness of outlier
etection with a robust PCR approach and downweighing out-
ying observations to enhance the predictability of a regression

odel. The case studies also indicate the existence of an opti-
al significance level. However, the issues in finding the optimal
and T2 significance levels for regression model development

nd integrating the information from irregularly sampled off-
ine quality measurements into the weighting vector need further
nvestigation.
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