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Abstract
In this paper three different approaches for fault detections are compared on
example with coal mill used at a power plant. The compared methods are based on:
an optimal unknown input observer, static and dynamic regression model-based
detections. These approaches are compared on data from a coal mill, where a fault
emerges during the test set. The conclusion on the comparison is that observer-
based scheme detects the fault 13 samples earlier than the dynamic regression
model-based method, and that the static regression based method is not usable
due to generation of far too many false detections.

Keywords: Fault Detection, Coal-fired Power Plants, Optimal Unknown Input
Observer, Dynamical Regression model-based detection

1. INTRODUCTION

Due to increased performance requirements of
power plants, reliability of these are of increased
importance. An important method to improve
reliability of the power plant, is to detect the
faults as they emerge and then handle the de-
tected faults. An example of such a fault is an
unexpected increase in the moisture content of
the coal, which might result in a decreased coal
flow out of the coal mill. In most coal mills it is
not possible to measure the pulverized coal flow
out of the mill. The coal flow into the mill is only
indirectly measurablem implying that the early
fault detection based on detection of drops in the
coal flow of the coal mill, is not so simple as it
seems. A coal mill is illustrated in Fig. 1.

Dynamic modeling of these coal mills have been
the topic of numerous of publications. Some ex-

amples dealing with modeling of coal mills are
(Rees and Fan 2003), (Zhang et al. 2002) and
(Tigges et al. 1998). High order dynamic models
and observer design for coal mills are the top-
ics in (Fukayama et al. 2004). In (Odgaard and
Mataji 2005) a method for detecting emerging
changes in the coal moisture content is designed.
The suggested scheme is based on a optimal-
unknown-input observer scheme, see (Chen and
Patton 1999).

However, if models are not available of a system,
(in this case the coal mill), one could use regres-
sion based methods, see (Venkatasubramanian et

al. 2003). Modern measurement technologies en-
able a large amount of operating data to be col-
lected and stored, thereby rendering data-driven
approach a viable alternative for fault detection.
A two-step procedure is commonly employed for
data-driven fault detection. A model that repre-
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Figure 1. An illustration of the coal mill.

sents the normal operation condition (NOC) is
first developed; then faults are detected according
to the residual information between model predic-
tion and process measurements.

This paper is organized as follows. Section 2
describes the coal mill process. Observer-based
fault detection method is presented and designed
in Section 3. Section 4 describes the multivariate
data-driven fault detection approaches, including
static and dynamic PCA/PLS models, followed
by an application of both observer-based and
regression-based fault detection schemes to a coal
mill process.

2. THE COAL MILL

The work presented in this paper, is based on
a Babcock MPS 212 coal mill used at Elsam’s
Nordjyllandsværktet Unit 3. However, the method
proposed in the paper is so generic that it can
be applied to other types of coal mills. The coal
mill is illustrated in principles in Fig. 1. The
coal is fed to the coal mill through the central
inlet pipe. The coal is pulverized on the rotating
grinding table by the rollers. The pulverized coal
is then blown up and the moisture content is
evaporated by the hot primary air. The primary
air is mixed by cold outside air and heated outside
air, which is heated by the furnace. The ratio of
these air flows are used to control the temperature
of the primary air flow. Coal particles which in
the pulverizing have been small enough will pass
through the classifier and out through the outlet
pipes into the boiler. References to coal flow and
primary air flow are given by the general power
plant controller, as well as rotational speed of the
classifier. The temperature of the primary air is
used to control the temperature in the coal mill at
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Figure 2. A plot of the linear model response com-
pared with measurements of a step response
on the coal mill.

the classifier. The temperature controller is often
required to keep temperature constant at 100◦C
in order to evaporate the moisture content in the
coal. A coal mill is a harsh environment in which
it is difficult to perform measurements, this means
that all the variables are not measurable, e.g. the
actual coal flows in and out of the coal mill are not
measurable. However, the primary air flow and
temperature are, as well as the temperature at
the classifier.

A number of different faults can occur in the coal
mill, and if the fault leads to a decrease in the
output coal flow from the coal mill, this can lead
to drop out of the entire power plant unit. In this
paper the fault in question is due to increased coal
moisture content.

3. OBSERVER BASED DETECTION
SCHEME

This specific fault detection scheme for detect-
ing increased coal moisture content is derived
in (Odgaard and Mataji 2005). It consists of an
optimal unknown input observer, see (Chen and
Patton 1999) based on simple energy balance
model of the coal mill. The observer estimates a
variable corresponding to energy lack due to the
emerging fault.

3.1 Coal mill energy model

A simple energy balance model of the coal mill is
derived in (Odgaard and Mataji 2005), this model
is based on a more detailed model found in (Rees
and Fan 2003). In this model the coal mill is seen
as one body with the mass mm. The following
variables are defined: T (t) is the temperature in
the coal dust flow in the mill, ṁPA(t) is the
primary air mass flow, TPA(t) is the temperature
of the primary air flow, ṁc(t) is the mass flow of
the coal flow, and γ(t) is the moisture content of
the coal flow. In (Odgaard and Mataji 2005) the
linear model is derived, and can be seen in (1).
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T̄m(t) = CT̄ (t) + r(t), (2)

where a given signal ◦ is linearized by ◦̄ = ◦ −
◦o, ◦o is the operation point of ◦, q(t) is the
normal distributed process disturbances, r(t) is
the normal distributed measurement noises, Tm(t)
is the measured temperature and
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,

(5)

C = I. (6)

The model parameters are found by partly by data
sheets as wells as experiments. The response of
this model is compared with measurement in Fig
2, more informations on the parameters can be
found in (Odgaard and Mataji 2005).

3.2 Residual generation

The energy balance given by (1-6) would in case of
a fault deviate from the coal mill which indicates
an unbalance in the model. The unbalance in the
model can be represented by an additional fault
input. In order to estimate the need energy/fault
signal it is more convenient to represent it by an
internal state in the model. The simplest repre-
sentation is a first order low-pass filter which is
included in the model. This results in the linear
model given by (7-12),

[

˙̄T (t)
˙barQ(t)

]

= Aq

[

T̄ (t)
Q̄(t)

]

+ Bq





¯̇mPA(t)
T̄PA(t)
¯̇mc(t)





+ EqQn(t) + q(t),

(7)

T̄m(t) = Cq

[

T̄ (t)
Q̄(t)

]

+ r(t), (8)

where Q(t) is the estimated residual (need energy
flow to balance the model), Qn(t) is the generic

unknown input which is low-pass filtered in order
to represent the residual, and

Aq =





A
1

p
0 −p



 , (9)

Bq =

[

B1×(1···3)

0

]

, (10)

Cq =
[

C 0
]

, (11)

Eq =

[

1
1

]

, (12)

where p is the pole of internal residual model,
B1×(1···3) denotes the three first elements of B.
The model represented by (7-12) is discritizied
before an observer is designed to estimate the
states in the model, and hereby the residual, see
(13-14).

[

T̄ [n + 1]
Q̄[n + 1]

]

= Ad

[

T̄ [n]
Q̄[n]

]

+ Bd





¯̇mPA[n]
T̄PA[n]
¯̇mc[n]





+ EdQn[n] + q[n],

(13)

T̄m[n] = Cd

[

T̄ [n]
Q̄[n]

]

+ r[n], (14)

where Ad, Bd, Cd, Ed are the discritizied rep-
resentations of Aq, Bq, Cq, Eq. This model is
a system with an unknown input, disturbances
and measurement noises, i.e. an optimal unknown
input observer would be an obvious observer to
use for estimating the residual.

3.3 Optimal unknown input observer

The optimal unknown input observer is described
in (Chen and Patton 1999). For discrete time
systems with unknown inputs and disturbances
which can be represented by

x[n + 1] = Anx[n] + Bnu[n]

+ End[n] + q[n],
(15)

y[n] = Cnx[n] + r[n], (16)

an optimal unknown input observer of the follow-
ing form can be derived

z[n + 1] = Fn+1z[n] + Tn+1Bnu[n]

+ Kn+1y[n],
(17)

x̂[n + 1] = z[n + 1] + Hn+1y[n + 1]. (18)

The specific observer is designed in (Odgaard and
Mataji 2005). The fault is detected by a simple
threshold rule, meaning if the fault estimate is
larger than the threshold β a fault is detected at
the specific sample. The threshold is chosen such
that it do result in false detection eg. from high
frequently variations in the residual.
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Figure 3. Generic framework for data-driven fault
detection.

4. DATA-DRIVEN APPROACHES FOR
FAULT DETECTION

The key component of a data-driven fault detec-
tion system is a NOC model that is developed
through multivariate regression techniques. Then,
fault subspace is defined based on the residual
between the regression model and process mea-
surements. If deviations are larger than a prede-
fined confidence level, the process is deemed to be
operated outside the range of normal condition,
and a fault is detected. Both principal component
regression (PCR) and partial least squares (PLS)
have been extensively employed to develop an em-
pirical model from operational data. The selection
of appropriate number of variables (LVs) maxi-
mizes process variations while minimizing noise
content. One-step-ahead prediction residual sum
of squared errors (PRESS) between the model,
{ŷ(i)}, and the process measurement, {ym(i)},
evaluated on validation data is used to choose the
number of LVs

PRESS =

Nv
∑

i=1

(ŷ(i) − ym(i))
2
, (19)

where Nvis the total number of samples during
the validation period.

Process measurements are often contaminated
with data points that deviate significantly from
real values due to instrument failure or changes of
operating conditions, which significantly degrade
the regression model. Therefore, robust statistical
approaches were employed to pre-process process
measurements in order to provide reliable results
in the presence of abnormal observation (Lin et
al. 2005). The generic approach for data-driven
fault detection can be summarized in Fig. 3. Given
a data matrix X constructed by m observations
of n variables, PCA projects it to a lower di-
mensional space that explains a large fraction of
variability in the original data.

X =
k

∑

i=1

tip
T

i
+ E, (20)

where E is the residual matrix, pi and ti are
loading and score vectors. The loading vectors

corresponding to the k largest eigenvalues are
retained to optimally capture the variations of
the data and minimize the effect of random noise.
The fitness between a data point and the model
is calculated using the residual vector, ei.

The magnitude, Qi = eieT
T

i
, indicates how well

a sample fits to the PCA model. (Jackson and
Mudholkar 1979). Q-statistic measures the dis-
tance of a sample from the PCA model. Hotellings
T 2-statistic provides an indication of variability
within the normal subspace. The T 2 value of a
sample is equal to the sum of squares of the
adjusted (unit variance) scores.

PLS is a multivariate statistical approach for re-
lating input data matrix, x and dependent data
block y. A regression model is determined by
choosing the appropriate number of latent vari-
ables (LVs). The deviation between the process
measurement and the NOC model prediction is
used to detect faults in the process.

The fundamental assumption of the PLS approach
is that the data matrix is not correlated in time.
However, operating data commonly show auto-
correlation due to process dynamics and feed-
back loops. The standard PLS approach only
constructs a linear static mapping from the data
matrix, thereby it can not reveal the dynamic
relations between process variables, which is re-
quired to represent the dynamical system. A dy-
namic PLS (DPLS) model is obtained by aug-
menting the original data block with time lagged
variables. Similarly, fault detection using dynamic
PCA model is also investigated.

5. EXPERIMENTS

The experimental work in this paper consists of
two parts. I) experiments with optimal-unknown
observer scheme, and II) design and experiments
of the PLS/PCA model based methods, in the
end the results on these methods are compared.
In practice only data of one given fault type is
available. In this case the moisture content is
dramatically increased. The sample frequency in
this experiment is 60s. By visual inspection of
the data from the coal mill the beginning of this
fault can be detected at sample 160. The applied
methods are consequently compared on this data
set.

5.1 Experiments with the observer based approach

The detection scheme is designed in Section 3.
The introduced fault detection methods based on
the estimated residual can detect a number of
different faults in the coal mill. The estimated
residual Q̂[n], can for this given fault be seen in
Fig. 4. Using this method the fault is detected
at sample 147, i.e. 13 samples and whereby 13
minutes before the visual inspection indicates.
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Figure 4. Fault detection based on unknown input
observer estimate of Q̂[n].

Figure 5. Percentage of variations captured by
static PCA model.

5.2 Experiments with and design of the regression
model-based approach

Operating data from a coal mill is used to compare
the fault detection observer-based method and
PCA/PLS models based approach. There are 13
process measurements available representing dif-
ferent temperature, mass flows, pressures, speed
etc in the coal mill.

The measurement is not updated, if the variation
is less than 1%. The variations of T (t) is in the
major part of the operational time inside this
interval. Therefore, it is not suitable to be chosen
as the predictor variable. However, the variations
can be extracted from the TPA(t), which is used to
control the temperature of the mill. Therefore, the
PLS model is developed with the temperature of
the mill as the dependent variable. In addition 6 of
the other variables are chosen as regressors since
there is barely information in the remainder.

600 samples that represent normal conditions are
used to develop the NOC model. 300 observations
are used for choosing number of LVs by cross-
validation. The test dataset consists of 300 sam-
ples.

A static PCA model is first developed, which
captures around 99% of variations with 5 PCs
(see Fig. 5), which indicates strong collinearity
among regressors. As shown in Fig. 6, both Q
and T 2 statistics (with 95% confidence level) of
the static PCA model are noisy, which potentially
lead to false alarms. A static PLS model with 2
LVs achieves the minimal PRESS (see Fig. 7),
which is applied to the test dataset. Fig. 8 shows

(a) Q. (b) T 2.

Figure 6. Q and T 2 statistics of the static PCA
model with 5 PCs.

Figure 7. PRESS vs. the number of latent vari-
ables of static PLS model.

Figure 8. Fault detection with the static PLS
model of 2 LVs.

the comparison between process measurement and
the static PLS model prediction, together with
the 95% confidence level. The process gradually
drifts away form the NOC model, which even-
tually moves beyond the threshold around the
sample 150. Due to the noise involved in the
prediction signal, the estimation moves in and
out the threshold from 110 till 200, when it is
clearly out of the confidence level. Both Figs. 6
and 8 reveal that static PCA and PLS models
may lead to false alarms due to the noisy es-
timation. In addition, process measurements are
commonly auto-correlated, this behaviour is ex-
pected since the coal mill runs dynamical. Thus,
dynamic models are developed by including time
lagged process measurements, to address the issue
of auto-correlations and reduce the possibility of
false alarms due the none modelled dynamics.

Including time lagged terms enhance the NOC
model by including historical data. However, time
lagged terms also introduce additional noise into
the modelling data block. For example, including
n + 1 time lagged terms might lead to poorer val-
idation performance than the model with n terms
due to measurement noise. Therefore, PRESS is
used to choose appropriate number of time lagged
terms for a dynamic PLS model.



Figure 9. Fault detection with dynamic PLS
model of 3 LVs using 8 time lagged terms.

Figure 10. Fault detection with dynamic PCA
model of 2 PCs using 8 time lagged terms.

The predictive ability of the PLS model is im-
proved with the inclusion of time lagged terms.
The PRESS decreases from 1.645 to the minimal
value of 1.142, which is obtained with a dynamic
PLS of 3 LVs using 8 time lagged terms. The appli-
cation of the dynamic PLS model to the test data
reveals that the fault occurs in the process around
sample 160. Fig. 9 also shows a much smoother
prediction such that the possibility of false alarms
is significantly reduced. A dynamic PCA model
is developed by the inclusion of 8 time lagged
terms. The number of PCs is chosen as 2 through
cross-validation, which explains 70.6% of process
variations. The Q statistic of the dynamic PCA
model is shown in Fig. 10, the fault is detected
around 160 samples, which is consistent with the
dynamic PLS model.

5.3 Summery of experimental work

These experiments show that a static method is of
no good use, since it generates too many false de-
tections. Both dynamic methods detect the fault
as it emerges, however, the observer based method
detects this specific fault earlier, approximately 13
samples earlier than the regression model-based
method. This might depend on the chosen param-
eters in the two methods. In addition one should
notice the model order this is as well significant
lower for the observer based method compared
with the regression model-based approach.

6. CONCLUSION

This paper compares some different approaches
for fault detection on a specific application: de-
tection of faults in a power plant coal mill. The
compared methods are: optimal-unknown-input
observer, static and dynamic regression model-
based approaches. The methods are applied to a
specific data set with an emerging fault in the coal
mill. From this test it can be seen that a dynamic
approach is required. The two dynamical method
detect the fault as emerge, however, the observer
based scheme detects the fault 13 samples earlier.
The observer based scheme do as well require a
lower model order, than the dynamical regression
approach. But the data-driven dynamical regres-
sion model based approach is a good alternative
if a model of the system is not aviable.
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